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On existence and regularity of solutions

to a class of generalized stationary Stokes problem

Nguyen Duc Huy, Jana Stará

Abstract. We investigate the existence of weak solutions and their smoothness properties
for a generalized Stokes problem. The generalization is twofold: the Laplace operator
is replaced by a general second order linear elliptic operator in divergence form and the
“pressure” gradient ∇p is replaced by a linear operator of first order.

Keywords: generalized Stokes problem, weak solutions, regularity up to the boundary

Classification: 76D03, 76D07, 35Q30, 35J55

1. Introduction

Let Ω ⊂ R
d (d ≥ 2) be a bounded domain with boundary ∂Ω. We study the

following generalization of the linear Stokes problem: For given f = (f1, . . . , fd) :

Ω −→ R
d, g : Ω −→ R, A =

(

A
αβ
ij

)d

i,j,α,β=1
: Ω −→ R

d2×d2 and a d × d matrix

B =
(

Bij
)d
i,j=1 we look for u = (u1, . . . , ud) : Ω −→ R

d and p : Ω −→ R solving

(1.1)

− div(A∇u) +B∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω.

The generalization of the classical Stokes problem consists in two points: instead
of the Laplace operator we consider a general second order elliptic operator in
divergence form and instead of the gradient of p we consider a class of general first
order linear operators. The new feature of system (1.1) compared with classical
Stokes system lies in the fact that operators div u and B∇p (for B 6= E) do
not act as adjoint operators in suitable Banach spaces. While existence of weak
solutions to (1.1) with B = E was extensively studied (see e.g. [4], [5], [9] and
references given there), both existence and smoothness properties of solutions to
system (1.1) with a general B — as far as we know — have not been investigated
yet.

It is our pleasure to acknowledge the support of research grants of the Czech Republic GAČR
201/05/2465, GAČR 201/03/0934 and MSM 0021620839.
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Our motivation to consider system (1.1) began with the study of smoothness of
flows of incompressible fluids with viscosities that depend on the shear rate and
the pressure. The typical example we have in mind is

(1.2)
ut − div T (Du, p) + (u · ∇)u+∇p = f in I × Ω,

div u = 0 in I × Ω

accompanied by initial and boundary conditions. Here u stands for the velocity,
Du = 12 (∇u +∇Tu), p for pressure, f for external body forces and T (Du, p) for
the Cauchy stress tensor.
We assume that

(1a) T is continuously differentiable on R
d2+1 and

Tij(ξ, τ) = ν(|ξ|, τ)ξij , i, j = 1, . . . , d;

(1b) there are m ∈ (1, 2], λ0, λ1, ν0 > 0 such that for any τ ∈ R and symmetric
matrix d× d ξ, it holds

λ0(1 + |ξ|2)
m−2

2 ≤

d
∑

i,j,k,l=1

∂Tij

∂ξkl
(ξ, τ)ξijξkl ≤ λ1(1 + |ξ|2)

m−2

2 ,

d
∑

i,j=1

∂Tij

∂τ
(ξ, τ) ≤ ν0(1 + |ξ|2)

m−2

4 .

Then if f , the boundary ∂Ω and initial data satisfy natural conditions, m ∈

( 3dd+2 , 2] and ν0 is small enough with respect to λ0, there is a pair

u ∈ Lm(I,W 1,m(Ω)) ∩ L∞(I, L2(Ω)); p ∈ Lm(I × Ω)

satisfying (1.2) (see [11], [12] and [13]). The smoothness of u and p is a more
delicate problem even in the stationary case (for which the existence was proved
in [13]). As we deal with a system of nonlinear elliptic PDEs we cannot expect
full regularity in space dimensions d ≥ 3. When proving partial regularity results
for such models we come to the so-called “blow up” system of (1.2) which has the
form (1.1) with

A
ij
kl =

1

2

(∂Tij

∂ξkl
(a, b) +

∂Til

∂ξkj
(a, b)

)

, i, j, k, l = 1, . . . , d;

Bij = δij −
∂Tij

∂τ
(a, b), i, j = 1, . . . , d,

where a = lim
R→0+

1
|B(x0,R)|

∫

B(x0,R)
Du dx, b = lim

R→0+

1
|B(x0,R)|

∫

B(x0,R)
p dx.
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Saying differently, behaviour of solutions to (1.1) with such A and B predicts
behaviour of solutions to (1.2) in regular points x0.
The arrangement of the paper is as follows. In Section 2 we introduce notation,

definitions and recall some results used later. In the next section we present
existence and uniqueness results for a constant matrixB. In addition, we illustrate
the type of this generalized linear Stokes system by several examples. In Section 4
we show the regularity of solutions u, p in W k,2(Ω) under natural conditions on
f, g, A,B,Ω.

2. Preliminaries

In this section, we introduce notation, definitions and also recall some well-
known results that will be used later.
Let Ω be a domain with Lipschitz boundary ∂Ω in R

d (d ≥ 2). For 1 ≤ q ≤ ∞,

k ∈ N; Lq(Ω) and W k,q(Ω) denote the usual Lebesgue and Sobolev spaces. The
norm of u ∈ Lq(Ω) is denoted by

‖u‖q = ‖u‖q,Ω :=
(

∫

Ω
|u|q dx

)1/q
.

The norm of u ∈W k,q(Ω) is defined as

‖u‖k,q = ‖u‖k,q;Ω :=
(

∫

Ω

∑

|α|≤k

|Dαu|q dx
)1/q

.

As usual, W
k,q
0 (Ω) is defined as the completion of C

∞
0 (Ω) in W

k,q(Ω). We

denote by W−1,q′(Ω) the dual space to W 1,q0 (Ω) where
1
q′ +

1
q = 1. If f ∈

W−1,q′(Ω), v ∈W
1,q
0 (Ω) we use the notation [f, v] for the value of the functional

f at v.
Set W k,q(Ω)m :=W k,q(Ω,Rm) = [W k,q(Ω)]m with norm

‖u‖k,q = ‖u‖k,q;Ω = ‖(u1, . . . , um)‖k,q;Ω :=
(

m
∑

j=1

‖uj‖
q
k,q

)1/q
.

In a similar way we obtain vector valued Banach spaces W
1,q
0 (Ω)

m, Lq(Ω)m and

W−1,q′(Ω)m (which denotes the dual space to W
1,q
0 (Ω)

m). We will also use the

symbol ‖u‖−1,q′ = ‖u‖−1,q′;Ω to denote the norm of u ∈ W−1,q′(Ω) or u ∈

W−1,q′(Ω)m.

The space W
1,2
0,div(Ω) is determined by the condition

W
1,2
0,div(Ω) :=

{

u ∈W
1,2
0 (Ω)

d; div u = 0
}
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where the equation div u = 0 is satisfied in distributional sense. W 1,20,div(Ω) is a

closed subspace of W 1,20 (Ω)
d and thus it is a Hilbert space with scalar product

induced from W
1,2
0 (Ω)

d.

Let x = (x1, . . . , xd) ∈ R
d, f ∈ W k,q(Ω), u = (u1, . . . , ud) ∈ W k,q(Ω)d. We

introduce notation

Djf :=
∂f

∂xj
, D2j f :=

∂2f

∂x2j
, ∇f := (Djf)

d
j=1, ∇

2f := (DjDlf)
d
j,l=1,

x = (x′, xd), x
′ = (x1, . . . , xd−1), u = (u

′, ud), u
′ = (u1, . . . , ud−1),

∇ = (∇′, Dd), ∇
′ = (D1, . . . , Dd−1), Dju := (Dju1 . . . , Djud).

Br(x0) :=
{

x ∈ R
d; |x− x0| < r

}

, x0 ∈ R
d, r > 0;

B′
r := {y′ ∈ R

d−1; |y′| < r}, r > 0.

If x = (x1, . . . , xm) ∈ R
m, y = (y1, . . . , ym) ∈ R

m, we use the notation

x · y := x1y1 + · · ·+ xmym

for the scalar product of x and y. For M an d2 × d2 matrix and x, y being d× d

matrices we write

Mx : y =

d
∑

α,β,i,j=1

M
αβ
ij xα

i y
β
j .

For points x ∈ R
d as well as for matrices M = (Mij)

m
i,j=1 we write

|x| =
(

d
∑

i=1

|xi|
2
)
1

2

, |M | :=
(

m
∑

i,j=1

|Mij |
2
)
1

2

.

Next, we recall the local description of the boundary ∂Ω which allows us to
define domains with smooth boundary (see [1], [7]).

Given x0 ∈ R
d, r > 0, β > 0, a local coordinate system centered in x0 with

coordinates y = (y′, yd) and a real continuous function h : B
′
r 7−→ R we denote

Ur,β,h(x0) :=
{

(y′, yd) ∈ R
d;h(y′)− β < yd < h(y′) + β, |y′| < r

}

.

A domain (i.e. open, connected set) Ω ⊂ R
d (d ≥ 2) is called a Lipschitz domain,

iff for each x0 ∈ ∂Ω, there exist constants r > 0, β > 0, a local coordinate
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system centered in x0, and a Lipschitz continuous function h : B
′
r 7−→ R with the

following properties

(2.1) Ur,β,h(x0) ∩ ∂Ω =
{

(y′, yd); yd = h(y
′), |y′| < r

}

,

(2.2) Ur,β,h(x0) ∩ Ω =
{

(y′, yd);h(y
′)− β < yd < h(y′), |y′| < r

}

,

(2.3) Ur,β,h(x0) ∩ (R
d \ Ω) =

{

(y′, yd);h(y
′) < yd < h(y′) + β, |y′| < r

}

.

For k ∈ N the domain Ω is called a Ck-domain, iff for each x0 ∈ ∂Ω, the function
h describing the boundary in (2.1), (2.2), (2.3) belongs to Ck(B′

r).

If Ω is a bounded Ck-domain then for all γ > 0 we find x1, . . . , xm ∈ ∂Ω,
hj := hxj , rj := rxj , B

′
j = B′

rj
, Uj := Urj ,βj ,hj

(xj), j = 1, . . . ,m with the

properties (2.1), (2.2), (2.3) such that ∂Ω ⊂
⋃m

j=1 Uj . Moreover, hj ∈ Ck(B′
j)

and ‖hj‖Ck(B′

j)
≤ γ for j = 1, . . . ,m.

Partition of unity gives existence of functions ϕj ∈ C∞
0 (R

d), j = 1, . . . ,m; a
sequence of open balls Bk ⊂⊂ Ω, k = 1, . . . , l and a sequence of functions ψk ∈
C∞
0 (R

d), k = 1, . . . , l with the following properties

suppϕj ⊂ Uj , 0 ≤ ϕj ≤ 1, j = 1, . . . ,m;

suppψk ⊂ Bk, 0 ≤ ψk ≤ 1, k = 1, . . . , l;

Ω ⊂ (

l
⋃

k=1

Bk) ∪ (

m
⋃

j=1

Uj);

l
∑

k=1

ψk(x) +

m
∑

j=1

ϕj(x) = 1 for all x ∈ Ω.

We conclude this section by recalling some results on solvability of equations
div v = g and ∇p = f .

Lemma 2.1. Let Ω be a bounded Lipschitz domain in R
d and let Ω0 be a

nonempty subdomain of Ω. Let 1 < q <∞, q′ = q
q−1 . Then it holds:

(a) there is a constant C = C(q,Ω) > 0 such that for each g ∈ Lq(Ω) with
∫

Ω g dx = 0 there exists at least one v ∈ W
1,q
0 (Ω)

d satisfying

div v = g in Ω, ‖∇v‖q ≤ C‖g‖q.

(b) there is a constant C = C(q,Ω,Ω0) > 0 such that for each f ∈ W−1,q(Ω)d

satisfying condition [f, v] = 0 for all v ∈ W
1,q′

0,div(Ω) there exists a unique

p ∈ Lq(Ω) satisfying

∇p = f in Ω,

∫

Ω0

p dx = 0 and ‖p‖q ≤ C‖f‖−1,q.

Proof: See [8, Chapter 2, Lemma 2.1.1, 2.2.2]. �
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3. Existence of solutions

Let Ω ⊂ R
d (d ≥ 2) be a bounded Lipschitz domain with boundary ∂Ω.

We will prove the existence and uniqueness of solutions to the generalized linear
Stokes system (1.1) with g = 0. Thus, we consider the system

(3.1)

− div(A∇u) +B∇p = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

Here f = (f1, . . . , fd) : Ω → R
d, A =

(

A
αβ
ij

)d

i,j,α,β=1
: Ω → R

d2×d2 , B =
(

Bij
)d
i,j=1 ∈ R

d×d are given quantities and u = (u1, . . . , ud) : Ω→ R
d, p : Ω→ R

are unknown functions.

Definiton 3.1. Let f ∈ W−1,2(Ω)d. Then a pair (u, p) ∈ W
1,2
0,div(Ω) × L2(Ω) is

called a weak solution to system (3.1) if and only if

(3.2) − div(A∇u) +B∇p = f in Ω

holds in the sense of distributions, i.e.,

(3.3)

d
∑

α,β,i,j=1

∫

Ω
A

αβ
ij DβujDαvi dx−

d
∑

i,j=1

∫

Ω
pBijDjvi dx = [f, v]

holds for all v ∈ W
1,2
0 (Ω)

d.

Remark. If B is a regular matrix then (u, p) ∈ W
1,2
0,div(Ω) × L2(Ω) is a weak

solution to equations (3.1) in the sense of distribution iff (u, p) is a weak solution
to equations

(3.4) − div(B−1A∇u) +∇p = B−1f

where we have denoted byB−1A a d2×d2 matrix C with C
αβ
ij =

∑d
k=1(B

−1)ikA
αβ
kj

for i, j, α, β = 1, . . . , d, i.e.,

(3.5)

d
∑

α,β,i,j=1

∫

Ω

d
∑

k=1

(B−1)ikA
αβ
kj DβujDαvi dx−

d
∑

i=1

∫

Ω
p Divi dx = [B

−1f, v]

holds for all v ∈ W
1,2
0 (Ω)

d.
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We assume throughout this section that A,B satisfy the following conditions:

(3a) B is constant regular matrix,

(3b) A
αβ
ij belongs to L

∞(Ω) and there is a positive ΛA such that

ess sup |Aαβ
ij | ≤ ΛA for all i, j, α, β = 1, . . . , d,

(3c) B−1A generates elliptic (generally nonsymetric) bilinear form a onW 1,20 (Ω)
d

where

a(u, v) =

∫

Ω
(B−1A∇u) : ∇v dx =

∫

Ω

d
∑

α,β,i,j=1

(

d
∑

k=1

(B−1)ikA
αβ
kj

)

Dαui D
βvj dx

for u, v ∈W
1,2
0,div(Ω) and there exists a λ > 0 such that

a(v, v) =

∫

Ω

d
∑

α,β,i,j=1

d
∑

k=1

(B−1)ikA
αβ
kj Dαvi D

βvj dx ≥ λ‖∇v‖22

for all v ∈W
1,2
0 (Ω)

d.
Under the above assumptions, we prove the existence and uniqueness of a weak
solution (u, p) of system (3.1) for every right hand side f ∈W−1,2(Ω)d.

Theorem 3.1. Let the assumptions (3a), (3b), (3c) be in force and Ω be a
bounded Lipschitz domain, let Ω0 be a nonempty subdomain of Ω. Suppose that

f ∈ W−1,2(Ω)d. Then there exists a unique pair (u, p) ∈ W
1,2
0,div(Ω) × L2(Ω)

satisfying
∫

Ω0
p dx = 0 and solving system (3.1).

Moreover, the inequality

(3.6) ‖u‖1,2 + ‖p‖2 ≤ C‖f‖−1,2

holds with a constant C = C(A,B,Ω,Ω0) > 0.

Proof: It is obvious that a(u, v) is a bilinear form on W 1,20,div(Ω) and there is a

constant C = C(A,B,Ω) > 0 such that for all u, v ∈ W
1,2
0,div(Ω)

|a(u, v)| ≤ C‖∇u‖2‖∇v‖2 ≤ C‖u‖1,2‖v‖1,2.

By the assumption (3c) and Poincaré’s inequality we have

a(u, u) ≥ λ‖∇u‖22 ≥
λ

C
‖u‖21,2
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for all u ∈ W
1,2
0,div(Ω) with constant C = C(Ω) > 0.

Applying the Lax-Milgram theorem, we conclude the existence and uniqueness of

u ∈W
1,2
0,div(Ω) satisfying

(3.7)

∫

Ω
(B−1A)∇u : ∇v dx = [B−1f, v] for all v ∈W

1,2
0,div(Ω).

By (3c), we obtain

λ‖∇u‖22 ≤

∫

Ω
(B−1A)∇u : ∇v dx = [B−1f, v] ≤ C‖f‖−1,2‖u‖1,2,

so that

(3.8) ‖u‖1,2 ≤ C‖f‖−1,2

with C = C(A,B,Ω) > 0.
Now we focus on the existence of pressure p. Consider a functional G :

W
1,2
0 (Ω)

d −→ R defined by

[G, v] := [B−1f + div(B−1A∇u), v] = [B−1f, v]−

∫

Ω
(B−1A)∇u : ∇v dx.

From (3.7) we have [G, v] = 0 for all v ∈ W
1,2
0,div(Ω).

Due to (3.8), it is easily seen that for all v ∈ W
1,2
0 (Ω)

|[G, v]| ≤ ‖B−1f‖−1,2‖v‖1,2 + ΛA|B
−1|‖u‖1,2‖v‖1,2 ≤ C‖f‖−1,2‖v‖1,2,

where a constantC > 0 depends on A, B and Ω. Therefore, Lemma 2.1 guarantees
existence and uniqueness of p ∈ L2(Ω) with ∇p = G and

∫

Ω0
p dx = 0. It implies

that (u, p) is a weak solution of system (3.1). Moreover, we have

(3.9) ‖p‖2 ≤ C‖G‖−1,2 ≤ C‖f‖−1,2

with a constant C = C(A,B,Ω,Ω0) > 0. From (3.8), (3.9), the inequality (3.6)
follows.
To prove the uniqueness of (u, p), we suppose that (ũ, p̃) ∈ W

1,2
0,div(Ω)× L2(Ω)

is another pair solving (3.1). We see that

∫

Ω
(B−1A)∇(u − ũ) : ∇v dx = 0 for all v ∈W

1,2
0,div(Ω).
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Setting v := u− ũ, we obtain

0 =

∫

Ω
(B−1A)∇(u − ũ) : ∇(u− ũ) dx ≥ λ‖∇(u− ũ)‖2.

It implies ‖∇(u− ũ)‖2 = 0 and, as u, ũ ∈W
1,2
0,div(Ω), also u = ũ.

Of course, the uniqueness of p follows from the above proof, when applying
Lemma 2.1. �

Next, we will use Theorem 3.1 and solve a more general system

(3.10)

− div(A∇u) +B∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω.

Theorem 3.2. Let assumptions (3a), (3b), (3c) be in force and Ω be a bounded
Lipschitz domain, let Ω0 be a nonempty subdomain of Ω. Suppose that f ∈
W−1,2(Ω)d, g ∈ L2(Ω) such that

∫

Ω g dx = 0. Then there exists unique pair

(u, p) ∈ W
1,2
0 (Ω)

d × L2(Ω) that solves the system (3.10) satisfying condition
∫

Ω0
p dx = 0.

Moreover, (u, p) satisfies the inequality

(3.11) ‖u‖1,2 + ‖p‖2 ≤ C
(

‖f‖−1,2 + ‖g‖2
)

with a constant C = C(A,B,Ω,Ω0) > 0.

Remark. We show that u is of the form u = u0 + u1 with u0 ∈ W
1,2
0,div(Ω) and

u1 ∈ W
1,2
0 (Ω)

d, div u1 = g in Ω.

Proof: According to Lemma 2.1, we can choose u1 ∈ W
1,2
0 (Ω)

d satisfying
div u1 = g and

(3.12) ‖∇u1‖2 ≤ C‖g‖2.

Then using Theorem 3.1, we find a unique pair (u0, p) ∈ W
1,2
0,div(Ω) × L2(Ω)

satisfying
∫

Ω0
p dx = 0 and − div(A∇u0) + B∇p = f + div(A∇u1). If we set

u := u0 + u1, then the pair (u, p) solves the system (3.6).
From Theorem 3.1, the inequalities (3.8) and (3.12) we have the estimate

(3.13)

‖u‖1,2 + ‖p‖2 ≤ C (‖∇u0‖2 + ‖p‖2 + ‖∇u1‖2)

≤ C
(

‖f‖−1,2 + ΛA‖u1‖1,2
)

+ ‖u1‖1,2

≤ C
(

‖f‖−1,2 + ‖g‖2
)
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with a constant C = C(A,B,Ω,Ω0) > 0.
To prove uniqueness we suppose that (ũ, p̃) is another pair solving system (3.10)

and ũ has a decomposition ũ = ũ0 + ũ1 where ũ0 ∈ W
1,2
0,div(Ω), ũ1 ∈ W

1,2
0 (Ω),

div ũ1 = g;
∫

Ω0
p̃ dx = 0. Then u1 − ũ1 ∈ W

1,2
0 (Ω)

d and div(u1 − ũ1) =

0. Therefore (u − ũ, p − p̃) is a solution to (3.1) as div(u − ũ) = 0, f = 0,
∫

Ω0
(p− p̃) dx = 0. The uniqueness result established in Theorem 3.1 implies that

u = ũ, p = p̃. �

Examples. To illustrate the type of systems we have in mind we show some
examples that satisfy conditions (3a), (3b), (3c).

Proposition 3.1 (A elliptic, B near to identity). Suppose that

• A
αβ
ij belong to L

∞(Ω) and there is a positive ΛA such that

ess sup |Aαβ
ij | ≤ ΛA for all i, j, α, β = 1, . . . , d,

• A generates an elliptic bilinear form a on W
1,2
0 (Ω)

d i.e. there is a positive

constant λA such that

a(v, v) =

∫

Ω

d
∑

α,β,i,j=1

A
αβ
ij Dαvi D

βvj dx ≥ λA‖∇v‖22 for all v ∈ W
1,2
0 (Ω)

d,

• B is a constant d× d matrix such that

(3.14) ζ = |B − E| <
λA

λA + d4ΛA
,

where E is the identity d× d matrix.

Then conditions (3a), (3b) and (3c) hold.

Proof: We need only to check condition (3c).
We have B = E − (E − B) and because of the assumption (3.14), B is regular

and B−1 =
∑∞

l=0(E−B)l. Thus, the conditions (3a), (3b) are satisfied. We have

for all v ∈W
1,2
0 (Ω)

d

∫

Ω

d
∑

α,β,i,j=1

d
∑

k=1

(B−1)ikA
αβ
kj Dαvi D

βvj dx

=

∫

Ω

d
∑

α,β,i,j=1

A
αβ
ij Dαvi D

βvj dx+
∞
∑

l=1

∫

Ω
((E −B)lA)∇v : ∇v dx
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≥ λA‖∇v‖
2
2 −

∞
∑

l=1

|(B − E)l|‖A‖∞‖∇v‖22

≥ ‖∇v‖22(λA −
ζ

1− ζ
ΛAd

4)

≥ ǫ‖∇v‖22,

where positive ǫ is so small that ζ < λA−ǫ
ΛAd4+λA−ǫ

< λA

ΛAd4+λA
. The condition (3c)

is satisfied with λ = ǫ.

Remark. Note that A is elliptic for example if

a(u, v) =

∫

Ω

d
∑

α,β,i,j=1

A
αβ
ij Dαui D

βvj dx

and there is a positive λA such that

d
∑

α,β,i,j=1

A
αβ
ij ξ

α
i ξ

β
j ≥ λA|ξ|2 for all ξ ∈ Rd×d,

or

a(u, v) =

∫

Ω

d
∑

i,j,k,l=1

Akl
ij D

iju Dklv dx

where Diju = 12 (
∂ui
∂xj
+

∂uj

∂xi
) is the symmetric part of ∇u and there is a positive

λA such that

d
∑

i,j,k,l=1

Akl
ijηijηkl ≥ λA|η|

2 for all symmetric η ∈ Rd×d.

�

Proposition 3.2 (A Laplace operator on the diagonal, B positive definite). Sup-
pose that div(A∇v) is Laplace operator on vj in the j-th equation, j = 1, . . . , d,
i.e.,

A
αβ
ij = δαβδij for all i, j, α, β = 1, . . . , d,

and B is constant, self adjoint and positive definite matrix.

Then conditions (3a), (3b), (3c) are satisfied.
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Remark. Under the assumptions of Proposition 3.2, the system (3.10) takes the
form

(3.15)

−△u+B∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω.

Proof: It is easy to check the validity of the conditions (3a), (3b). We prove
that the condition (3c) is satisfied as well.
As B is self adjoint and positive definite then B−1 is also self adjoint positive

definite, i.e., there exists constant λB−1 > 0 such that
∑

i,j

(B−1)ijξiξj ≥ λB−1 |ξ|2 for all ξ ∈ R
d.

Hence we have

d
∑

i,j,α,β

[

d
∑

k=1

(B−1)ik A
αβ
kj

]

ξiα ξ
j
β =

d
∑

i,j,α,β

[

d
∑

k=1

(B−1)ik δkj δαβ

]

ξiα ξ
j
β

=
d
∑

i,j,α,β

[

(B−1)ij δαβ

]

ξiα ξ
j
β

=

d
∑

i,j,α

[

(B−1)ij

]

ξiα ξ
j
α

≥ λB−1 |ξ|2 for all ξ ∈ R
d.

Thus (3c) is satisfied and it completes the proof. �

Counterexample 3.3. If B is not regular it is easily seen that system (3.10) need
not have in general any solution u, reason being that the system is overdetermined.
If, for example, A is the Laplace operator on the diagonal, B = 0, d = 2, Ω :=
(0, π)× (0, π) and f = (2 sinx1 sinx2, 0), the system (3.1) reduces to

(3.16)

−△u = f in Ω,

div u = 0 in Ω,

u = 0 on ∂Ω.

By elementary calculation, the system

−△u = f in Ω,

u = 0 on ∂Ω

has a unique solution u = (sinx1 sinx2, 0). This solution does not satisfy the
equation div u = 0 in Ω (div u = cosx1 sinx2). Consequently, the system (3.16)
has no solution.
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4. Regularity of (u, p) in W k,2(Ω)d ×W k−1,2(Ω)

Our purpose is to investigate regularity of solutions to a generalized Stokes
system

(4.1)

− div(A∇u) +B∇p = f in Ω,

div u = g in Ω,

u = 0 on ∂Ω

where A is a d2×d2 matrix and B is a d×dmatrix of sufficiently smooth functions.
We assume throughout this section that A and B satisfy the following conditions:

(4a) B is regular,

(4b) B−1A satisfies uniformly the strong ellipticity condition, i.e. there exists a
positive λ so that

d
∑

α,β,i,j=1

d
∑

k=1

(B−1)ikA
αβ
kj ξ

α
i ξ

β
j ≥ λ|ξ|2 in Ω for all ξ ∈ Rd×d.

Under the assumption (4a) and assuming that Aαβ
ij , Bij ∈ C0,1(Ω) for all i, j, α, β

= 1, . . . , d; the system (4.1) can be transformed to

(4.2)

− div(Ā∇u) +∇p = f̄ in Ω,

div u = g in Ω,

u = 0 on ∂Ω

where f̄ = (f̄)di=1 :=
(

(B−1f)i − (
∑d

α,β,j,k=1Dα(B
−1)ikA

αβ
kj Dβuj)

)d
i=1, Ā :=

B−1A.
We show that any solution pair (u, p) ∈ W

1,2
0 (Ω)

d × L2(Ω) under natural

conditions on f, g, A,B,Ω satisfies u ∈ W k+2,2(Ω)d and p ∈W k+1,2(Ω), (k ∈ N).

Theorem 4.1. Let k ∈ N, Ω be a bounded Ck+2-domain in Rd, (d ≥ 2). Suppose

that f ∈ W k,2(Ω)d, g ∈ W k+1,2(Ω), A,B ∈ Ck,1(Ω) fulfilling (4a) and (4b), and

(u, p) ∈W
1,2
0 (Ω)

d × L2(Ω) be a weak solution of system (4.1). Then we have

(4.3) u ∈ W k+2,2(Ω)d, p ∈ W k+1,2(Ω),

and the inequality

(4.4) ‖u‖k+2,2 + ‖p‖k+1,2 ≤ C
(

‖f‖k,2 + ‖g‖k+1,2 + ‖u‖1,2 + ‖p‖2
)

holds with a constant C = C(A,B,Ω) > 0.

Proof: We shall prove Theorem 4.1 for k = 0 and indicate how the proof can be
continued by induction for k ∈ N.
Let k = 0. In Lemmas 4.1–4.3 we prove the assertion under auxiliary assump-

tions on supports of u and p. Using the decomposition of Ω, partition of unity
and these results we shall complete the proof of Theorem 4.1 for Ω.
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Lemma 4.1. Let Ω be a bounded domain in R
d, (d ≥ 2), R0 > 0, x0 ∈ Ω.

Suppose that

f ∈ L2(Ω)d, g ∈W 1,2(Ω), A,B ∈ C0,1(Ω).

Let (u, p) ∈ W
1,2
0 (Ω)

d × L2(Ω) be a weak solution to the system (4.1) and
suppu, supp p ⊂ BR0(x0) ⊂⊂ Ω. Then

(4.5) u ∈W 2,2(Ω)d, p ∈ W 1,2(Ω),

and

(4.6) ‖∇2u‖2 + ‖∇p‖2 ≤ C (‖f‖2 + ‖∇g‖2 + ‖∇u‖2)

with a constant C = C(A,B,Ω) > 0.

Proof: By assumptions of Lemma 4.1, it is easily seen that Ā defines an elliptic
bilinear form, Ā ∈ C0,1(Ω), f̄ ∈ L2(Ω) and we have

(4.7) ‖f̄‖2 ≤ C(‖f‖2 + ‖∇u‖2).

Let es denote the unit vector in the xs direction (s = 1, . . . , d). For 0 < δ <

dist(∂Ω, BR0(x0)), s = 1, . . . , d, the difference quotient in the xs direction is

denoted through △δ,su =
1
δ [u(x+ δes)− u(x)].

Since (u, p) solve the system (4.1) we have

− div[Ā(x+ δes)∇u(x+ δes)] +∇p(x+ δes) = f̄(x + δes),

div u(x+ δes) = g(x+ δes)

on BR0(x0). Subtracting (4.2) from those equations and then dividing by δ, we
obtain

(4.8)

− div
[

Ā(x)∇(△δ,su(x))
]

+∇(△δ,sp(x))

= △δ,sf̄(x) + div[△δ,s(Ā(x))∇u(x + δes)] on BR0(x0),

div(△δ,su(x)) = △δ,sg(x) on BR0(x0).

On the other hand, we observe that (thanks to Nirenberg’s lemma — see Exer-
cise 2.10, II.2 in [6] and Lemma 2.1) △δ,sf̄ , △δ,sg(x) can be written correspond-

ingly in the form divFδ,s, divGδ,s with some Fδ,s ∈ L2(Ω)d
2

, Gδ,s ∈ W
1,2
0 (Ω)

d

such that ‖Fδ,s‖2 ≤ C‖f̄‖2, ‖∇Gδ,s‖2 ≤ C‖△δ,sg‖2 with C independent of δ
and s.
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Using definition of weak solution to the system (4.8) and taking (△δ,su−Gδ,s) ∈

W
1,2
0,div(Ω) as the test function, we obtain
∫

Ω
Ā(x)

[

∇(△δ,su(x))−∇Gδ,s(x)
]

:
[

∇(△δ,su(x))−∇Gδ,s(x)
]

dx

+

∫

Ω
Ā(x)[∇Gδ,s(x)] :

[

∇(△δ,su(x))−∇Gδ,s(x)
]

dx

= −

∫

Ω
Fδ,s.[∇(△δ,su(x))−∇Gδ,s(x)] dx

−

∫

Ω
△δ,sĀ(x)[∇u(x + δes)] : [∇(△δ,su(x)) −∇Gδ,s(x)] dx.

Assumptions of Lemma 4.1 and (4b) then lead to

‖∇△δ,su−∇Gδ,s‖
2
2

≤
1

λ

∫

Ω
Ā(x)

[

∇(△δ,su(x)) −∇Gδ,s(x)
]

:
[

∇(△δ,su(x))−∇Gδ,s(x)
]

dx

≤
C

λ
(‖Ā‖C0(Ω)‖△δ,sg‖2 + ‖f̄‖2 + ‖Ā‖C0,1(Ω)‖∇u‖2)‖∇△δ,su−∇Gδ,s‖2,

where we estimated △δ,sĀ by ‖Ā‖C0,1(Ω). It implies that

‖∇△δ,su−∇Gδ,s‖2 ≤
C

λ

(

‖Ā‖C0(Ω)‖△δ,sg‖2 + ‖f̄‖2 + ‖Ā‖C0,1(Ω)‖∇u‖2

)

and

(4.9)
‖∇△δ,su‖2 ≤ ‖∇△δ,su−∇Gδ,s‖2 + ‖∇Gδ,s‖2

≤ C[(‖Ā‖C0(Ω) + 1)‖△δ,sg‖2 + ‖f̄‖2 + ‖Ā‖C0,1(Ω)‖∇u‖2]

with a constant C = C(λ,Ω) > 0 not depending on δ, s.
As supp p ⊂ BR0(x0) and δ is small, we have

∫

Ω△δ,sp dx = 0. Applying
Lemma 2.1 to system (4.8) and using the inequality (4.9) we conclude that
△δ,sp ∈ L2(Ω) for all s = 1, . . . , d and we have the estimate

(4.10)
‖△δ,sp‖2 ≤ C[(‖Ā‖2

C0(Ω)
+ ‖Ā‖C0(Ω))‖△δ,sg‖2 + (‖Ā‖C0(Ω)) + 1)‖f̄‖2

+ ‖Ā‖C0,1(Ω)(‖Ā‖C0(Ω)) + 1)‖∇u‖2]

with a constant C = C(λ,Ω) > 0 not depending on δ, s.

If we let δ → 0 in inequalities (4.9), (4.10), we deduce that Ds∇u ∈ L2(Ω)d
2

,
Dsp ∈ L2(Ω) for all s = 1, . . . , d and we have estimate

‖∇2u‖2 + ‖∇p‖2 ≤ C (‖f‖2 + ‖∇g‖2 + ‖∇u‖2)

with a constant C = C(A,B,Ω). Lemma 4.1 is proved. �
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Remarks. Lemma 4.1 holds under weaker ellipticity assumptions satisfied by
examples presented in the previous section.

The next lemma deals with estimates near the flat boundary. It is given here
to explain the main ideas of the proof and will not be explicitly used later.

For R0 > 0, β0 > 0, x0 = [x
′
0, 0] ∈ ∂Ω denote

ΓR0 =
{

x = [x′, 0] ∈ R
d; x′ ∈ B′

R0

}

,

U+R0,β0
=
{

x = [x′, xd] ∈ R
d; x′ ∈ B′

R0
; 0 < xd < β0

}

,

UR0,β0 =
{

x = [x′, xd] ∈ R
d; x′ ∈ B′

R0
; |xd| < β0

}

.

Lemma 4.2. Let R0, β0 be positive; ΓR0 ⊂ ∂Ω, U+2R0,2β0 ⊂ Ω. Suppose that

f ∈ L2(Ω)d, g ∈W 1,2(Ω), A,B ∈ C0,1(Ω).

Let (u, p) ∈W
1,2
0 (Ω)

d × L2(Ω) be a weak solution of the system (4.1) such that

suppu, supp p ⊂ U+R0,β0
∪ ΓR0 .

Then it holds

(4.11) u ∈W 2,2(Ω)d, p ∈ W 1,2(Ω),

and

(4.12) ‖∇2u‖2 + ‖∇p‖2 ≤ C (‖f‖2 + ‖∇g‖2 + ‖∇u‖2)

with a constant C = C(A,B,Ω) > 0.

Proof: By the same way as in Lemma 4.1 we get

Ds∇u ∈ L2(Ω)d
2

, Dsp ∈ L2(Ω)d for all s = 1, . . . , d− 1,

and we have

(4.13) ‖∇′∇u‖2 + ‖∇′p‖2 ≤ C (‖f‖2 + ‖∇g‖2 + ‖∇u‖2)

with a constant C = C(A,B,Ω) > 0.
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Using the structure of the system (4.2) we have

d−1
∑

j=1

Ādd
ij D

2
duj = Gi, i = 1, . . . , d− 1,(4.14)

d
∑

j=1

Ādd
dj D

2
duj = Gd +Ddp,(4.15)

D2dud = Ddg −

d−1
∑

j=1

DdDjuj ,(4.16)

where

(4.17)

Gi = Dip− f̄i −
∑

α+β<2d

Ā
αβ
ij DαDβuj

−

d
∑

α,β,j=1

(DαĀ
αβ
ij )Dβuj − Ādd

idD
2
dud, i = 1, . . . , d− 1,

(4.18) Gd = −f̄d −
∑

α+β<2d

Ā
αβ
dj DαDβuj −

d
∑

α,β,j=1

Dα(Ā
αβ
dj )Dβuj .

From DjDduj ∈ L2(Ω), j = 1, . . . , d− 1, g ∈ W 1,2(Ω) and the equation (4.16), it

follows D2dud ∈ L2(Ω). Since f ∈ L2(Ω)d, ∇′p ∈ L2(Ω)d−1, D′∇u ∈ L2(Ω)(d−1)d,

(4.17), (4.18) shows that Gi ∈ L2(Ω), i = 1, . . . , d.

System (4.14) consists of (d − 1) linear equations, the matrix Ādd
ij , i, j =

1, . . . , d − 1 is regular and its inverse is bounded by 1λ . Therefore, the L
2-

integrability of D2duj , j = 1, . . . , d − 1, follows from L2-integrability of Gi, i =

1, . . . , d − 1. Since Ā ∈ C0,1(Ω), we conclude that D2duj ∈ L2(Ω), for j =
1, . . . , d− 1, and obtain that

(4.19) ‖D2duj‖2 ≤ C

d−1
∑

i=1

‖Gi‖2 for j = 1, . . . , d− 1.

Finally, since f̄d, D
2
duj ∈ L2(Ω), j = 1 . . . , d, Ā ∈ C0,1(Ω), it follows from the

equation (4.13) that Ddp ∈ L2(Ω) and (4.13), (4.16), (4.17), (4.18), (4.19), (4.15)
imply the estimates

‖∇2u‖2 + ‖∇p‖2 ≤ C (‖f‖2 + ‖∇g‖2 + ‖∇u‖2)

with some constant C = C(A,B,Ω) > 0. The lemma is proved. �
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Lemma 4.3. Let Ω be a bounded C2-domain in R
d, R0 > 0, β0 > 0, x0 ∈ ∂Ω.

Suppose that

f ∈ L2(Ω)d, g ∈W 1,2(Ω), A,B ∈ C0,1(Ω).

Let (u, p) ∈ W
1,2
0 (Ω)

d × L2(Ω) be a weak solution of the system (4.1), and

suppu, supp p ⊂ UR0,β0,h(x0) ∩Ω.
Then there exists a constant K > 0 (given in (4.28)) so that for

(4.20) ‖h‖
C1(B′

R0
)
≤ K,

it holds

(4.21) u ∈ W 2,2(Ω)d, p ∈W 1,2(Ω)

and

(4.22) ‖∇2u‖2 + ‖∇p‖2 ≤ C
(

‖f‖2 + ‖g‖1,2 + ‖u‖1,2 + ‖p‖2
)

.

Proof: In order to reduce the proof of Lemma 4.3 to previous case we use the
transformation to new coordinates

(4.23) y = Φ(x) := (x′, xd − h(x′)), x ∈ UR0,β0,h(x0).

We see that Φ is one-to-one mapping of UR0,β0,h(x0) on UR0,β0 . Next, define

û, p̂, f̂ , ĝ, Â by

(4.24)

û(y) := u(Φ−1(y)) = u(x), p̂(y) := p(Φ−1(y)) = p(x),

f̂(y) := f̄(Φ−1(y)) = f̄(x), ĝ(y) := g(Φ−1(y)) = g(x),

Â(y) := Ā(Φ−1(y)) = Ā(x).

We have also u(x) = û(Φ(x)) so that

Dβu(x) = Dβ û(y)−Ddû(y)Dβh(y
′), β = 1, . . . , d− 1, Ddu(x) = Ddû(y)

and correspondingly for p, g, f̄ , Ā. An elementary calculation transforms (4.1) to
a new system

(4.25)
− div(Ã∇û) +∇p̂ = f̂ + T − (DdH1)p+Dd(H1p),

div û = ĝ +H2,
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where a d2 × d2 matrix Ã := (Ã
αβ
ij )

d
i,j,α,β=1, a vector H1 and a function H2 are

given by

Ã
αβ
ij := Â

αβ
ij , if α, β < d; Ãαd

ij := Â
αd
ij −

d−1
∑

β=1

Â
αβ
ij Dβh, if α < d;

Ã
dβ
ij := Â

dβ
ij −

d−1
∑

α=1

Â
αβ
ij Dαh, if β < d;

Ãdd
ij := Â

dd
ij −

d−1
∑

α=1

Âαd
ij Dαh−

d−1
∑

β=1

Â
dβ
ij Dβh+

d−1
∑

α,β=1

Â
αβ
ij DαhDβh;

H1 := (D1h,D2h, . . . , Dd−1h, 0);

H2 :=
d−1
∑

j=1

DdûjDjh;

T :=(Ti)
d
i=1 with Ti :=

d
∑

α,β,j=1

[DαÂ
αβ
ij − (1−δαd)DdÂ

αβ
ij Dαh][Dβ ûj − (1−δβd)

DdûjDβh]−

d
∑

α,β,j=1

DαÃ
αβ
ij Dβûj .

The assumption (4b) and the assumptions of Lemma 4.3 imply that there exists
a constant K1 > 0 such that if ‖h‖C1(B′

R0
)
≤ K1, then

(4c)
∑d

α,β,i,j=1 Ã
αβ
ij ξ

i
αξ

j
β ≥ λ

2 |ξ|
2 for all ξ ∈ R

d2 .

Thus

Θ := det

(

Ãdd
ij Dih

Ãdd
dj −1

)d−1

i,j=1

= − det
(

Ãdd
ij

)d−1

i,j=1
+

d
∑

k=1

(−1)k+dDkh det
(

Ãdd
ij

)j 6=d

i6=k

≤ − det
(

Ãdd
ij

)d−1

i,j=1
+ ‖h‖

C1(B′

R0
)
C(‖Ā‖C0(Ω), d)

with a constant C(‖Ā‖C0(Ω), d) > 0.

If (4c) holds, then it is easy to check that there exists constant C(λ, d) > 0 such

that det
(

Ãdd
ij

)d−1

i,j=1
> C(λ, d).

Therefore there exists constant K2 ∈ (0, 1) such that (4c) holds, Θ is uniformly

bounded away from zero and
∑d−1

j=1 |Djh| < 1 for all h ∈ C1(B′
R0
) such that

‖h‖
C1(B′

R0
)
≤ K2.
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Using (4.23), (4.24) and the assumptions of Lemma 4.3 we have supp û, supp f̂

⊂ UR0,β0 ∩ R
d
+. We set Q := UR0,β0 ∩ R

d
+.

Similarly as in Lemma 4.1, we obtain the estimate of△δ,s∇û, △δ,sp̂ for s = 1, . . . ,
d− 1. Thus

(4.26) ‖△δ,s∇û‖2;Q + ‖△δ,sp̂‖2;Q ≤ C[(‖Ã‖2
C0(Q)

+ 1)(‖△δ,sĝ‖2;Q

+ ‖h‖
C1(B′

R0
)
‖△δ,s∇û‖2;Q + ‖h‖

C2(B′

R0
)
‖∇û‖2;Q)

+(‖Ã‖C0(Q)+1)(‖f̂‖2;Q+‖T ‖2;Q+‖h‖
C1(B′

R0
)
‖△δ,sp̂‖2;Q+‖h‖

C2(B′

R0
)
‖p̂‖2;Q)

+ (‖Ã‖2
C1(Q)

+ 1)‖∇û‖2;Q]

with a constant C = C(λ,Q) > 0.
Here we used the estimates

‖△δ,s(Dihp)‖2;Q ≤‖h‖
C1(B′

R0
)
‖△δ,sp̂‖2;Q + C‖h‖C2(B′

R0
)
‖p̂‖2;Q,

‖△δ,s(DihDdûj)‖2;Q ≤‖h‖
C1(B′

R0
)
‖△δ,sDdûj‖2;Q + C‖h‖C2(B′

R0
)
‖Ddûj‖2;Q.

As h ∈ C1(B′
R0
), there exists a constant C > 0 which does not depend on h, δ

such that ‖Ã‖C0(Q) ≤ C‖Ā‖C0(Ω), therefore we have estimate

(4.27) ‖△δ,s∇û‖2;Q + ‖△δ,sp̂‖2;Q ≤ C[‖△δ,sĝ‖2;Q + ‖h‖
C2(B′

R0
)
‖∇û‖2;Q

+ ‖f̂‖2;Q + ‖T ‖2;Q + ‖h‖
C2(B′

R0
)
‖p̂‖2;Q + ‖Ã‖C0,1(Q)‖∇û‖2;Q

+ ‖h‖
C1(B′

R0
)
(‖△δ,s∇û‖2;Q + ‖△δ,sp̂‖2;Q)]

with a constant C(λ, ‖Ā‖C0(Ω)) > 0.

Next, we can choose

(4.28) K = min(K2,
C−1

2
).

Then we have

(4.29) ‖△δ,s∇û‖2;Q + ‖△δ,sp̂‖2;Q ≤ C(‖△δ,sĝ‖2;Q + ‖h‖
C2(B′

R0
)
‖∇û‖2;Q

+ ‖f̂‖2;Q + ‖T ‖2;Q + ‖h‖
C2(B′

R0
)
‖p̂‖2;Q + ‖Ã‖C0,1(Q)‖∇û‖2;Q)

with a constant C(λ, ‖Ā‖C0(Ω)) > 0 that does not depend on h, s and δ.
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Letting δ → 0 in the inequality (4.29), we deduce thatDs∇û ∈ L2(Q)d
2

, Dsp̂ ∈
L2(Q) for all s = 1, . . . , d− 1 and we have the estimate

(4.30) ‖∇′∇û‖2;Q + ‖∇′p̂‖2;Q < C
(

‖f̂‖2;Q + ‖∇ĝ‖2;Q + ‖∇û‖2;Q + ‖p̂‖2;Q

)

with a constant C(Â, Q) > 0.

Adopting arguments of Lemma 4.1 we obtain that all second derivatives of û
and first derivatives of p̂ exist in Q and we have estimates of their L2−norms in
any strict subdomain. From the first part of this proof we have estimates of ∇′∇û
and ∇′p̂ up to the boundary of Q. For getting estimates of the remaining terms
D2dûj , Ddp̂ up to the boundary we use system (4.25).
From the system (4.25), we have

d−1
∑

j=1

Ãdd
ij D

2
dûj +DihDdp̂ = Ĝi, i = 1, . . . , d− 1;(4.31)

d−1
∑

j=1

Ãdd
dj D

2
dûj −Ddp̂ = Ĝd;(4.32)

(1−
d−1
∑

j=1

Djh)D
2
dûd = Ddĝ −

d−1
∑

j=1

DdDj ûj(4.33)

where

Ĝi = Dip̂− f̂i − (T )i −
∑

α+β<2d

Ã
αβ
ij DαDβ ûj

−
∑

α,β,j

DαÃ
αβ
ij Dβûj − Ãdd

idD
2
dûd, i = 1, . . . , d− 1;(4.34)

(4.35) Ĝd = −f̂d− (T )d−
∑

α+β<2d

Ã
αβ
dj DαDβ ûj − Ã

dd
ddD

2
dûd−

∑

α,β,j

DαÃ
αβ
dj Dβ ûj .

From DjDdûj ∈ L2(Q), j = 1, . . . , d− 1, ĝ ∈W 1,2(Q) and equation (4.33), it fol-

lows D2dûd ∈ L2(Q). Since f̂ ∈ L2(Q)d, ∇′p̂ ∈ L2(Q)d−1, D′∇û ∈ L2(Q)(d−1)d,

T ∈ L2(Q)d, (4.34), (4.35) shows that Ĝi ∈ L2(Q), i = 1, . . . , d.
The system (4.31)–(4.32) is a linear system of d equations, where the deter-

minant of the corresponding matrix

(

Ãdd
ij Dih

Ãdd
dj

−1

)d−1

i,j=1
is bounded away from zero

(because of (4.28)). Therefore, we can calculate D2dûj , j = 1, . . . , d− 1 and Ddp̂
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according to Ĝi, i = 1, . . . , d. Since Ã ∈ C0,1(Q), we have D2dûj ∈ L2(Q), for

j = 1, . . . , d− 1, Ddp̂ ∈ L2(Q) and we also have the following estimates

‖∇2û‖2;Q + ‖∇p̂‖2;Q < C
(

‖f̂‖2;Q + ‖∇ĝ‖2;Q + ‖∇û‖2;Q + ‖p̂‖2;Q

)

with a constant C(Â, Q) > 0.

Going back to the original x coordinates we obtain the inequality

‖∇2u‖2 + ‖∇p‖2 ≤ C
(

‖f‖2 + ‖g‖1,2 + ‖u‖1,2 + ‖p‖2
)

with a constant C = C(A,B,Ω) > 0.
It implies (4.22). The lemma is proved. �

Let us return to the proof of Theorem 4.1 on Ω. As Ω is a bounded C2-domain
in R

d we will use decomposition of Ω described in Section 2.
Clearly, it is enough to prove that ‖ϕj1∇

2u‖2 < ∞, ‖ϕj1∇p‖2 < ∞, j1 =

1, . . . ,m; ‖ψk1∇
2u‖2 <∞, ‖ψk1∇p‖2 <∞, k1 = 1, . . . , l.

We multiply the both sides of the system (4.2) by ϕj1 and obtain

(4.36)
− div[Ā∇(ϕj1u)] +∇(ϕj1p) = f̃ ,

div(ϕj1u) = g̃

where f̃ , g̃ are given by

f̃i := ϕj1 f̄i +Diϕj1p(4.37)

−

d
∑

α,β,j=1

Ā
αβ
ij

[

Dαϕj1Dβuj + (DαDβϕj1)uj +DαujDβϕj1

]

+
d
∑

α,β,j=1

(DαĀ
αβ
ij )(Dβϕj1)uj , i = 1, . . . , d;

g̃ := ϕj1g + (∇ϕj1)u.(4.38)

It follows from (4.37) and (4.38) that

‖f̃‖2 ≤ ‖f̄‖2 + C
(

‖p‖2 + ‖u‖1,2
)

and ‖g̃‖1,2 ≤ ‖g‖1,2 + C‖u‖1,2.

It is clear that suppϕj1u and suppϕj1p ⊂ URj1
,βj1

,hj1
(xj1)∩Ω and we can apply

Lemma 4.3. We obtain

‖∇2(ϕj1u)‖2 + ‖∇(ϕj1p)‖2 ≤ C
(

‖f̃‖2 + ‖g̃‖1,2 + ‖u‖1,2 + ‖p‖2

)

≤ C
(

‖f‖2 + ‖g‖1,2 + ‖u‖1,2 + ‖p‖2
)

.
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In a similar way, applying Lemma 4.3 we conclude that

(4.40) ‖ψk1∇
2u‖2 + ‖ψk1∇p‖2 ≤ C

(

‖f‖2 + ‖g‖1,2 + ‖u‖1,2 + ‖p‖2
)

for all ψk1 , k1 = 1, . . . , l with a constant C = C(A,B,Ω) > 0. This yields (4.4)
and the theorem is proved for k = 0.
In the next step when k = 1 we realize that on any strictly embedded domain

Ω′, (△δ,su,△δ,sp) solve the system (4.8) for δ small enough and s = 1, . . . , d.
Thus an analogy of Lemma 4.1 gives the estimates independent of δ. Letting
δ → 0 guarantees existence of all third derivatives of u and second derivatives
of p with L2 estimates in Ω′. An analogy of Lemma 4.2 can be proved then
for (△δ,su,△δ,sp) with δ small enough and s = 1, . . . , d − 1 as these difference
quotients solve system (4.8) and satisfy zero boundary condition on the flat part of

the boundary. Letting δ → 0 we obtain the L2-estimates of ∂∇2u
∂xs

for s = 1, . . . ,

d − 1. Using ellipticity condition we calculate from the equation differentiated

with respect to xd estimate of the last term
∂3u
∂x3

d

. If we “flatten the boundary” as

in Lemma 4.3 we can repeat the above proof and conclude Theorem 4.1 for k = 1.
The general case of k follows by induction over k. �
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[11] Hron J., Málek J., Nečas J., Rajagopal K.R., Numerical simulations and global existence of
solutions of two-dimensional flows of fluids with pressure- and shear-dependent viscosities,
Math. Comput. Simulation 61 (2003), no. 3–6, 297–315.



264 Nguyen Duc Huy, J. Stará
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