Commentationes Mathematicae Universitatis Carolinae

Mare Wójtowicz

Isomorphic and isometric copies of $\ell_{\infty}(\Gamma)$ in duals of Banach spaces and Banach lattices

Commentationes Mathematicae Universitatis Carolinae, Vol. 47 (2006), No. 3, 467--471
Persistent URL: http://dml.cz/dmlcz/119607

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Isomorphic and isometric copies of $\ell_{\infty}(\Gamma)$ in duals of Banach spaces and Banach lattices

Marek Wójtowicz

Abstract

Let X and E be a Banach space and a real Banach lattice, respectively, and let Γ denote an infinite set. We give concise proofs of the following results: (1) The dual space X^{*} contains an isometric copy of c_{0} iff X^{*} contains an isometric copy of ℓ_{∞}, and (2) E^{*} contains a lattice-isometric copy of $c_{0}(\Gamma)$ iff E^{*} contains a lattice-isometric copy of $\ell_{\infty}(\Gamma)$.

Keywords: isometry, embedding of ℓ_{∞}, dual space, Banach lattice
Classification: 46B04, 46B25, 47B65

1. Introduction

Let X, E, and Γ have the same meanings as in the Abstract. If Γ^{\prime} is an infinite subset of Γ then $c_{0}\left(\Gamma^{\prime}\right)$ denotes the subspace of $c_{0}(\Gamma)$ consisting of all the elements with supports included in Γ^{\prime}; a similar meaning has the symbol $\ell_{\infty}\left(\Gamma^{\prime}\right)$. By \mathbb{N} we denote the set of positive integers; then the spaces $c_{0}(\mathbb{N})$ and $\ell_{\infty}(\mathbb{N})$ are simply denoted by c_{0} and ℓ_{∞}, respectively. All operators are assumed to be linear and continuous.

The main goal of this paper is to provide concise and short proofs of the statements (1) and (2) given in the Abstract. These equivalences are immediate consequences of more general facts, presented in the Theorem below, concerning the possibility of extensions of isomorphisms $T: c_{0}(\Gamma) \rightarrow X^{*}$ to isomorphisms $\widetilde{T}: \ell_{\infty}(\Gamma) \rightarrow X^{*}$ with the norms $\|\widetilde{T}\|$ and $\left\|\widetilde{T}^{-1}\right\|$ controlled by $\|T\|$ and $\left\|T^{-1}\right\|$, respectively.

Theorem. (a) Let ℓ_{∞} be a real or complex space, let c_{0} denote its respective subspace, and let $T: c_{0} \rightarrow X^{*}$ be an isomorphism. Then there is an infinite subset A of \mathbb{N} such that the restricted operator $T_{A}:=T_{\mid c_{0}(A)}$ extends to an isomorphism $S: \ell_{\infty}(A) \rightarrow X^{*}$ with $\|S\|=\left\|T_{A}\right\|$ and $\left\|T_{A}^{-1}\right\| \leq\left\|S^{-1}\right\| \leq\left\|T^{-1}\right\|$.
(b) Let $c_{0}(\Gamma)$ and $\ell_{\infty}(\Gamma)$ denote real spaces, and let $T: c_{0}(\Gamma) \rightarrow E^{*}$ be a lattice isomorphism. Then T extends to a lattice isomorphism $\widetilde{T}: \ell_{\infty}(\Gamma) \rightarrow E^{*}$ with $\|\widetilde{T}\|=\|T\|$ and $\left\|\widetilde{T}^{-1}\right\|=\left\|T^{-1}\right\|$.

Thus, the extended operator S in item (a) acts on a subspace of ℓ_{∞}, while the isomorphism \widetilde{T} in item (b) acts on the whole space $\ell_{\infty}(\Gamma)$. Part (a) of the Theorem is obtained by an appeal to a result by Rosenthal included in [8, Remark 2, p. 17]; cf. Lemma 2 below. Another Rosenthal's result, for Γ uncountable [8, Proposition 1.2], gives a somewhat weaker conclusion than in item (b) (here the space $\ell_{\infty}(\Gamma)$ is real or complex, and $c_{0}(\Gamma)$ is its respective subspace):
$\left(\mathrm{a}_{\varepsilon}\right)$ Let Γ be an uncountable set, and let $T: c_{0}(\Gamma) \rightarrow X^{*}$ be an isomorphism. Then, for every $\varepsilon \in(0,1)$ there exists a subset Γ_{ε} of Γ with $\operatorname{card}\left(\Gamma_{\varepsilon}\right)=$ $\operatorname{card}(\Gamma)$ such that the restricted operator $T_{\varepsilon}:=T_{\mid c_{0}\left(\Gamma_{\varepsilon}\right)}$ extends to an isomorphism $S_{\varepsilon}: \ell_{\infty}\left(\Gamma_{\varepsilon}\right) \rightarrow X^{*}$ with $\left\|S_{\varepsilon}\right\|=\left\|T_{\varepsilon}\right\|$ and $\left\|T_{\varepsilon}\right\| \leq\left\|S_{\varepsilon}^{-1}\right\| \leq$ $\left\|T^{-1}\right\| /(1-\varepsilon)$.
The equivalence, which follows immediately from our item (a), that X^{*} contains an isometric copy of c_{0} iff X^{*} contains an isometric copy of ℓ_{∞} was obtained in 2000 by Dowling [4 , Theorem 1] as a result of six equivalent conditions in an isometric version of the classical Bessaga and Pełczyński theorem [3]; [5, Proposition 2.e.8] on copies of c_{0} in X^{*}. The properties included in the above items (a_{ε}), (b), and (2) are new.

A comment concerning part (b) of the Theorem is necessary. For $\Gamma=\mathbb{N}$ there is a lattice version of the above-mentioned theorem of Bessaga and Pełczyński asserting (via eleven equivalent conditions; see [2, Theorem 14.21]) that E^{*} contains a lattice copy of c_{0} iff E contains a lattice copy of ℓ_{1} iff E^{*} contains a lattice copy of ℓ_{∞}, but there are no connections between the norms of operators in question (here "lattice copy" means "both lattice and homeomorphic copy"). The proof of this equivalence uses essentially the so-called property (u) of Pełczyński which is, however, of the countable nature and therefore cannot be extended to the case when the lattices c_{0}, ℓ_{1}, and ℓ_{∞} are replaced by $c_{0}(\Gamma), \ell_{1}(\Gamma)$, and $\ell_{\infty}(\Gamma)$, respectively, with Γ uncountable. On the other hand, in 1970 Rosenthal proved that, for X a Banach space and Γ uncountable, if X^{*} contains a copy of $c_{0}(\Gamma)$ then X^{*} contains a copy of $\ell_{\infty}(\Gamma)([7$, Corollary 1.2]; [8, Theorem 1.3]). In the context of our item (b) and Rosenthal's result, it seems to be an open question if the containment of an isomorphic copy of $\ell_{\infty}(\Gamma)$ by the dual E^{*} of a Banach lattice E (or, more generally, by E whenever E is Dedekind complete) implies the containment of the lattice copy of $\ell_{\infty}(\Gamma)$ (the case $\Gamma=\mathbb{N}$ has a positive answer: see [2, Theorem 14.9]; cf. [9, Theorem]).

It should be stressed that our proof of item (b) is completely independent on the above-cited results of Bessaga and Pełczyński, and Rosenthal, and it follows only from the Fatou property and monotone completeness of the dual norm of E^{*}.

2. Notations and terminology

We follow standard notations and terminology (for Banach spaces see [5]). For the basic results concerning Banach lattices we refer to the monographs [2], [6].

For the convenience of the reader we recall some definitions.
Let G, H be two linear lattices. An injective operator $T: G \rightarrow H$ is a lattice isomorphism provided that both T and T^{-1} are positive; equivalently, $|T x|=T(|x|)$ for all $x \in G$. The lattice G is Dedekind complete if every nonempty subset V of G bounded from above has a supremum in G. If $E=(E,\| \|)$ is a Banach lattice then the dual space E^{*}, endowed with the dual norm $\left\|\|^{*}\right.$, is a Dedekind complete Banach lattice with respect to the ordering $x^{*} \leq y^{*}$ iff $x^{*}(x) \leq y^{*}(x)$ for all $x \in E^{+}$. The norm $\|\|$is said to be monotone complete ($[6$, p. 96$])$ if every norm-bounded and upward directed set $\left(x_{i}\right)_{i \in I}$ in E^{+}has a supremum (this property appears in the literature under many different names, e.g. to be a Levi norm; see [1, p. 282]). The lattice E has the Fatou property if for every upward directed set $\left(x_{i}\right)_{i \in I}$ in E^{+}with $\sup _{i \in I} x_{i}=x$ it follows that $\sup _{i \in I}\left\|x_{i}\right\|=\|x\|$. In the proof of part (b) of the Theorem we shall apply the following result (see [6, Theorems 2.4.19 and 2.4.21]):

Lemma 1. For every Banach lattice E, the dual E^{*} has the Fatou property and the dual norm $\left\|\|^{*}\right.$ is monotone complete.

The symbol \circ will denote composition of operators.

3. Proof of the Theorem

We start with the cited in Section 1 results by Rosenthal. Part (i) of the lemma below is included in [8, Remark 2 on p. 17], while part (ii) is a quantitative version of [8, Proposition 1.2] obtained from the following modification of its proof: on page 17 of [8], lines $14-19$ from above, one should apply [8, Lemma 1.1] with $\varepsilon \in(0,1)$ arbitrary instead of (as in the original proof) fixed $\varepsilon=1 / 2$. Here the space $\ell_{\infty}(\Gamma)$ is real or complex.

Lemma 2. Let B be a Banach space, and let $R: \ell_{\infty}(\Gamma) \rightarrow B$ be an operator such that $R_{0}:=R_{\mid c_{0}(\Gamma)}$ is an isomorphism.
(i) If $\Gamma=\mathbb{N}$, there is an infinite subset A of \mathbb{N} such that the restricted operator $R_{A}:=R_{\mid \ell_{\infty}(A)}$ is an isomorphism with $\left\|R_{A}^{-1}\right\| \leq\left\|R_{0}^{-1}\right\|$.
(ii) If Γ is uncountable, for every $\varepsilon \in(0,1)$ there is a subset Γ_{ε} of Γ with $\operatorname{card}\left(\Gamma_{\varepsilon}\right)=\operatorname{card}(\Gamma)$ such that the restricted operator $S_{\varepsilon}:=R_{\mid \ell_{\infty}\left(\Gamma_{\varepsilon}\right)}$ is an isomorphism with $\left\|S_{\varepsilon}^{-1}\right\| \leq\left\|R_{0}^{-1}\right\| /(1-\varepsilon)$.

In proofs of items (a) and $\left(\mathrm{a}_{\varepsilon}\right)$ we follow an idea of the proof of [8, Theorem 1.3], and we identify $\ell_{\infty}(\Gamma)$ with $c_{0}(\Gamma)^{* *}$. By π and π_{1}, respectively, we denote the canonical embeddings of X into $X^{* *}$ and X^{*} into $X^{* * *}$, respectively, and P denotes the well-known projection, with $\|P\|=1$, from $X^{* * *}$ onto $\pi_{1}\left(X^{*}\right)$ of the form $P\left(x^{* * *}\right)=\pi_{1}\left(x^{* * *} \circ \pi\right)$. Then the operator $R:=\pi_{1}^{-1} \circ P \circ T^{* *} \operatorname{maps} \ell_{\infty}(\Gamma)$ into X^{*}, and its the restriction $R_{0}:=R_{\mid c_{0}(\Gamma)}$ is an isomorphism because

$$
\begin{equation*}
R_{0}=T \tag{1}
\end{equation*}
$$

Let $\Gamma=\mathbb{N}$ (i.e., we consider now item (a)), and let R_{A} be the isomorphism obtained from Lemma 2(i). From the identification of ℓ_{∞} with $c_{0}^{* *}$ we obtain that $R_{A}=\pi_{1}^{-1} \circ P \circ T_{A}^{* *}$, where $T_{A}:=T_{\mid c_{0}(A)}$. Hence $R_{A \mid c_{0}(A)}=T_{A}$, i.e., R_{A} is an extension of T_{A}; thus $\left\|R_{A}\right\| \geq\left\|T_{A}\right\|$, but the form of R_{A} implies that $\left\|R_{A}\right\| \leq\left\|T_{A}\right\|$. Finally

$$
\begin{equation*}
\left\|R_{A}\right\|=\left\|T_{A}\right\| \tag{2}
\end{equation*}
$$

From (1) and Lemma 2 (i) we also have

$$
\begin{equation*}
\left\|R_{A}^{-1}\right\| \leq\left\|R_{0}^{-1}\right\|=\left\|T^{-1}\right\| \tag{3}
\end{equation*}
$$

On the other hand, since the isomorphism R_{A} is an extension of T_{A}, the inversed operator R_{A}^{-1} is an extension of T_{A}^{-1}; hence

$$
\begin{equation*}
\left\|T_{A}^{-1}\right\| \leq\left\|R_{A}^{-1}\right\| \tag{4}
\end{equation*}
$$

If we put now $S=R_{A}$, then from (2), (3) and (4) we obtain the conclusion in part (a).

The result in item $\left(\mathrm{a}_{\varepsilon}\right)$ can be proven in a similar way (applying part (ii) of Lemma 2).

For the proof of part (b) of the Theorem, let T be a lattice isomorphism from $c_{0}(\Gamma)$ into E^{*}, and let $f_{\gamma}=T e_{\gamma}$, where e_{γ} denotes the standard γ th unit vector of $c_{0}(\Gamma)$. Let \mathcal{G} be the class of all finite subsets of Γ. For every positive element $x=\left(t_{\gamma}\right)_{\gamma \in \Gamma} \in \ell_{\infty}(\Gamma)$ and every $G \in \mathcal{G}$, we define the element $x_{G}=\sup _{\gamma \in G} t_{\gamma} e_{\gamma}$. Then for the element $f_{G}:=\sup _{\gamma \in G} t_{\gamma} f_{\gamma}$ we have $f_{G}=T\left(x_{G}\right)$, and hence

$$
\begin{equation*}
\left\|f_{G}\right\|=\left\|T\left(x_{G}\right)\right\| \leq\|T\| \cdot\left\|x_{G}\right\|_{\infty} \leq\|T\| \cdot\|x\|_{\infty} \tag{5}
\end{equation*}
$$

Moreover, since T is positive and $x_{G_{1}} \leq x_{G_{2}}$ for $G_{1} \subset G_{2}$, we have $f_{G_{1}} \leq f_{G_{2}}$ for $G_{1} \subset G_{2}$. It follows that the set $\left(f_{G}\right)_{G \in \mathcal{G}}$ is both upward directed and normbounded (see (5)). By Lemma 1, the supremum $\sup _{G \in \mathcal{G}} f_{G}=\sup _{\gamma \in \Gamma} t_{\gamma} f_{\gamma}$ exists in E^{*}, and hence the formula

$$
\begin{equation*}
R_{1}(x)=\sup _{G \in \mathcal{G}} T\left(x_{G}\right) \tag{6}
\end{equation*}
$$

defines an additive (positive) injective operator R_{1} from the positive cone $\ell_{\infty}(\Gamma)^{+}$ into E^{*}. By [2, Theorem 1.7], the operator $\widetilde{T}(x):=R_{1}\left(x^{+}\right)-R_{1}\left(x^{-}\right)$is a linear positive mapping from $\ell_{\infty}(\Gamma)$ into E^{*}. Since the elements $R_{1}\left(x^{+}\right)$and $R_{1}\left(x^{-}\right)$are disjoint, we have $|\widetilde{T}(x)|=\widetilde{T}(|x|)=R_{1}(|x|)$; it follows that \widetilde{T} is a lattice isomorphism. In order to calculate the norm of \widetilde{T} we apply the fact
that, for every $x \in \ell_{\infty}(\Gamma)$, the net $\left(T\left(\left|x_{G}\right|\right)\right)_{G \in \mathcal{G}}$ is directed upward with, by (6), $\sup _{G \in \mathcal{G}} T\left(\left|x_{G}\right|\right)=\widetilde{T}(|x|)$. Now we apply (5) and the Fatou property of E^{*} which imply that $\|\widetilde{T}(x)\|=\||\widetilde{T}(x)|\|=\|\widetilde{T}(|x|)\| \leq\|T\| \cdot\|x\|_{\infty}$, and hence $\|\widetilde{T}\| \leq\|T\|$. The reversed inequality is obvious (because \widetilde{T} extends T), and so $\|\widetilde{T}\|=\|T\|$, as claimed.

The second equality, $\left\|\widetilde{T}^{-1}\right\|=\left\|T^{-1}\right\|$, is obtained in a similar way: we notice that \widetilde{T}^{-1} extends T^{-1}, and we apply Lemma 1 to $\ell_{\infty}(\Gamma)$ instead of E^{*} to show that, for every $f \geq 0$ in the norm-closed sublattice $\widetilde{T}\left(\ell_{\infty}(\Gamma)\right)$, we have $\left\|\widetilde{T}^{-1}(f)\right\|=$ $\sup _{G \in \mathcal{G}}\left\|T^{-1}\left(f_{G}\right)\right\|$, where f_{G} is defined as above.

References

[1] Abramovich Y.A., Wickstead A.W., When each continuous operator is regular. II, Indag. Math., N.S. 8 (1997), 281-294.
[2] Aliprantis C.D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985.
[3] Bessaga C., Pełczyński A., On basis and unconditional convergence of series in Banach spaces, Studia Math. 17 (1958), 151-164.
[4] Dowling P.N., Isometric copies of c_{0} and ℓ_{∞} in duals of Banach spaces, J. Math. Anal. Appl. 244 (2000), 223-227.
[5] Lindenstrauss J., Tzafriri L., Classical Banach Spaces. I, Springer, Berlin, 1977.
[6] Meyer-Nieberg P., Banach Lattices, Springer, Berlin, 1991.
[7] Rosenthal H.P., On injective Banach spaces and the spaces $L^{\infty}(\mu)$ for finite measures μ, Acta Math. 124 (1974), 205-247.
[8] Rosenthal H.P., On relatively disjoint families of measures, with some applications to Banach space theory, Studia Math. 37 (1970), 13-36.
[9] Wójtowicz M., The Sobczyk property and copies of ℓ_{∞} in locally convex-solid Riesz spaces, Arch. Math. 75 (2000), 376-379.

Instytut Matematyki, Uniwersytet Kazimierza Wielkiego, Pl. Weyssenhoffa 11, 85-072 Bydgoszcz, Poland
E-mail: mwojt@ukw.edu.pl

