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A non-metrizable collectionwise Hausdorff tree with

no uncountable chains and no Aronszajn subtrees

Akira Iwasa, Peter J. Nyikos

Abstract. It is independent of the usual (ZFC) axioms of set theory whether every collec-
tionwise Hausdorff tree is either metrizable or has an uncountable chain. We show that
even if we add “or has an Aronszajn subtree,” the statement remains ZFC-independent.
This is done by constructing a tree as in the title, using the set-theoretic hypothesis ♦∗,
which holds in Gödel’s Constructible Universe.
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1. Introduction

The interval topology on trees is a rich source of examples of locally compact
spaces, particularly under extra set-theoretic hypotheses, such as the axiom ♦∗

which will be used in this paper. The interplay between order and topology in
trees also highlights the contrast between various set-theoretic hypotheses. For
example, Theorem 3.3 of [1] has the following corollary:

Theorem A. An Aronszajn tree is collectionwise Hausdorff iff it does not have

a stationary antichain.

(Terminology relating to trees is explained below.) A corollary is that every
Souslin tree is collectionwise Hausdorff. On the other hand, MA(ℵ1) implies that
all Aronszajn trees are special, and hence that there are no Souslin trees and no
collectionwise Hausdorff Aronszajn trees. MA(ℵ1) also implies [4, Theorem 3.1]
that every collectionwise Hausdorff tree is either metrizable or has an uncountable
chain. In the first author’s doctoral dissertation [2], the set-theoretic hypothesis
was weakened to one involving Aronszajn trees:

Theorem B. If every Aronszajn tree is special, then every collectionwise Haus-

dorff tree is either metrizable or has an uncountable chain.

It is natural to inquire, in light of Theorem A, whether the set-theoretic hy-
pothesis in Theorem B can be weakened to “every Aronszajn tree has a stationary
antichain”. In the main part of the first author’s dissertation [2], it was shown
that the answer is negative:
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Theorem C. It is consistent with ZFC and also with ZFC+CH that every Aron-

szajn tree has a stationary antichain, and that there is a collectionwise Hausdorff

tree which is not metrizable and does not have an uncountable chain.

Theorem C was established by an iterated forcing beginning with a ground
model of ♦∗. A specific tree T was constructed in the ground model to sat-
isfy (01) through (04) below. In the intermediate forcing stages, all Aronszajn
trees were given stationary antichains (and thus rendered non-collectionwise Haus-
dorff), while preserving all four key properties of T . These were:

(01) T is collectionwise Hausdorff,

(02) T is not metrizable,

(03) T has no uncountable chains, and

(04) T has no Aronszajn subtrees.

The main theorem of this paper is that such a tree exists if one assumes ♦∗

(Theorem 3.4). As far as we know, it is the only construction of such a tree under
any hypotheses. From Theorem B it follows that, under MA(ℵ1), there does not
exist a tree satisfying (01), (02) and (03). On the other hand, ♦ implies that
there exists a Souslin tree, which satisfies (01), (02) and (03) (but obviously not
(04)). To establish Theorem C, the tree T we construct must satisfy (04) because
if T contains an Aronszajn subtree in the ground model, then T would contain
one in forcing extension where every Aronszajn tree has a stationary antichain,
which implies that T would not be collectionwise Hausdorff anymore in the forcing
extension.

For a construction of a Souslin tree using ♦, see e.g. Theorem 7.8 in Chapter 2
of [3]. Our♦∗ construction is a modification which employs two disjoint stationary
subsets of ω1 in contrasting ways.

The authors thank the referee for valuable comments including one which
helped them to simplify the proof of Theorem 3.4.

Definitions and notations 1.1. A partial ordered set 〈T, <T 〉 is a tree iff for
every t ∈ T , {s ∈ T : s <T t} is a well-ordered set. If there is no confusion, we
simply write < for <T . Also for simplicity we write T for 〈T, <T 〉.
For an element t of a tree T , the height of t, denoted by htT (t), is the order

type of {s ∈ T : s <T t}. If it is clear that T is referred to, then we simply write
ht(t) for htT (t). The set {t ∈ T : htT (t) = α} is called the α-th level of T , and it
is denoted by T (α). The height of a tree T , denoted by ht(T ), is the least ordinal
α such that T (α) = ∅. We let T↾α =

⋃
ξ<α T (ξ).

We let t̂ = {x ∈ T : x ≤T t}, and we say that a subtree S of T is downward
closed , provided for all t ∈ S, t̂ ⊆ S.

A chain in a tree T is a linearly ordered subset of T . An antichain in a tree is
a set of pairwise incomparable elements.
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T is an ω1-tree iff ht(T ) = ω1 and for all α < ω1, |T (α)| ≤ ℵ0. T is an
Aronszajn tree iff T is an ω1-tree and every chain is countable. T is a Souslin tree
iff T is an Aronszajn tree and every antichain is countable.

We say A is a stationary antichain of an ω1-tree T if {α ∈ ω1 : A ∩ T (α) 6= ∅}
is stationary.

The tree topology (also known as the interval topology on a tree T ) is the
topology such that if t ∈ T is not a minimal element, then all sets of the form
(s, t] := {x ∈ T : s <T x ≤T t} constitute a local base at t, and if t ∈ T is a
minimal element, then {t} is an open set. We only consider Hausdorff trees. Note
that a tree T is Hausdorff iff whenever {s ∈ T : s < t} = {s ∈ T : s < t′}, we
have t = t′.

A topological space X is collectionwise Hausdorff iff for every closed discrete
subspace D, there exists a family of disjoint open sets {Ud : d ∈ D} such that
Ud ∩D = {d} for each d ∈ D. Note that a subspace D of a tree is closed discrete
iff there is no sequence {dn ∈ D : n ∈ ω} with dn < dn+1 for all n ∈ ω converging
to some t.

A topological space is ω-fair , provided every countable subspace has a count-
able closure.

For ordinals α and β, we let

<αβ = {x : x is a function, dom(x) < α and ran(x) ⊆ β},

where dom(x) is the domain of x and ran(x) is the range of x. We consider <αβ
as a tree ordered by inclusion. For the sake of simplicity, we assume that every
function in <αβ has non-empty domain.

2. Downward closed subtrees of <ω1ω1

In this section, we study a downward closed subtree T of <ω1ω1 such that
|T | ≤ ℵ1 and T is ω-fair; the height of T is ≤ ω1, but T can have a level which
contains uncountable many nodes.

Here we introduce the notation Tα, which is useful when one deals with a
subtree of <ω1ω1.

Definition 2.1. Suppose that T is a subtree of <ω1ω1. For each α ∈ ω1, we
define

Tα = {x ∈ T : dom(x) < α, ran(x) ⊆ α and ran(x) is not cofinal in α}.

Note that some authors use Tα for the α-th level of T , which is T (α) in our
notation.
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Remark 2.2. If α is a successor ordinal, say α = β + 1, then

Tα = {x ∈ T : dom(x) ≤ β and ran(x) ⊆ β}.

We investigate properties of Tα.

Lemma 2.3. Suppose that T is a downward closed subtree of <ω1ω1. The
following statements are true:

(1) Tα is downward closed for all α ∈ ω1;
(2) Tα is open for all α ∈ ω1;
(3) if α is a successor ordinal, then Tα is closed;

(4) if α is a limit ordinal, then Tα =
⋃

ξ<α Tξ;

(5) if T is ω-fair, then Tα is countable for all α ∈ ω1.

Proof: We will show (3) and (5). To prove (3), suppose that α = β + 1, and let
x ∈ T \Tα; then either dom(x) > β or ran(x) * β by Remark 2.2. If dom(x) > β,
then (x↾β, x] is a neighborhood of x missing Tα. If ran(x) * β, then x(ξ) /∈ β for
some ξ ∈ dom(x), and (x↾ξ, x] is a neighborhood of x missing Tα.

To prove (5), first observe that Tα =
⋃

ξ<α{x ∈ Tα : dom(x) = ξ}. So it is

enough to show that Eξ := {x ∈ Tα : dom(x) = ξ} is countable for all ξ < α.
We do this by induction. For n < ω, En is countable because for all x ∈ En

dom(x) = n−1 and ran(x) ⊆ α. Suppose that Eξ is countable for all ξ < γ(< α).

Case 1: γ is a successor ordinal.

Suppose γ = ξ + 1. Observe that

Eγ ⊆ {x ∪ {〈ξ, η〉} : x ∈ Eξ and 0 ≤ η < α}.

Since Eξ is countable, so is Eγ .

Case 2: γ is a limit ordinal.

Observe that

Eγ ⊆ {x ∈ Tα : dom(x) < γ} =
⋃

ξ<γ

Eξ .

Since T is ω-fair and
⋃

ξ<γ Eξ is countable, we have that Eγ is countable. �

Observe that if ht(T ) ≤ ω1, then for every t ∈ T , {s ∈ T : s < t} is isomorphic
to a countable ordinal so t has a countable compact nbhd and so T is locally
metrizable, which implies that every countable subspace of T is metrizable. We
will use the next lemma to show that the tree we shall construct is not metrizable.
Recall that every metrizable space is paracompact.
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Lemma 2.4. Suppose T ⊆ <ω1ω1 is a downward closed subtree such that |T | ≤
ℵ1 and T is ω-fair. Then the following are equivalent:

(1) T is paracompact;
(2) {α ∈ ω1 : Tα \ Tα 6= ∅} is not a stationary subset of ω1.

Proof: (1)=⇒(2). Suppose that S = {α ∈ ω1 : Tα \ Tα 6= ∅} is stationary. Let
U be an open refinement of the open cover {Tα : α ∈ ω1} of T . We will show that
U is not locally finite. For each α ∈ S, pick xα ∈ Tα \ Tα, and choose Uα ∈ U
such that xα ∈ Uα. Then we can pick yα ∈ Uα such that yα < xα, and we can
choose α′ < α such that yα ∈ Tα′ . By Fodor’s Theorem, there exists a β ∈ ω1
such that {α : α′ = β} is stationary. Since Tβ is countable (Lemma 2.3(5)), there
exists an x ∈ Tβ such that {α : x ∈ Uα} is stationary.

(2)=⇒(1). If {α ∈ ω1 : Tα \ Tα = ∅} contains a club subset of ω1, say C = {αξ :

ξ < ω1} (enumerated in increasing order), then T =
⋃

ξ<ω1
(Tαξ+1

\ Tαξ
), and for

every ξ ∈ ω1, Tαξ+1
\ Tαξ

is a clopen metrizable subspace of T . If a space is the
union of clopen paracompact subspaces, then it is paracompact. �

We will use the following lemma to show that the tree we shall construct is
collectionwise Hausdorff.

Lemma 2.5. Suppose T ⊆ <ω1ω1 is a downward closed subtree such that |T | ≤
ℵ1 and T is ω-fair. Then the following are equivalent:

(1) T is collectionwise Hausdorff;
(2) for every antichain A of T , {α ∈ ω1 : A∩(Tα \Tα) 6= ∅} is not a stationary
subset of ω1.

Proof: (1)=⇒(2). A proof is similar to that of Lemma 2.4.

(2)=⇒(1). Let D be a closed discrete subspace of T . Let A0 = {d ∈ D : (∀ t <
d)(t /∈ D)}, and for n > 0 let An+1 = {d ∈ D \

⋃
k≤n Ak : (∀ t < d)(t /∈

D \
⋃

k≤n Ak)}; then each An is an antichain of T and D =
⋃

n∈ω An (see the

comment about discrete spaces of a tree in Definitions and notations 1.1). By
the assumption, we can find a club subset Cn of ω1 for each n such that for each
α ∈ Cn, An ∩ (Tα \ Tα) = ∅. Let C =

⋂
n∈ω Cn, and use the same argument as

in the proof of Lemma 2.4. �

Lemma 2.6. Suppose that T is a tree such that ht(T ) = ω1. If U is an ω1-
subtree of T , then

⋃
{û : u ∈ U} is also an ω1-subtree of T .

Proof: Omitted. �

The following lemma will be used to show the tree we will construct has neither
uncountable chains nor Aronszajn subtrees.
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Lemma 2.7. Suppose that T ⊆ <ω1ω1 is a downward closed subtree such that
T is ω-fair and {α ∈ ω1 : Tα \ Tα = ∅} is a stationary subset of ω1. Then T
has no ω1-subtrees; equivalently, it has neither uncountable chains nor Aronszajn
subtrees.

Proof: Let S = {α ∈ ω1 : Tα \Tα = ∅ and α is a limit ordinal}. Assume, on the
contrary, that T has an ω1-subtree U . By Lemma 2.6, we may assume that U is
downward closed.

Claim. {α ∈ ω1 : U(α) ⊆ Tα \ Tα} is a club subset of ω1.

Assuming the claim holds, we can find α ∈ S such that U(α) ⊆ Tα \ Tα. This
implies that U(α) = ∅, a contradiction. Now it remains to show the claim.

Proof of Claim: To show the set is unbounded, fix an arbitrary α0 ∈ ω1. Take
α1 > α0 such that U↾α0 ⊆ Tα1 ; then choose α2 > α1 so that Tα1 ∩ U ⊆ U↾α2;
this is possible because Tα1 is countable (Lemma 2.3(5)). Take α3 > α2 so that
U ↾ α2 ⊆ Tα3 . Continuing in the same way, let β = sup{αn : n ∈ ω}. We have
U↾ β ⊆ Tβ so U(β) ⊆ Tβ . For every x ∈ U(β), dom(x) = β so x /∈ Tβ. We can
show that the set is closed in a similar way. �

Corollary 2.8. ω1-trees are not metrizable. In particular, Aronszajn trees are
not metrizable.

Proof: Suppose that T is an ω1-tree, i.e. ht(T ) = ω1 and |T (α)| ≤ ℵ0 for all
α < ω1. By the claim in Lemma 2.7, {α ∈ ω1 : T (α) ⊆ Tα \ Tα} contains a
club subset of ω1. Since T (α) 6= ∅ for each α ∈ ω1, T is not paracompact by
Lemma 2.4. �

3. Construction of the tree

In this section, we construct the tree mentioned in the beginning of this paper.

Notation 3.1. • Λ = {α ∈ ω1 : α is a limit ordinal}

• Λsuc = {α ∈ Λ : α = β + ω for some β ∈ ω1}

• Λlim = Λ \ Λsuc

Definition 3.2. ♦∗ is the following statement: There exists a sequence 〈Aα :
α ∈ Λ〉 of subsets of P(ω1) such that:

(1) ∀α ∈ Λ (Aα ⊆ P(α)),
(2) ∀α ∈ Λ (Aα is countable), and
(3) ∀X ⊆ ω1 {α ∈ Λ : X ∩ α ∈ Aα} contains a club subset of ω1.

We use the following lemma to show the tree, which we will construct, has no
antichain which meets stationary many Tα \ Tα’s.
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Lemma 3.3. Suppose that T ⊆ <ω1ω1 is a downward closed subtree tree such
that |T | ≤ ℵ1 and T is ω-fair, and that M is a maximal antichain of T ; then

{α ∈ ω1 :M ∩ Tα is a maximal antichain of Xα}

is a club subset of ω1.

Proof: A proof is similar to that of Lemma 2.7.6(b) in [3]. �

Now, we construct the tree.

Theorem 3.4. Assuming ♦∗, there exists a tree T such that

(1) T is collectionwise Hausdorff,
(2) T is not metrizable,
(3) T has no uncountable chains, and
(4) T has no Aronszajn subtrees.

Proof: Fix a ♦∗-sequence {Aα ⊆ P(ω1) : α ∈ Λ}. Along with the construction,
we will enumerate T = {tξ : ξ < ω1} so that if tξ ∈ Tα and tη ∈ Tβ \ Tα, then
ξ < η. Observe that {α ∈ ω1 : {ξ ∈ ω1 : tξ ∈ Tα} = α} is a club subset of ω1. For
α ∈ Λ, we define

Fα = {{tξ : ξ ∈ A} : A ∈ Aα}.

Observe that for every subset U of T , {α ∈ ω1 : U ∩ Tα ∈ Fα} contains a club
subset of ω1 by the property of a ♦

∗-sequence.
Fix a stationary and co-stationary subset S1 of Λlim, and let S2 = Λlim \ S1.

We will construct a downward closed subtree T of <ω1ω1 by induction on limit
ordinals α with Tα+1 so that

(a) Tα+1 is downward closed,
(b) (∀x ∈ Tα+1)(x is non-decreasing),
(c) (∀α ∈ ω1)(Tα+1 is countable),
(d) (∀α ∈ S1)(Tα \ Tα = ∅),
(e) (∀α ∈ S2)(Tα \ Tα 6= ∅),
(f) (α ∈ S2 and x ∈ Tα \ Tα) =⇒ (dom(x) = α),
(g) (α ∈ Λsuc and x ∈ Tα) =⇒ (∃ y ∈ Tα)(x < y and dom(y) = α), and
(h) (α ∈ S2 and F ∈ Fα is a maximal antichain of Tα) =⇒ (∀ y ∈ Tα with
dom(y) = α)(∃x ∈ F )(x < y).

Now we start the construction. Let Tω+1 = {x ∈ ≤ωω : x ≡ 0}. Suppose that
we have constructed Tξ+1 for all ξ ∈ Λ with ξ < α.

Case 1: α ∈ Λsuc.
Suppose that α = β + ω, where β ∈ Λ. Let

Tα+1 = Tβ+1 ∪ {y : y = x ∪ {〈ξ, β〉 : dom(x) ≤ ξ < γ}

for some x ∈ Tβ+1 and for some γ ≤ α}.
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We have to make sure that we did not add new functions to Tβ+1; every new
function contains β in its range, so it does not belong to Tβ+1.
To show (g) is satisfied, fix an arbitrary x in Tα. If x ∈ Tβ+1, then let y = x∪

{〈ξ, β〉 : dom(x) ≤ ξ < α}, and y works. If x /∈ Tβ+1, then there exist an element
z ∈ Tβ+1 and an ordinal γ < α such that x = z ∪ {〈ξ, β〉 : dom(z) ≤ ξ < γ}. Let
y = z ∪ {〈ξ, β〉 : dom(z) ≤ ξ < α}; then y is as required.

Case 2: α ∈ Λlim.
In this case, Tα is already defined because Tα =

⋃
{Tξ : ξ < α and ξ ∈ Λ}.

Subcase 2.1: α ∈ S1.
We simply let Tα+1 = Tα. It is easy to see that Tα+1 satisfies (a)–(h). (For (d),
notice that Tα ⊆ Tα+1 because Tα+1 is closed (Lemma 2.3).)

Subcase 2.2: α ∈ S2.
Let {Fn : n ∈ ω} enumerate {F ∈ Fα : F is a maximal antichain of Tα}. Fix
x ∈ Tα and an increasing sequence 〈βn : n ∈ ω〉 such that sup{βn : n ∈ ω} = α.
We will define a chain {xn : n ∈ ω} in Tα and an increasing sequence 〈αn : n ∈ ω〉
such that αn ∈ Λsuc for all n ≥ 0 so that

• βn ≤ αn < α for all n ≥ 0,
• xn ∈ Tαn ,
• dom(xn) = αn, and
• x̂n ∩ Fl 6= ∅ for all l < n.

Take α0 ∈ Λsuc such that x ∈ Tα0 and α0 ≥ β0. Using the item (g), take
x0 ≥Tα

x such that x0 ∈ Tα0 and dom(x0) = α0. Suppose that we have picked
xn and αn satisfying the above.
If x̂n ∩Fn = ∅, then pick y ∈ Fn so that xn <Tα

y. Take αn+1 > αn such that

y ∈ Tαn+1 . Using the item (g), pick xn+1 ∈ Tαn+1 such that y <Tα
xn+1 and

dom(xn+1) = αn+1.
If x̂n ∩ Fn 6= ∅, then pick αn+1 > αn such that xn ∈ Tαn+1 , and using the

item (g) pick xn+1 ∈ Tαn+1 such that xn <Tα
xn+1 and dom(xn+1) = αn+1.

Now, we have obtained a chain {xn : n ∈ ω} in Tα. Let

y∗ =
⋃

{xn : n ∈ ω}.

We have dom(y∗) =
⋃

n∈ω dom(xn) =
⋃

n∈ω αn = α and for all n ∈ ω, ŷ∗∩Fn 6= ∅.
Finally, let

Tα+1 = Tα ∪ {y∗}.

It is easy to see that Tα+1 satisfies (a)–(g). (For (e), observe that y∗ ∈ Tα \ Tα.)
So let us check if Tα+1 satisfies (h). Suppose F ∈ Fα is a maximal antichain
of Tα. Pick an arbitrary y from Tα such that dom(y) = α; then y = y∗ and we
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know that ŷ∗ ∩ F 6= ∅ so there is an x′ < y such that x′ ∈ F . This finishes the
construction.

Now, we have to verify that T satisfies (1)–(4).

T is not metrizable because of the item (e) and Lemma 2.4. For (3) and (4),
first observe that T is ω-fair because of the item (c), and by the item (d) and
Lemma 2.7 these hold.

So it remains to show that T is collectionwise Hausdorff. For contradiction, as-
sume that T is not collectionwise Hausdorff. By Lemma 2.5, there exists an
antichain A in T such that

E := {α ∈ ω1 : A ∩ (Tα \ Tα) 6= ∅}

is a stationary subset of ω1. We may assume that E ⊆ Λlim. By the item (d),
this implies that E ⊆ S2. Take a maximal antichainM of T containing A and let

C1 = {α ∈ ω1 :M ∩ Tα is a maximal antichain in Tα}.

By Lemma 3.3, C1 is a club subset of ω1. Let

C2 = {α ∈ ω1 :M ∩ Tα ∈ Fα}.

C2 contains a club subset of ω1 by the property of a ♦∗-sequence. Pick α from
E ∩ C1 ∩C2 and x from A ∩ (Tα \ Tα); then dom(x) = α by (f). By the item (h)
and the fact thatM∩Tα is a maximal antichain in Tα, there exists an y inM∩Tα

such that y <T x, but this is a contradiction because x ∈ M . This finishes the
proof of the theorem. �
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