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Spaces of continuous characteristic functions

Raushan Z. Buzyakova

Abstract. We show that if X is first-countable, of countable extent, and a subspace of
some ordinal, then Cp(X, 2) is Lindelöf.
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1. Introduction

One of the main problems in Cp-theory is to find the properties of X which
force the space Cp(X) to be Lindelöf. A natural way to approach this problem is
to analyze it within classes of spaces with richer structures. For example, Nah-
manson [NAH] proved that a compact LOTS has Lindelöf Cp iff it is metrizable.
This theorem suggests that characterizing spaces with Lindelöf Cp might be an
attainable goal in the class of all LOTS or GO-spaces. In the last section we will
discuss some trivial necessary conditions and make conjectures about non-trivial
conditions.
In [BUZ], the author proved that a countably compact first-countable subspace

of an ordinal has Lindelöf Cp. This result suggests to replace “countable compact”
with “countable extent”. We do not know if this replacement leads to a theorem,
however our main result speaks in favor of “yes”. In the main result (Section 2),
we prove that if X is first countable, of countable extent, and a subspace of some
ordinal, then Cp(X, 2) is Lindelöf.
In notation and terminology we will follow [AR1] and [ENG]. By 2 we denote

the discrete space {0, 1}. As usual, Cp(X, Y ) is the space of all continuous func-
tions from X to Y endowed with the topology of point-wise convergence. All
spaces considered are Tychonoff. A space X has countable extent if any closed
discrete subset of X is countable.

2. Main result

For spaces X and Y , U is a standard open set in Cp(X, Y ) if there exist
x1, . . . , xn ∈ X and open B1, . . . , Bn in Y such that U = {f ∈ Cp(X, Y ) : f(xi) ∈
Bi, i = 1, . . . , n}. In this case, we say that U depends on {x1, . . . , xn}. If U is a
collection of standard open sets in Cp(X, 2) and A ⊂ X , by U(A) we denote the
family of all elements of U that depend on a subset of A.
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For brevity, let X be a fixed subspace of some ordinal, first countable, and of
countable extent. Also, let U be a fixed open cover of Cp(X, 2) by standard open
sets. In this section, we will work with these fixed structures.
We may assume that X is dense in some fixed ordinal χ, that is, X is obtained

from χ by removing some of limit ordinals, while all isolated ordinals of χ are
in X . Since for countable X our main result is trivial, we may assume that χ is
uncountable and cf(χ) > ω. The latter assumption does not put any additional
restrictions on X . Indeed, uncountability and first-countability of X imply that
X contains a clopen subset homeomorphic to an uncountable subspace of ω1. We
can simply move this set at the end of X (or “ahead”, depending on one’s view
of order).
For any A ⊂ X , supA is calculated in the class of ordinals. By [α, β]X ,

we denote [α, β] ∩ X . The same concerns open and half-open intervals. Closed
intervals of ordinals will be also called segments. If A ⊂ X , by A− we denote the
set {α : α + 1 ∈ A, cf(α) > ω} ∪ {χ}. In words, α belongs to A− iff α = χ, or α
has uncountable cofinality and is the immediate predecessor of an element of A.

Let us start with the following technical definitions.

Definition 2.1. Let A ⊂ X . The family S(A) ⊂ Cp(X, 2) is defined as follows:

S ∈ S(A) iff there exist α1, β1, . . . , αn, βn ∈ A ∪ A− and b1, . . . , bn ∈ 2 such that
S = {f ∈ Cp(X, 2) : f([αi, βi]X ) = {bi}, i = 1, . . . , n}.

Notice that S(A) is countable if A is countable.

Definition 2.2. For A ⊂ X , a set B ⊂ X is an ω-support of A if

1. B is countable and contains A ∪ {0};
2. if β ∈ B is limit in X then β is limit in B;
3. if β ∈ B then any countable [α, β]X is a subset of B.

Lemma 2.3. If A ⊂ X is countable then there exists B an ω-support of A.

Proof: For each α ∈ A, let mα be the smallest ordinal such that [mα, α]X is
countable. Let B′ =

⋃

α∈A[mα, α]X ∪ {0}. Clearly, 1, 3 are met. If β ∈ B′ is

limit in X but not limit in B′ then β = mα for some α ∈ A. By the definition
of mα, any neighborhood of mα, and therefore that of β, is uncountable. Since
β ∈ X andX is first-countable, there exists a strictly increasing sequence {βn}n of
ordinals of χ that converges to β. Since every neighborhood of β is uncountable
and cf(β) = ω, we can choose βn’s in χ \ X with uncountable cofinality. Let
Bβ = {βn + 1 : n ∈ ω}. Since we agreed that all isolated ordinals of χ are in X ,

the set Bβ is a subset of X . Let B =
⋃

β∈B′ Bβ ∪B′. Since, we added to B′ only

isolated ordinals, B meets 1, 2. And it meets 3 because any β ∈ B \ B′ is the
immediate successor of an ordinal of uncountable cofinality. �

Notice that if A is a countable family of countable subsets of X that are ω-
supports of themselves then

⋃

A is an ω-support of itself, too. If, additionally,
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each element of A contains a fixed A ⊂ X , then
⋃

A is an ω-support of A.

Lemma 2.4. Let I be a segment in (χ + 1) with uncountable cf(sup I) and let
A ⊂ X be countable. Then there exists AI ⊂ X with the following properties:

1. sup (AI ∩ I) belongs to X but is not in AI ;
2. if S ∈ S(AI ) and S ⊂ U ∈ U then some US ∈ U(AI ) contains S;
3. sup (AI ∩ I) > sup (A ∩ I) if A ∩ I 6= ∅;
4. AI is an ω-support of A.

Proof: Let A0 = A. Assume a countable Aβ is defined for each β < α < ω1.

Step α < ω1: Let B =
⋃

β<α Aβ ∪ {sα}, where sα is any in I ∩ X such that

[sα, sup I]X does not meet the closure of
⋃

β<α Aβ . Such an sα exists because
each Aβ is countable, while the right end point of I has uncountable cofinality.
For each S ∈ S(B), fix US ∈ U (if exists) that contains S. Let Aα be an ω-support
of

⋃

{BS : a fixed US depends on BS} ∪ B.

Let α ≤ ω1 be the first limit ordinal such that sup{sβ : β < α} ∈ X . This α
exists because X has countable extent. Since X is first countable, α < ω1. The
set AI =

⋃

β<α Aβ is desired. Indeed, 1 holds by the choice of α. Property 3

holds due to the presence of sβ in Aβ ∩ I for β < α. To verify 2, fix S ∈ S(AI )
that is contained in some element of U . Since S is determined by a finite subset
of AI , there exists β < α such that S is determined by a finite subset of Aβ . By
our construction, some fixed US ∈ U containing S depends on a subset of Aβ .
Therefore, US belongs to U(AI ). Condition 4 is satisfied too, since AI is the union
of an increasing family of sets that are ω-supports of themselves and contain A.

�

For our further discussion we need to define two expressions: “hits” and “local
type”. Let A ⊂ X be countable, A a chain of countable subsets of X , and I a
segment as in Lemma 2.4. If AI is the smallest element of A, we say that AI hits

I if AI satisfies the conclusion of Lemma 2.4 with input segment I and countable
set A. If AI ∈ A is not the smallest element of A, we say that AI hits I if AI

satisfies the conclusion of Lemma 2.4 with input segment I and countable set A′

for every A′ ∈ A a proper subset of AI . It will be clear what A and A are under
consideration. Also, we say that an ordinal α has local type β if β is the smallest
ordinal greater than 0 such that α has an open neighborhood homeomorphic to
an open neighborhood of β. For example, any isolated ordinal has local type 1;
ordinal ω+ω has local type ω. Clearly, any α ∈ ωn+ 1 has local type ω0 = 1, or
ω, or ω2, . . . , or ωn. We will use the following fact: if α is a limit ordinal then
any neighborhood of α contains an ordinal of any given local type less than the
local type of α.

Lemma 2.5. Let {I0, . . . , In} be a collection of segments in (χ+1) with uncount-
able cf(sup Ii) for each i. Let A ⊂ X be countable. Then there exists a chain
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A = {An
α : α ∈ ωn + 1} of subsets of X with the following properties:

1. if α is limit, then An
α =

⋃

β<α An
β ;

2. if α is of local type ωi then An
α hits In−i.

Proof: For one interval, the conclusion follows from Lemma 2.4. Assume that
the conclusion is true for any appropriate collection of n intervals. Let us construct
a required chain for (n+1) intervals. Let B0 = A. Assume for 0 < γ < β, a chain
Aγ is defined and Bγ =

⋃

Aγ is countable.

Step β < ω1: Let sβ be any in I0∩X such that [sβ , I0]X does not meet
⋃

γ<β Bγ .

Such an sβ exists because each Bγ is countable and the right end-point of I0
has uncountable cofinality. By our assumption, the conclusion of our lemma is
true for any appropriate collection of n intervals and any countable subset of X .
Therefore, there exists a chain Aβ that satisfies the conclusions of our lemma with
input intervals {I1, . . . , In} and countable [

⋃

γ<β Bγ ] ∪ {sβ}. Put Bβ =
⋃

Aβ .

Since each element of Aβ is an ω-support of any preceding one, Bβ is countable.

Due to countable extent and first countability of X , there exists a limit β < ω1
such that sup{sγ : γ < β} is in X . Choose a strictly increasing sequence {βk}k

converging to β. Let the chainA consist of all elements of
⋃

k Aβk
and the element

An
ωn =

⋃

{A′ : A′ ∈ Aβk
for some k}. Observe that An

ωn is constructed exactly in
the same manner as AI in Lemma 2.4. Therefore, A

n
ωn satisfies the conclusion of

Lemma 2.4 with input interval I0 and any element of A distinct from An
ωn . Let

us tag elements of A in accordance with the conclusion of our lemma. Represent
Aβ0 as {A

n
α : α ≤ ωn}; Aβ1 as {A

n
α : ωn < α ≤ ωn + ωn}; and so on. Since

each Aβk
was chosen to satisfy the conclusion of our lemma with input intervals

{I1, . . . , In}, these representations are possible and properties 1, 2 are met for any
α ≤ ωn. �

In the next lemma, Clχ is the closure operator in χ.

Lemma 2.6. Let f : X → 2 be continuous. Let {In : n ∈ ω} be a collection of
disjoint segments in (χ+1). For each n, let in ∈ 2 satisfy the following property:

there exists Sn ⊂ X such that inf In ∈ Clχ(Sn) and f(Sn) = {in}.

Then the function cf : X → 2 is continuous, where

cf (x) =

{

f(x) if x /∈
⋃

n In

in if x ∈ In ∩ X.

Proof: Since we work with first-countable spaces, it is enough to show that
cf (xk) → cf (x) whenever xk → x in X . Observe that cf coincides with f

on X \
⋃

n In. Therefore, we may assume that all xk’s are in
⋃

n In. If infinitely



Spaces of continuous characteristic functions 603

many xk ’s are in the same In then we are done since cf is constant within each In.
Thus we may assume that all xk’s are in different In’s. Then either x ∈ X \

⋃

n In

or x = inf Im for some m. In any case, f(x) = cf (x). By the property of in’s, for
each xk we can fix yk ∈

⋃

n Sn such that cf (xk) = cf (yk) = f(yk) and yk → x.
By continuity of f , cf (yk)→ f(x) = cf (x). Hence, cf (xk)→ cf (x). �

Before we give our last definition let us remind the definition of A− from the
beginning of the section. If A ⊂ X , by A− we denote the set {α : α + 1 ∈ A,
cf(α) > ω} ∪ {χ}. In words, α belongs to A− iff α = χ, or α has uncountable
cofinality and is the immediate predecessor of an element of A.

Definition 2.7. For A ⊂ X , define G(A) = {[0, α] : α ∈ A−}.

Lemma 2.8. Let A ⊂ X be an ω-support of itself. Then

1. for any x ∈ X \ A, x ∈ [sup(A ∩ I), sup I] for some I ∈ G(A);
2. the sets [sup(A∩ I1), sup I1] and [sup(A∩ I2), sup I2] do not meet, for any
distinct I1, I2 ∈ G(A).

Proof: Let us prove 1. Let r′ = min{α ∈ A∪{χ} : α > x}. If r′ = χ, put r = χ.
Otherwise, by condition 3 in the definition of ω-support, there exists r < χ such
that r′ = r+1 and cf(r) > ω. In either case, r ∈ A−. Therefore, I = [0, r] ∈ G(A)
is as desired.
Let us prove 2. Since I1, I2 are distinct, we may assume that sup I1 < sup I2.

By the definition of G(A), sup I1 ∈ A−. Since sup I1 < sup I2, sup I1 6= χ. By
the definition of A−, sup I1 + 1 ∈ A. Thus, sup I1 < sup(A ∩ I2). �

We are finally ready to prove our main result.

Theorem 2.9. Let X be a subspace of some ordinal. If X is first-countable and
of countable extent, then Cp(X, 2) is Lindelöf.

Proof: We continue working with our fixed X and U . Inductively, we will define
An ⊂ X such that U(

⋃

n An) will be a countable subcover. Recall that U(
⋃

n An)
is the family of all elements of U that depend on a subset of

⋃

n An.

Step 0 : Let A0 be an ω-support of itself. Enumerate G(A0) by prime numbers.
If we do not have enough elements in G(A0), place [0, χ] at the rest of
allocated places.

Step n: Let I0, . . . , In be the first n+1 elements of G(An−1). Let {A
n
α}α∈ωn+1

satisfy the conclusion of Lemma 2.5 with input set An−1 and the above
intervals in the given order.

Let An = An
ωn . Enumerate G(An) \ G(An−1) by (n + 1)-st powers of prime

numbers. With this enumeration, elements of G(An−1) keep their old tags.
Let A =

⋃

n An. Since each An is an ω-support of itself, A is an ω-support of
itself too. To simplify further argument, let us agree on notation.
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Notation: If λ ∈ A, put o(λ) = 〈n, α〉, where A
n
α is the first containing λ. The

order on 〈n, α〉’s is lexicographical.

To avoid constant referring to the previous lemmas, let us make two remarks
to be used later in the proof.

Remark 1. Let I5 ∈
⋃

n G(An) be the fifth element. For each n > 5, let αn ∈
ωn + 1 be an ordinal of local type ωn−5. Then rn

5 = sup(A
n
αn

∩ I5) exists and
is limit in A. Moreover, {rn

5 }n>5 is a strictly increasing sequence converging
to sup(A ∩ I5). Indeed, rn

5 exists because, by our construction, An
αn
hits I5.

By 1 of Lemma 2.4, rn
5 is limit in A. By 3 of Lemma 2.4, rn+1

5 > rn
5 , whence

the sequence in question is strictly increasing. Finally, since A =
⋃

n An
αn
, the

sequence converges to sup(A ∩ I5).

Remark 2. Let r = sup(An
α ∩ I5), where α is of local type ωn−5 and n > 5. Then

there exists l < r that belongs to An
β for some β < α. Moreover, l can be chosen

as close to r as we wish. Indeed, since ωn−5 is limit for n > 5, α is a limit ordinal.
By Lemma 2.5, An

α =
⋃

β<α An
β and An

α hits I5. By 1 of Lemma 2.4, r belongs to

the closure of An
α but does not belong to An

α. Therefore, l = sup(A
n
β ∩ I5) is as

desired for large β < α.

Recall that we constructed A =
⋃

n An. Clearly, U(A) is countable, so let us
prove that it is a subcover. Fix any f ∈ Cp(X, 2). Inductively we will define a
continuous function cf that coincides with f on A. Then to prove that f ∈

⋃

U(A)
it will suffice to show that cf ∈

⋃

U(A).

Definition of cf : Put cf (x) = f(x) for all x ∈ A. Since we used primes to enume-
rate

⋃

n G(An), some numbers are left unassigned. So re-enumerate the elements
of

⋃

n G(An) by non-negative integers without changing the current order.

Step 0 : Select an infinite C0 ⊂ ω \ {0} and i0 ∈ 2 such that for any k ∈ C0
there exist distinct lk0 , r

k
0 ∈ A with the following properties:

1. rk
0 → sup(A ∩ I0) and lk0 → sup(A ∩ I0);

2. o(rk
0 ) = 〈k, α〉, where α is of local type ωk, and rk

0 = sup(A
k
α ∩ I0);

3. f([lk0 , r
k
0 ]X) = {i0};

4. o(lk0 ) < o(rk
0 ).

Such an infinite collection of intervals exists. Indeed, by Remark 1,
there exists {rk

0 : k > 0} that satisfies 2 and the first half of 1. Since

rk
0 is limit and f is continuous, there exists lk0 < rk

0 such that f is

constant on [lk0 , r
k
0 ]X . By Remark 2, lk0 can be chosen in Ak

α with

α < ωk so that {lk0}k is a strictly increasing sequence converging to

the same point as {rk
0}k, that is, to sup(A∩I0). Thus, 4 and the other

half of 1 can be achieved. Condition 3 can be achieved due to finiteness
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of the range space {0, 1} (this is the only place our argument breaks
for the reals).

Let J0 = [sup(A ∩ I0), sup I0]. For all x ∈ J0 ∩ X put cf (x) = i0.

Step n: For simplicity, let n = 2. Select an infinite C2 ⊂ C1 and i2 ∈ 2 such
that for any k ∈ C2 there exist distinct lk2 , r

k
2 ∈ A with the following

properties:

1. rk
2 → sup(A ∩ I2) and lk2 → sup(A ∩ I2);

2. o(rk
2 ) = 〈k, α〉, where α is of local type ωk−2, and rk

2 = sup(A
k
α∩I2);

3. f([lk2 , r
k
2 ]X) = {i2};

4. o(lk1 ) < o(lk2) < o(rk
2 ) < o(rk

1 ).

To construct such a collection, fix a previously constructed segment
[lk1 , r

k
1 ], where k ∈ C1. As remarked after the definition of local type,

there are infinitely many 〈k, γ〉 such that γ is of local type ωk−2 and

o(lk1) < 〈k, γ〉 < o(rk
1 ). Fix one such 〈k, γ〉 and put rk

2 = sup(A
k
γ ∩ I2).

By our construction, Ak
γ hits I2. By Remark 1, r

k
2 → sup(A ∩ I2). As

at Step 0, we can choose lk2 to satisfy 1, 3, and the first two inequalities
of 4. The rest of the argument is the same as in Step 0.

By Lemma 2.8, the segment J2 = [sup(A∩ I2), sup I2] either coincides
with some Jm for m < n = 2 or disjoint with all of them. In the latter
case put cf (x) = i2 for all x ∈ J2 ∩ X .

The segments Jn’s that participated in the definition of cf are disjoint. This

collection of segments together with in’s and Sn = {rk
n : k ∈ Cn} satisfy the

conditions of Lemma 2.7. Therefore, cf is continuous. Let us show that U(A)
covers cf . There exists Ucf

∈ U that contains cf . Suppose Ucf
= {g : g(xk) =

ik ∈ 2, k = 1, 2, 3}. Assume x3 ∈ A and x1, x2 ∈ X \ A. By Lemma 2.8, x1, x2
are in at most two of Jn’s, say in J1 ∪ J2. Put r1 = supJ1 and r2 = supJ2. By
Definition 2.7 of G(An), r1 and r2 are in A−.

Case I (x1 ∈ J1, x2 ∈ J2): Assume J2 is to the right of J1. By 1 in the definition
of cf , there exists m ∈ C2 such that [l

m
2 , rm

2 ] is to the right of J1. Since sequences
of l’s and r’s in the definition of cf are in fact increasing, l

m
1 and lm2 are to the

left of sup(A ∩ I1) and sup(A ∩ I2), respectively. Therefore, x1 ∈ [lm1 , r1] and
x2 ∈ [l

m
2 , r2]. Since, l

m
2 is to the right of r1, the intervals [l

m
1 , r1] and [l

m
2 , r2] are

disjoint. Finally, since x3 ∈ A, we can select such an m ∈ C2 that neither [l
m
1 , r1]

nor [lm2 , r2] contains x3. Therefore, the set

S = {g ∈ Cp(X, 2) : g([lm1 , r1]X ) = {i1}, g([l
m
2 , r2]X ) = {i2}, g(x3) = i3}

is contained in Ucf
. Let 〈m, α〉 = o(lm2 ), that is, lm2 ∈ Am

α+1. By 4, lm1 ∈ Am
α .

Since x3, r1, r2 ∈ A ∪ A−, we may assume they are in Am
α ∪ (Am

α )
− (simply
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choose m ∈ C2 large enough, which is possible due to infiniteness of C2). By
Definition 2.1, S ∈ S(Am

α+1). By 2 of Lemma 2.4, some US ∈ U(Am
α+1) contains S.

But this is possible only if US is a finite intersection of open sets in the following
forms:

{g : g(x3) = i3}; {g : g(y) = i1}; {g : g(z) = i2},

where y ∈ [lm1 , r1] ∩ Am
α+1 and z ∈ [lm2 , r2] ∩ Am

α+1. These sets are contained
in [lm1 , rm

1 ] and [l
m
2 , rm

2 ], respectively. Indeed, recall that o(lm2 ) = 〈m, α〉. By 4,
rm
1 and rm

2 appear for the first time not earlier than in Am
α+1. By 2, rm

1 ≥
sup(Am

α+1∩I1) and rm
2 ≥ sup(Am

α+1∩I2), from where the inclusions follow. By 3,

cf (y) = i1 and cf (z) = i2. Hence cf ∈ US . Since cf coincides with f on A, f is
covered by U(Am

α+1) as well.

Case II (x1, x2 ∈ J1): In this case i1 = i2. So put S = {g : g([lm1 , r1]X ) =
{i1}, g(x3) = i3}. The rest of the argument is as in Case I. �

3. Corollaries and related questions

Note that if for each i ∈ ω, Xi satisfies the conditions of Theorem 2.9 then so
does ⊕i∈ωXi.

Corollary 3.1. Let X and Xi be subspaces of some ordinals. If X and Xi

are first countable and of countable extent, then (Cp(X, 2))ω, Cp(X, 2ω), and
Πi∈ωCp(Xi, 2) are Lindelöf.

Theorem 2.9 gives a sufficient condition for a subspace of an ordinal to have
Lindelöf Cp(·, 2), but not a criterion. Indeed, let X be uncountable discrete.
Then X is a first-countable subspace of an ordinal. Clearly, the extent of X is
uncountable, nevertheless, Cp(X, 2) is Lindelöf being homeomorphic to 2X . Yet,
the following theorem holds.

Theorem 3.2. Let X be a subspace of an ordinal and let Cp(X, 2) be Lindelöf.
Then X is first-countable and the derived set X ′ has countable extent.

Proof: First countability is obvious. Indeed, X has countable tightness (the
argument is the same as in Asanov’s theorem [ASA]). Any countably tight GO is
first countable.
For the second condition, assume the contrary, and fix a closed discrete {xα :

α < ω1} ⊂ X ′. Since any GO is collectionwise Hausdorff and normal, there
exists an uncountable discrete family {Jα : α < ω1} of mutually disjoint open
convex sets such that each Jα contains xα. Since indX = 0, each Jα can be
chosen clopen. Therefore,

⋃

α Jα is clopen and Cp(X, 2) contains a closed copy
of Cp(

⋃

α Jα, 2). Since Jα’s form a discrete family of disjoint closed sets, we
have

⋃

α Jα is homeomorphic to ⊕αJα. Therefore, Cp(
⋃

α Jα, 2) is homeomorphic
to ΠαCp(Jα, 2). Since the interior of every Jα meets X ′, Jα is not discrete,
whence Cp(Jα, 2) is not compact. Thus, Cp(

⋃

α Jα, 2) is not Lindelöf since it is
homeomorphic to the product of uncountably many non-compact spaces. �
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Question 3.3. Let X be a first-countable subspace of an ordinal and let the
derived set X ′ have countable extent. Is Cp(X, 2) Lindelöf?

Although, first countable subspaces of ordinals are mainly non-metrizable
(some of course are metrizable), they all share one property that makes them
a little closer to metric spaces. Every first countable subspace of ordinals have a
base of countable order. This concept was introduced by Arhangelskii in [AR2]:
a base B for the topology of X is a base of countable order if any sequence
B1 ⊃ B2 ⊃ . . . of distinct members of B, all of which contain a point x, forms
a local base at x. Let us show that a first countable subspace X of an ordinal
has a base of countable order. For each x ∈ X , fix a countable nested local base
Bx at x whose elements are in form [α, x]X . Let us show that B =

⋃

x∈X Bx has
the required property. Let [α1, x1]X ⊃ [α2, x2]X ⊃ . . . be a sequence of distinct
members of B, all of which contain x. Since no sequence of ordinals is strictly de-
creasing, there exists y ∈ X such that xn = y for almost all n. Then [αn, xn] ∈ By

for almost all n. Hence, the sequence in question forms a local base at y. Since
each member contains x, we have x = y.

Question 3.4. LetX be a countably compact GO-space (or LOTS)with Lindelöf
Cp(X). Does X have a base of countable order?

Question 3.5. Let X be a GO-space (or LOTS) with a base of countable order
and countable extent. Is Cp(X) Lindelöf? What if X is countably compact?

Surprisingly, it seems to be an open question if Nahmanson’s theorem can be
generalized to Lindelöf LOTS.

Question 3.6. Let X be a Lindelöf LOTS (or GO-space) with Lindelöf Cp(X).
Is X metrizable?

And let us finish with a question which is an unaccomplished goal of this paper.

Question 3.7. Let X be first countable, of countable extent, and a subspace of
an ordinal. Is Cp(X) Lindelöf?
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