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Locally soluble-by-finite groups with small

deviation for non-subnormal subgroups

Leonid A. Kurdachenko, Howard Smith

Abstract. A group G has subnormal deviation at most 1 if, for every descending chain
H0 > H1 > . . . of non-subnormal subgroups of G, for all but finitely many i there is
no infinite descending chain of non-subnormal subgroups of G that contain Hi+1 and
are contained in Hi. This property P, say, was investigated in a previous paper by the
authors, where soluble groups withP and locally nilpotent groups withPwere effectively
classified. The present article affirms a conjecture from that article by showing that
locally soluble-by-finite groups with P are soluble-by-finite and are therefore classified.
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This article continues the study of groups with “small deviation for non-
subnormal subgroups”; more precisely, of groups G for which this deviation is
at most 1, where we write devnon-sn(G) ≤ 1. The discussion of groups with this
property was begun in [6], following some general results on groups G for which
the non-subnormal deviation exists at all. We refer the reader to [6] for the more
general case and for precisely what it means to say that the non-subnormal devi-
ation of a group G exists , but we recall here that a group G has non-subnormal
deviation at most 1 if, for every descending chain H0 > H1 > H2 > . . . of non-
subnormal subgroups of G, almost all of the “intervals” I[Hi+1, Hi] satisfy the
minimal condition for non-subnormal subgroups of G, that is, for all but finitely
many i there is no infinite descending chain of non-subnormal subgroups of G
all of which contain Hi+1 and are contained in Hi. It was observed in [6] that
a group with the weak minimal condition for non-subnormal subgroups has non-
subnormal deviation at most 1 but that the converse is false — groups with this
weak minimal condition were the topic of discussion in [4] and [5]. The main
results of [6] were concerned with soluble groups G satisfying devnon-sn(G) ≤ 1
and with locally nilpotent groups G with this property. We summarize the results
on soluble groups as follows.

Theorem 1. Let G be a soluble group such that devnon-sn(G) ≤ 1, and let T be
the torsion subgroup of the Baer radical B of G.

(i) If B is minimax then G too is minimax.
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(ii) If B/T is not minimax then G = B and every subgroup of G is subnormal.
(iii) If B/T is minimax but T is not minimax then T contains all elements

of G of finite order, G/T is minimax and T satisfies min−〈g〉 for each
element g ∈ G\B. Furthermore, every subgroup of B is subnormal.

We were also able to show that a locally nilpotent group G with devnon-sn(G)
≤ 1 is soluble and of a certain restricted structure. It is clear from the above
theorem that the structure of a soluble-by-finite group with non-subnormal devi-
ation at most 1 has also been determined, and we conjectured in [6] that a locally
soluble-by-finite group with deviation at most 1 is soluble-by-finite. Verification
of this conjecture is the main purpose of the present article.

Theorem 2. Let G be a locally soluble-by-finite group such that devnon-sn(G)
≤ 1. Then G is soluble-by-finite.

We approach the proof of this theorem by means of a sequence of lemmas.

Lemma 1. Let G be a locally finite group satisfying devnon-sn(G) ≤ 1. Then G
is soluble-by-finite.

Proof: If G is Chernikov then the result is clear, while if G is not Chernikov
then it is a Baer group, by Lemma 2.8 of [6], hence locally nilpotent and hence
soluble, as pointed out above. �

Recall next that a group G is radical if it is the union of an ascending series
of normal subgroups with successive factor groups locally nilpotent.

Lemma 2. Let G be a radical group satisfying devnon-sn(G) ≤ 1. Then G is
soluble.

Proof: By Theorem 5.7 of [6] every locally nilpotent section of G is soluble. Let
H1 be the locally nilpotent radical of G, H2/H1 the locally nilpotent radical of
G/H1, and let T denote the maximal normal torsion subgroup of G. By Lemma 1
T is soluble and, factoring, we may assume that T = 1. Let B = B(G) denote
the Baer radical of G; then B = B(H2). If B is not minimax then H2 = B, by
Theorem 1, and so G = H1, which is soluble. But if B is minimax then every
abelian subgroup of G is minimax, by Corollary 2.3 of [6], and then G is minimax,
by Theorem 10.35 of [8], and hence soluble. This establishes the result. �

Lemma 3. Let G be a finitely generated soluble-by-finite group satisfying
devnon-sn(G) ≤ 1. Then G is minimax.

Proof: We may suppose that G is soluble. If G is not minimax then it has
infinite (Prüfer) rank, by Theorem 10.38 of [8], and hence a section K isomorphic
to the wreath product of a cyclic group of prime order by an infinite cyclic group,
by [3]. But the Baer radical of K is abelian of prime exponent and clearly does
not satisfy min−K, and Theorem 1(iii) gives a contradiction. �
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Our next result reduces the proof of Theorem 2 to that of the locally soluble
case. This is followed by two straightforward lemmas, the first of which is well-
known. These will assist in establishing a Proposition that, in turn, provides a key
step in the final stage of the proof of the theorem. In the statement of Lemma 6
(and elsewhere) we employ for convenience the term “periodic index” to indicate
that a subgroup H of a group G has the property that every element of G has a
non-zero power in H .

Lemma 4. Suppose that every locally soluble group with non-subnormal devi-
ation at most 1 is soluble. Then every locally soluble-by-finite group with non-
subnormal deviation at most 1 is soluble-by-finite.

Proof: Let G be a locally soluble-by-finite group with devnon-sn(G) ≤ 1 and
suppose that G is not soluble-by-finite. If there are integers d and k such that
every finitely generated subgroup of G has its soluble radical of derived length at
most d and index at most k then G too has this property, by Proposition 1.K.2
of [2]. Thus we may assume that G is countable and, by Lemma 2, we may further
assume (by factoring if necessary) that G has trivial Hirsch-Plotkin radical. G is
an ascending union of finitely generated subgroups F1 < F2 < . . . ; for each i the
soluble radical Si of Fi has finite index, and it is easy to see that the subgroup S
generated by all the Si is locally soluble and hence, by hypothesis, soluble. Since
G has trivial Baer radical we deduce from Corollary 2.3 of [6] that every abelian
subgroup of G is minimax and hence that S is minimax, by Theorem 10.35 of [8].
It follows that there is a finite upper bound r for the torsion-free ranks of the
subgroups Fi. By Lemma 3 each Fi is minimax and hence nilpotent-by-abelian-
by-finite (by Theorem 3.25 of [8]), and we may apply Proposition 1 of [1] to deduce
that G has a finite ascending normal series whose factors are soluble or locally
finite. But each locally finite factor of this series is soluble-by-finite, by Lemma 1,
and since each finite G-invariant factor of G has its centralizer of finite index in
G we easily obtain the contradiction that G is soluble-by-finite. �

Lemma 5. Let X be a finitely generated nilpotent-by-finite group, Y a subgroup
of X , and let U be a normal subgroup of finite index in Y . Then there is a normal
subgroup N of finite index in X such that N ∩ Y ≤ U .

Proof: There is a normal nilpotent subgroup V of finite index in X , and if
M ∩(Y ∩V ) ≤ U ∩V for some normal subgroupM of finite index in V then, with
N = CoreX(M), we have X/N finite and N ∩ Y = N ∩ (Y ∩ V ) ≤ (U ∩ V ) ≤ U ,
and the result follows. Thus we may suppose that X = V and in particular that
Y is subnormal in X . If Y is normal in X then Y/CoreX (U) is finite, and since
X/CoreX(U) is residually finite the result follows in this case. By induction on
the subnormal defect of Y in X we may assume that there is a normal subgroup
W of X containing Y , and a normal subgroup K of finite index in W , such that
K ∩Y ≤ U ; replacing K by its core if necessary we may assume that K is normal
in X . Since X/K is residually finite there is a normal subgroup N of finite index
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in X such that N ∩ W = K, and then N ∩ Y = N ∩ W ∩ Y = K ∩ Y ≤ U , and
the lemma is proved. �

Lemma 6. Let G be a locally soluble group with devnon-sn(G) ≤ 1 and suppose
that H is a subnormal subgroup of G that has periodic index in G. Then there

is a positive integer d such that G(d) ≤ H (where G(d) denotes the dth term of
the derived series of G).

Proof: There is a finite subnormal series from H to G, and each factor of this
series is locally finite and hence soluble, by Lemma 1. �

The following Proposition, with its rather technical hypotheses, will allow us
to deal, in particular, with the case where G is locally nilpotent-by-finite, and
its generality will also allow us to reduce to that case. Much of the proof of the
Proposition is similar to that of Theorem 4 of [1], though there are significant
differences.

Proposition. Let G be a locally soluble group that is the ascending union of
a chain of finitely generated subgroups F1 < F2 < . . . and, for each i, let Ki

be a normal subgroup of Fi such that Fi/Ki is nilpotent-by-finite, F1/K1 and
each index [Fi+1 : FiKi+1] is infinite, and Ki+1 ∩ Fi ≤ Ki. Suppose also that
Fi has derived length exactly di and that Fi+1/Ki+1 has derived length at least
2di (for each i). Then there are subgroups M and L of G such that L ≤ M, L

has periodic index in G and G(d) � M for any positive integer d, and there is an
infinite descending chain of subgroups of M that contain L.

Proof: There is a nilpotent normal subgroup M1/K1 of finite index in F1/K1
and a proper F1-invariant subgroupL1/K1 of finite index inM1/K1. By Lemma 5,
applied to the group F2/K2, there is a normal subgroupM2/K2 of finite index in
F2/K2 such thatM2∩F1 ≤ K2L1 and soM2∩F1 ≤ K2L1∩F1 = L1(K2∩F1) =
L1. Clearly we may choose M2 such that M2/K2 is nilpotent and F2/M2 has
derived length equal to that of F2/K2 (using the residual finiteness of F2/K2).
Since F2/K2 is polycyclic, the intersection of all subgroups U of finite index in
F2 that contain K2F1 is K2F1, which has infinite index in F2. So we may choose
such a U that does not containM2, and then L2 := CoreF2(U ∩M2) contains K2,
has finite index inM2, and is such thatM2 is not contained in F1L2. We continue
in this manner: for each i there is a normal nilpotent subgroup Mi+1/Ki+1 of
finite index in Fi+1/Ki+1 such that Mi+1 ∩ Fi ≤ Li and Fi+1/Mi+1 has derived
length equal to that of Fi+1/Ki+1, and an Fi+1-invariant subgroup Li+1/Ki+1 of
finite index in Mi+1/Ki+1 such that Mi+1 � FiLi+1. Let L = 〈Li : i ≥ 1〉, M =
〈Mi : i ≥ 1〉; clearly L has periodic index in G and L ≤ M .

Suppose next that G(d) ≤ M for some integer d, and choose i > 1 such that

di−1 > d. We have F
(d)
i ≤ M ∩ Fi, and since Mj+1 ∩ Fj ≤ Mj for all j it follows

that M ∩ Fi = M1 . . . Mi (see Lemma 2 of [1]) and hence that F
(d)
i ≤ Fi−1Mi.
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But this gives F
(d+di−1)
i ≤ Mi, so di ≤ (d+ di−1) < 2di−1, a contradiction.

Now let H0 =M and, for i ≥ 1, let Hi = (L1 . . . Li)(Mi+1Mi+2 . . . ); thus L ≤
Hi ≤ M for all i. Assume for a contradiction that the chain H0 ≥ H1 ≥ H2 ≥ . . .
terminates after finitely many steps, so that Mt ≤ (L1 . . . Lt)(Mt+1Mt+2 . . . ) for
some t. Now if x ∈ (Mt+1 . . .Mt+k) ∩ Ft for some k > 1 then

x ∈ (Mt+1 . . . Mt+k−1)(Mt+k ∩ Ft+k−1) ∩ Ft = (Mt+1 . . . Mt+k−1) ∩ Ft,

and an easy induction on k shows that x ∈ Mt+1 ∩ Ft ≤ Lt. Thus

Mt ≤ (L1 . . . Lt)(Mt+1Mt+2 . . . ) ∩ Ft = (L1 . . . Lt)((Mt+1Mt+2 . . . ) ∩ Ft)

= (L1 . . . Lt) ≤ Ft−1Lt,

contradicting the choice of Lt. Thus the Hi form an infinite descending chain,
and the Proposition is proved. �

Proof of Theorem 2: By Lemma 4 we may assume that G is locally solu-
ble, and our aim is to show that G is soluble, so we may also assume that G
is countable. Suppose the result false. The iterated Hirsch-Plotkin radical of G
is soluble, by Lemma 2, so we may factor and assume that G has no nontrivial
subnormal soluble subgroups; as in the proof of Lemma 4, every soluble subgroup
of G is therefore minimax. If every insoluble subgroup of G is subnormal then G
satisfies the weak minimal condition for non-subnormal subgroups (since soluble
minimax groups satisfy the weak minimal condition for all subgroups), and The-
orem B of [5] implies that either G is soluble or G has all subgroups subnormal,
in which case G is again soluble [7], a contradiction. Thus we see that every
insoluble subgroup of G contains a non-subnormal insoluble subgroup, and since
devnon-sn(G) ≤ 1 there exists an insoluble subgroup G0 of G such that, if X < Y
are any non-subnormal insoluble subgroups of G0 then the interval I[X, Y ] sat-
isfies the minimal condition for non-subnormal subgroups of G. We may assume
that G = G0 and, again factoring if necessary, we may retain the condition that
the Hirsch-Plotkin radical of G is trivial and hence that every soluble subgroup
is minimax.
By Lemma 3, G is the ascending union of finitely generated subgroups F1 <

F2 < . . . , each of which is minimax. For each i, let Ki denote the locally nilpotent
radical of Fi; then Ki is nilpotent and Fi/Ki is abelian-by-finite, by Theorem 3.25
of [8]. Certainly Fi ∩ Ki+1 ≤ Ki for each i. If there is an upper bound b for the

derived lengths of the factors Fi/Ki then G(b) is locally nilpotent and therefore
trivial, and we have the contradiction that G is soluble. Passing to an appropriate
subsequence of the Fi if necessary, we may therefore assume that the derived
length of Fi+1/Ki+1 is at least twice that of Fi, for each i.
If there is no upper bound for the torsion-free ranks (that is, Hirsch lengths)

of the Fi/Ki then we may again re-label the Fi and assume that the torsion-free
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rank of Fi+1/Ki+1 is greater than that of Fi for each i and that F1/K1 is infinite.
But now G satisfies the hypotheses and hence the conclusion of the Proposition
and, with the notation of the Proposition, we may apply Lemma 6 to deduce
that neither L nor any of the subgroups Hi is subnormal in G, so the interval
I[L, M ] does not satisfy min for non-subnormal subgroups of G, so that L must
be soluble and hence minimax, which gives, since L has periodic index in G, the
contradiction that the torsion-free ranks of the Fi are bounded. It follows that the
torsion-free rank of each Fi+1/Ki+1 is at most r, for some fixed positive integer r.

For each i there is a normal torsion-free abelian subgroup Ui/Ki of finite index
in Fi/Ki, and the rank of each Ui/Ki is at most r. By Theorem 3.23 of [8],
there is an integer d = d(r) such that (for all i), if Ci denotes the centralizer
in Fi of Ui/Ki, then Fi/Ci has derived length at most d. As Ci/Ki is centre-

by-finite it has finite derived group, and so F
(d+1)
i is nilpotent-by-finite, which

gives G(d+1) locally nilpotent-by-finite, so there is no loss in assuming that G is
locally nilpotent-by-finite, that is, Fi/Ki is finite for each i. Observe that, by
factoring by the iterated Hirsch-Plotkin radical if necessary, we may again retain
the condition that all soluble subgroups of G are minimax.

If the torsion-free ranks of the Fi are bounded above then, as in the proof
of Lemma 4, we may apply Proposition 1 of [1] to deduce that G has a finite
ascending normal series whose factors are soluble or locally finite and hence to
obtain the contradiction that G is soluble. Thus we may assume that the torsion-
free ranks of the Fi increase with i. But now G satisfies the hypotheses of the
Proposition, with each “Ki” of those hypotheses trivial, and as in the earlier part
of the present proof we have subgroups L andM and an infinite descending chain
of subgroups Hi of M , each containing L, such that no Hi is subnormal in G.
Thus L is soluble and hence minimax and, since L has periodic index in G, we
obtain the contradiction that the torsion-free ranks of the Fi are bounded. This
completes the proof of Theorem 2. �
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