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Riesz spaces of order bounded

disjointness preserving operators

Fethi Ben Amor

Abstract. Let L, M be Archimedean Riesz spaces and Lb(L, M) be the ordered vec-
tor space of all order bounded operators from L into M . We define a Lamperti Riesz
subspace of Lb(L, M) to be an ordered vector subspace L of Lb(L, M) such that the
elements of L preserve disjointness and any pair of operators in L has a supremum in
Lb(L, M) that belongs to L. It turns out that the lattice operations in any Lamperti
Riesz subspace L of Lb(L, M) are given pointwise, which leads to a generalization of
the classic Radon-Nikodým theorem for Riesz homomorphisms. We then introduce the
notion of maximal Lamperti Riesz subspace of Lb(L, M) as a generalization of ortho-
morphisms. In this regard, we show that any maximal Lamperti Riesz subspace of
Lb(L, M) is a band of Lb(L, M), provided M is Dedekind complete. Also, we extend
standard transferability theorems for orthomorphisms to maximal Lamperti Riesz sub-
space of Lb(L, M). Moreover, we give a complete description of maximal Lamperti Riesz
subspaces on some continuous function spaces.

Keywords: continuous functions spaces, disjointness preserving operator, Lamperti Riesz
subspace, order bounded operator, orthomorphism, Radon-Nikodým, Riesz space

Classification: 06F20, 47B65

1. Introduction and preliminaries

We take the standard monographs [17], [25] as a starting point to which we refer
the reader for unexplained terminology and notation. Throughout this paper, L
and M are Archimedean Riesz spaces (also called vector lattices). The ordered
vector space of all order bounded operators from L intoM is denoted by Lb(L, M)
and briefly by Lb(M) whenever L =M . In general, Lb(L, M) is not a Riesz space,
unless M is Dedekind complete, for instance. We henceforth need to extend to
Lb(L, M) some terminologies usually used in the context of Riesz spaces. We call
a vector subspace L of Lb(L, M) a Riesz subspace of Lb(L, M) if for all S, T ∈ L,
the pair {S, T } has a supremum in Lb(L, M) that belongs to L. We define a
Riesz subspace I of Lb(L, M) to be an ideal of Lb(L, M) whenever 0 ≤ S ≤ T in
Lb(L, M) and T ∈ I imply S ∈ I. Notice that we retrieve the usual definitions
of Riesz subspaces and ideals if Lb(L, M) is a Riesz space.
An operator T from L into M is said to be disjointness preserving if |Tf | ∧

|Tg| = 0 in M whenever |f | ∧ |g| = 0 in L. A positive disjointness preserving
operator is called a Riesz (or lattice) homomorphism. Observe that T ∈ Lb(L, M)
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is a lattice homomorphism if and only if |Tf | = T |f | for all f ∈ L. This paper deals
with Riesz subspaces of Lb(L, M) the elements of which are disjointness preserving
operators. For the sake of simpleness, we call such Riesz spaces Lamperti Riesz
subspaces of Lb(L, M). This terminology comes from [5] by Arendt in which order
bounded disjointness preserving operators are called Lamperti operators . Ideals
of Lb(L, M) the elements of which preserve disjointness are called Lamperti ideals
of Lb(L, M). Lamperti Riesz subspaces of Lb(L, M) was used in [6] by the author
and Boulabiar to give an alternative proof of the existence of the modulus of
a complex order bounded disjointness preserving operator. Lamperti ideals of
Lb(L, M) were investigated in [7] by the same authors.
Our approach in this paper relies heavily on the following fundamental result

due to Meyer [18] (see also [4, Theorem 8.6]). If T ∈ Lb(L, M) preserves disjoint-
ness then the absolute value |T | of T in Lb(L, M) exists and satisfies

|Tf | = |T |f || = |T | |f | for all f ∈ L.

Elementary proofs of the Meyer’s theorem can be found in [8] by Bernau and [21]
by de Pagter. For more background on disjointness preserving operators we refer
to [3] by Abramovich and Kitover, and [19] by Meyer-Nieberg.
Orthomorphisms on M form a fundamental class of disjointness preserving

operators. Indeed, T ∈ Lb(M) is called an orthomorphism if |Tf | ∧ |g| = 0
whenever |f | ∧ |g| = 0. The set of all orthomorphisms on M is denoted by
Orth(M). It is well-known that Orth(M) is a Riesz space the lattice operations
of which are given pointwise, that is,

(S ∨ T )f = Sf ∨ Tf and (S ∧ T )f = Sf ∧ Tf

for all S, T ∈ Orth(M) and f ∈ M+. Surveys on orthomorphisms can be found
in [20] by de Pagter, and [25] by Zaanen.
It follows quickly from the formulas above that a pair of orthomorphisms onM

has a supremum in Lb(M) that coincides with its supremum in Orth(M). Hence,
Orth(M) is a Lamperti Riesz subspace of Lb(M). Now, let L be an arbitrary
Lamperti Riesz subspace of Lb(M) that contains Orth(M). In particular, the
identity operator I of M belongs to L. Hence I + T is a Riesz homomorphism
from L into M for every positive operator T ∈ L. From Problem 3.3.1 in [2], it
follows that T is an orthomorphism onM . In other words, Orth(M) is a maximal
element in the set of all Lamperti Riesz subspaces of Lb(M). Surprisingly, it turns
out that most of the classical properties of Orth(M) are based on its maximality
as a Lamperti Riesz subspace of Lb(M).
We proceed now to a brief synopsis of the main results of this paper. In the

second section we prove that the lattice operations in any Lamperti Riesz subspace
of Lb(L, M) are given pointwise. As a nice consequence we obtain a generalization
of the classic Radon-Nikodým theorem for Riesz homomorphisms (see [16] by
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Luxemburg and Schep). Maximal Lamperti Riesz subspaces of Lb(L, M) are
introduced in the third section as a generalization of orthomorphisms. The first
result we get in this direction is that any maximal Lamperti Riesz subspace of
Lb(L, M) is a band of Lb(L, M), provided M is Dedekind complete. The last
part of this section deals with the transferability of various order properties from
M into any maximal Lamperti Riesz subspace of Lb(L, M), generalizing the vast
literature on transferability theorems in the context of orthomorphisms [4], [9],
[11], [24], [25]. A complete description of maximal Lamperti Riesz subspaces on
some continuous function spaces is furnished in the last section of this paper.
We end this section with a basic lemma, the proof of which is analogous to the

demonstration of the sufficient condition in Theorem 1.14 in [4] by Aliprantis and
Burkinshaw.

Lemma 1. Let D be a nonempty directed upward subset of Lb(L, M). If the
set {Tf : T ∈ D} has a supremum in M for all f ∈ L+ then D has a supremum
in Lb(L, M) and

(supD)f = sup{Tf : T ∈ D} for all f ∈ L+.

Notice that in Lemma 1 we do not assume M to be Dedekind complete.

2. Lamperti Riesz subspaces

As observed in the previous section, Orth(M) is a Lamperti Riesz subspace
of Lb(M) the lattice operations in which are given pointwise. Our first theorem
states that the latter remains valid for an arbitrary Lamperti Riesz subspace of
Lb(L, M). It is a direct consequence of the Meyer’s result and for this reason its
proof is omitted.

Theorem 1. Let L be a Lamperti Riesz subspace of Lb(L, M). Then the lattice
operations in L are given pointwise, that is,

(S ∨ T )f = (Sf) ∨ (Tf) and (S ∧ T ) f = (Sf) ∧ (Tf)

for all S, T ∈ L and f ∈ L+.

Next we furnish necessary and sufficient conditions on two operators in a Lam-
perti Riesz subspace of Lb(L, M) to be disjoint.

Proposition 1. Let L be a Lamperti Riesz subspace of Lb(L, M). For S, T ∈ L
the following conditions are equivalent.

(i) S ⊥ T .
(ii) Sf ⊥ Tf for all f ∈ L.
(iii) Sf ⊥ Tg for all f, g ∈ L.
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Proof: (i)⇒ (ii) Let f ∈ L and observe that

|Sf | ∧ |Tf | = |S| |f | ∧ |T | |f | = (|S| ∧ |T |) (|f |) = 0

so Sf ⊥ Tf .

(ii)⇒ (iii) Let f, g ∈ L. Then

0 ≤ |Sf | ∧ |Tg| = |S| |f | ∧ |T | |g| ≤ |S| (|f |+ |g|) ∧ |T | (|f |+ |g|) = 0.

Therefore |Sf | ∧ |Tg| = 0.

(iii)⇒ (i) If |Sf | ∧ |Tg| = 0 for all f, g ∈ L then

(|S| ∧ |T |) f = |S|f ∧ |T |f = |Tf | ∧ |Sf | = 0

for all f ∈ L+. Hence |T | ∧ |S| = 0. �

Now we turn our attention to Radon-Nikodým type theorems on Riesz homo-
morphisms. To prove the main theorem in this direction we need the following
proposition, which is of an independent interest on its own.

Proposition 2. Let L be a Lamperti Riesz subspace of Lb(L, M). We consider
the following statements for S, T ∈ L.

(i) Sf ∈ {Tf}dd for all f ∈ L.

(ii) S(B) ⊂ {T (B)}dd for all bands B in L.

(iii) S
(
{f}dd

)
⊂

{
T

(
{f}dd

)}dd
for all f ∈ L.

(iv) S(L) ⊂ {T (L)}dd.

(v) S ∈ {T }dd, where {T }dd is the principal band generated by T in L.
(vi) The set {|S| ∧ n|T | : n ∈ N} has |S| as a supremum in Lb(L, M).

Then (i)⇒ (ii)⇒ (iii)⇒ (iv)⇒ (v). Moreover, if M has the principal projection

property and L is an ideal of Lb(L, M) then (v)⇒ (vi)⇒ (i), so that all the
properties above are equivalent.

Proof: The implications (i)⇒ (ii)⇒ (iii)⇒ (iv) are obvious.

(iv)⇒ (v) Let {T }d denote the disjoint complement of T in L and let R ∈ {T }d.

By Proposition 1, R(L) ⊥ T (L) and then R(L) ⊂ {T (L)}d ⊂ {S(L)}d. This

implies {T }d ⊂ {S}d, where we use Proposition 1 once more. We conclude that

S ∈ {T }dd.
Assume now M to have the principal projection property and L to be an ideal

of Lb(L, M).
(v)⇒ (vi) Clearly, we may suppose S, T to be positive. Let f ∈ L+ and observe

that
(S ∧ nT )f = (Sf) ∧ n(Tf) for all n ∈ N.
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where N = {1, 2, . . .} is the set of all natural numbers. Hence {(S ∧ nT )f : n ∈ N}
has a supremum in M because M has the principal projection property. By
Lemma 1, {S∧nT : n ∈ N} has a supremumR in Lb(L, M). Obviously, 0 ≤ R ≤ S
in Lb(L, M). However, L is an ideal of Lb(L, M) so R ∈ L. It follows that R is
the supremum of {S ∧ nT : n ∈ N} in L. On the other hand, S is the supremum

of {S ∧ nT : n ∈ N} in L as S ∈ {T }dd. Thus R = S, which gives the desired
result.
The implication (vi)⇒ (i) can be obtained in the same way. �

We proceed to a short historical account on Radon-Nikodým type theorems on
Riesz homomorphisms. Let S : L → M be a positive operator and T : L → M be
a Riesz homomorphism. Consider the following assertions.

(i) Sf ∈ {Tf}dd for all f ∈ L.

(ii) S(B) ⊂ {T (B)}dd for all bands B in L.

(iii) S
(
{f}dd

)
⊂

{
T

(
{f}dd

)}dd
for all f ∈ L.

(iv) The pair {S, nT } has a infimum in Lb(L, M) for all n ∈ N and the set
{S ∧ nT : n ∈ N} has S as a supremum in Lb(L, M).

The equivalences (i)⇔ (ii)⇔ (iii)⇔ (iv) have been established in 1991 by Hui-
jsmans and de Pagter [14] when both L and M are Dedekind complete. One
year later, Huijsmans and Luxemburg [13] have proved the equivalence (i)⇔ (iv)
even if the assumption of Dedekind completeness is imposed only on M . Under
this same condition, de Pagter and Schep [22] have proved that all the equiv-
alences (i)⇔ (ii)⇔ (iii)⇔ (iv) remain valid. The latter result is obtained next
under weaker assumptions.

Theorem 2. If M has the principal projection property then (i)⇔ (ii)⇔ (iii)
and (i)⇒ (iv). Moreover, if M in addition is uniformly complete then (iv)⇒ (i),
so that (i)⇔ (ii)⇔ (iii)⇔ (iv).

Proof: The implications (i)⇒ (ii)⇒ (iii) are straightforward.
For a positive operator U ∈ Lb(L, M), we set

IU = {R ∈ Lb(L, M) : −nU ≤ R ≤ nU, for some n ∈ N} .

If U is a Riesz homomorphism then IU is a Lamperti ideal of Lb(L, M). Indeed,
it is readily verified that IU is a vector subspace of Lb(L, M). Let R ∈ IU and
choose n ∈ N so that −nU ≤ R ≤ nU . Hence,

|Rf | ≤ nUf for all f ∈ L+.

It follows that if f, g ∈ L with |f | ∧ |g| = 0 then

0 ≤ |Rf | ∧ |Rg| ≤ n(U |f | ∧ U |g|) = 0.
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Consequently, R is disjointness preserving. We derive that all operators in IU

have absolute values in Lb(L, M) which are given pointwise. Clearly, |R| ∈ IU

for all R ∈ IU . This shows that IU is a Lamperti Riesz subspace of Lb(L, M).
Now let V, W ∈ Lb(L, M) with 0 ≤ V ≤ W and W ∈ IU . If n ∈ N is such that
−nU ≤ W ≤ nU then −nU ≤ V ≤ nU so V ∈ IU . Therefore IU is a Lamperti
ideal of Lb(L, M).
We prove the implication (iii)⇒ (i). Let f, g ∈ L with |f | ∧ |g| = 0 and observe

that {f}dd ⊥ {g}dd. Since T is a Riesz homomorphism, we get
{
T

(
{f}dd

)}dd
⊥

{
T

(
{g}dd

)}dd
. Using (iii) we obtain S

(
{f}dd

)
⊥ S

(
{g}dd

)
and S

(
{f}dd

)
⊥

T
(
{g}dd

)
. In particular |Sf | ∧ |Sg| = 0 and |Sf | ∧ |Tg| = 0. Now it is easy to

prove that U = S + T is a Riesz homomorphism from L into M . The Lamperti
Riesz subspace IU of Lb(L, M) is an ideal and contains S, T . By Proposition 2,

Sf ∈ {Tf}dd for all f ∈ L.
We proceed to (i)⇒ (iv). The same argument as previously used to prove the

implication (iii)⇒ (i) yields that U = S+T is a Riesz homomorphism from L into
M and then IU is a Lamperti ideal of Lb(L, M). Using once more Proposition 2,
the set {S ∧ nT : n ∈ N} has S as a supremum in Lb(L, M).
Now we show (iv)⇒ (i), when M in addition is uniformly complete (and then

Dedekind σ-complete). Let f ∈ L+ and observe that the sequence ((S ∧ nT )f)∞n=1
is increasing in M and (S ∧ nT ) f ≤ Sf for all n ∈ N. Since M is Dedekind σ-
complete, the set {(S ∧ nT )f : n ∈ N} has a supremum inM . Using Lemma 1, we
see that the set {(S ∧ nT ) : n ∈ N} has a supremum in Lb(L, M) which is given
pointwise. But S = sup {(S ∧ nT ) : n ∈ N} in Lb (L, M) and then

Sf = sup{(S ∧ nT )f : n ∈ N} for all f ∈ L+.

It follows straightforwardly that Sf ∈ {Tf}dd for all f ∈ L+. This completes the
proof. �

3. Maximal Lamperti Riesz subspaces

We have pointed out that Orth(M) is a maximal Lamperti Riesz subspace of
Lb(M). It seems to be natural therefore to introduce and study the notion of
maximal Lamperti Riesz subspaces of Lb(L, M) as a generalization of orthomor-
phisms. A Lamperti Riesz subspace M of Lb(L, M) is said to be maximal if
M = L wheneverM ⊂ L for some Lamperti Riesz subspace L of Lb(L, M). Our
next purpose is to extend standard facts on orthomorphisms to arbitrary maximal
Lamperti Riesz subspaces. In this direction, we prove that any maximal Lamperti
Riesz subspace of Lb(L, M) is a band, provided that M is Dedekind complete.
We first need the following lemma.

Lemma 2. Let S ∈ Lb(L, M) be a disjointness preserving operator and let M
be a Lamperti Riesz subspace of Lb(L, M). If S ∈ M then |Sf | ∧ |Tg| = 0 for
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all T ∈ M and |f | ∧ |g| = 0. Conversely, if M is maximal and an order bounded

disjointness preserving operator S satisfies |Sf | ∧ |Tg| = 0 for all T ∈ M and

|f | ∧ |g| = 0 then S ∈ M.

Proof: Assume that S ∈ M. Let T ∈ M and f, g ∈ L with |f | ∧ |g| = 0. Hence

0 ≤ |Sf | ∧ |Tg| = |S| |f | ∧ |T | |g|

≤ (|S|+ |T |) |f | ∧ (|S|+ |T |) |g|

= (|S|+ |T |) (|f | ∧ |g|) = 0.

So |Sf | ∧ |Tg| = 0. Assume now thatM is maximal and that S satisfies |Sf | ∧
|Tg| = 0 for all T ∈ M and |f | ∧ |g| = 0. It is easily seen that T + n|S| is a Riesz
homomorphism for all T ∈ M+ and n ∈ N. Let I denote the vector subspace of
Lb (L, M) defined by

I =
{
R ∈ Lb(L, M) : −T − n|S| ≤ R ≤ T + n|S| for some T ∈ M+, n ∈ N

}
.

Observe that S ∈ I and M ⊂ I. Furthermore, using a similar argument as
previously used at the beginning of the proof of Theorem 2, we show that I is a
Lamperti Riesz subspace of Lb(L, M). By maximality,M = I and then S ∈ M.
This completes the proof. �

Theorem 3. LetM be a maximal Lamperti Riesz subspace of Lb(L, M). Then
M is an ideal of Lb(L, M). Moreover,M is a band of Lb(L, M) if M is Dedekind

complete.

Proof: Let S, T ∈ Lb (L, M) with T ∈ M and 0 ≤ S ≤ T . Since T is a Riesz
homomorphism, so is S. Let f, g ∈ L satisfy |f | ∧ |g| = 0, and let R ∈ M. Then

0 ≤ S |f | ∧ R |g| ≤ T |f | ∧ R |g| = 0.

Hence S ∈ M, where we use Lemma 2. ThusM is an ideal of Lb(L, M).
Assume nowM to be Dedekind complete. Let D be a directed upward subset of

M+ and suppose that D has a supremum T in Lb(L, M). We claim that T ∈ M.
To this end, let f, g ∈ L with |f | ∧ |g| = 0. By Lemma 2, |Rf | ∧ |Sg| = 0 for all
R, S ∈ D. Using Theorem 1.14 in [4], we get

0 ≤ |Tf | ∧ |Tg|| ≤ T |f | ∧ T |g|

= sup {R |f | : R ∈ D} ∧ sup {S |g| : S ∈ D}

= sup {R|f | ∧ S|g| : R, S ∈ D} = 0.

Thus T preserves disjointness. Analogously,

|Tf | ∧ |Sg| = 0 for all S ∈ M.



614 F.Ben Amor

By Lemma 2, T ∈ M. The proof is complete. �

Consider now the following properties of Riesz spaces: (1) Relatively uniform
completeness, (2) Principal projection property, (3) Dedekind σ-completeness,
(4) Dedekind completeness, (5) Laterally σ-completeness, (6) Laterally com-
pleteness, (7) Universally σ-completeness, and (8) Universally completeness. It
is well-known that Orth(M) has any one of the properties (1)–(8) when M has
the same property (see, for instance, [4], [9], [10], [11], [20], [25]). It is therefore
a natural question to ask whether the transferability of these properties holds for
arbitrary maximal Lamperti Riesz subspaces of Lb(L, M). Examining the proofs
of such transferability theorems in the context of orthomorphisms, we can see
that they can be used for the more general setting of maximal Lamperti Riesz
subspaces. Thus we have the following.

Theorem 4. LetM be a maximal Lamperti Riesz subspace of Lb(L, M). If M
has one of the properties (1)–(8) thenM also has the same property.

Now we turn our attention to Riesz spaces with sufficiently many projections.
In [24], it is proved that Orth(M) has sufficiently many projections if M has
sufficiently many projections. The proof uses some properties of orthomorphisms
which are not true for arbitrary disjointness preserving operators. More precisely,
the proof is based on the facts that Orth(M) has a week order unit and that the
kernel of any orthomorphism is a band. In spite of that, we prove the following.

Theorem 5. LetM be a maximal Lamperti Riesz subspace of Lb(L, M). Then
M has sufficiently many projections whenever M has sufficiently many projec-

tions.

Proof: Let S ∈ M+ with S 6= 0. Since the band {S(L)}dd is nonzero and
M has sufficiently many projections, there exists a nonzero projection band B ⊂

{S(L)}dd. Let Q be the band projection on B and P = I − Q be the band

projection on Bd, where I is the identity operator on M . Since M is an ideal
of Lb(L, M) (see Theorem 3), it is readily checked that PT ∈ M for all T ∈ M.
Besides, the map

P̃ :M −→ M, T 7−→ PT

is a band projection ofM. For all T ∈ ker P̃ , we have PT = 0. In other words

T (L) ⊂ kerP = B ⊂ {S(L)}dd for all T ∈ ker P̃ .

By Proposition 2, {S}dd contains the projection band ker P̃ . To finish our proof it

suffices to show that ker P̃ is not trivial. Indeed, observe that P̃ (QS) = PQS = 0

and then QS ∈ ker P̃ . Observe now that if QS = 0, then S(L) ⊂ kerQ = Bd.

Thus B ⊂ {S(L)}d ⊂ Bd, which implies that B = {0}, in contradiction with
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the hypotheses. This shows that ker P̃ is a nonzero projection band contained in
{S}dd. ThereforeM have sufficiently many projections. �

The last result of this section deals with the projection property. It is shown in
[25] that the projection property is heredited by Orth(M). The main argument
of the proof is the order continuity of orthomorphisms. Since order bounded
disjointness preserving operators need not be order continuous, it is plausible to
think that this result cannot be extended to maximal Lamperti Riesz subspaces
of Lb(L, M). Surprisingly, we prove in the last result of this section that any
maximal Lamperti Riesz subspace of Lb(L, M) has the projection property if M
has the projection property. The proof is based on the following lemma.

Lemma 3. Let L be a Lamperti Riesz subspace of Lb(L, M) and let e ∈ L+.
Let ϕ : L → M be defined by

ϕT = Te for all T ∈ L.

Then the following hold.

(i) ϕ is a Riesz homomorphism.
(ii) If M has the principal projection property and L is an ideal of Lb(L, M),
then the range ϕ(L) of ϕ is an order dense Riesz subspace of the ideal
Mϕ(L) generated by ϕ (L) in M .

Proof: (i) Clearly ϕ is linear. Let T ∈ L and observe that

|ϕT | = |Te| = |T |e = ϕ |T | .

Thus ϕ is a Riesz homomorphism.

(ii) By (i) ϕ is a Riesz homomorphism and then ϕ(L) is a Riesz subspace ofM .
Let g ∈ Mϕ(L) and T ∈ L+ with 0 < g ≤ Te. Given ε ∈ (0,∞), we denote

pε the band projection on the principal band
{
(g − εT e)+

}dd
in M . It follows

that pε (g − εT e) = (g − εT e)+ ≥ 0 and then

0 ≤ εpε(Te) ≤ pεg ≤ g.

Suppose by a way of contradiction that pεTe = 0 for all ε ∈ (0,∞). Hence,

Te ∧ (g − εT e)+ = 0 for all ε ∈ (0,∞) .

It yields that Te ∧ g = 0, which contradicts 0 < g ≤ Te. Therefore, there exists
ε ∈ (0,∞) such that 0 < εpεTe ≤ g. It is clear that S = εpεT ∈ L. Since
0 < Se = ϕS ≤ g, ϕ(L) is order dense in Mϕ(L) and we are done. �

We are in position now to prove the last result of this section.
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Theorem 6. LetM be a maximal Lamperti Riesz subspace of Lb(L, M). Then
M has the projection property if M has the projection property.

Proof: Let B be a band inM and S ∈ M+. We define

BS = {T ∈ B : 0 ≤ T ≤ S} .

We claim that BS has a supremum inM. By Lemma 1, it suffices to show that
{Tf : T ∈ BS} has a supremum in M for all f ∈ L+. Hence, if f ∈ L+ then

{Tf : T ∈ BS} ⊂ {Tf : T ∈ B and 0 ≤ Tf ≤ Sf} .

Conversely, choose f ∈ L+ and let T ∈ B such that 0 ≤ Tf ≤ Sf . Since |T | ∈ B
and |T |f = |Tf | = Tf , we can assume T to be positive. Let P denote the band

projection on the principal band {Tf}dd and define R = PT . It is simple to check
that R ∈ B and

Rf = PTf = Tf.

Observe now that if g ∈ [0, nf ] for some n ∈ N, then

(Sg − Tg)− = (S − T )− g ≤ (S − T )− (nf) = n (Sf − Tf)− = 0,

where we use Theorem 1. It yields that Tg ≤ Sg for all g in the principal order
ideal generated by f in L. Consequently, if g ∈ L+ then

Rg = PTg

= sup {Tg ∧ nTf : n ∈ N}

= sup {T (g ∧ nf) : n ∈ N}

≤ sup {S (g ∧ nf) : n ∈ N}

≤ Sg.

So R ≤ S and then R ∈ BS . This yields the converse inclusion

{Tf : T ∈ B and 0 ≤ Tf ≤ Sf} ⊂ {Tf : T ∈ BS} .

We shall prove now that the set {Tf : T ∈ B and 0 ≤ Tf ≤ Sf} has a supremum
in M . First of all, observe that B is an ideal in Lb(L, M). Let f ∈ L+ and define
ϕ : B → M by

ϕT = Tf for all T ∈ B.

By (ii) in Lemma 3, the range ϕ(B) = {Tf : T ∈ B} of ϕ is a Riesz subspace

of M , which is order dense in the projection band {ϕ(B)}dd. Denote by Q the

band projection on {ϕ(B)}dd. We get quickly

{g ∈ ϕ (B) : 0 ≤ g ≤ Sf} = {g ∈ ϕ (B) : 0 ≤ g ≤ QSf} .
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On the other hand, Theorem 3.1 in [4] yields that {g ∈ ϕ(B) : 0 ≤ g ≤ QSf} has

a supremum in {ϕ (B)}dd and

sup{g ∈ ϕ(B) : 0 ≤ g ≤ QSf} = QSf.

Since {ϕ (B)}dd is a projection band in M , QSf is the supremum in M of

{
g ∈ {ϕ (B)}dd : 0 ≤ g ≤ QSf

}
.

Therefore, QSf is the supremum in M of

{g ∈ ϕ (B) : 0 ≤ g ≤ Sf} .

This proves that {Tf : T ∈ BS} has a supremum in M for all f ∈ L+. By
Lemma 1, BS has a supremum in Lb (L, M) and we have

(supBS) f = sup {Tf : T ∈ BS} for all f ∈ L+.

Since supBS ≤ S and according to Theorem 3, M is an ideal we obtain
supBS ∈ M. �

4. Examples

In this last section, we describe maximal Lamperti Riesz subspaces on some
continuous functions spaces. We start with some useful notations and facts. Let
X be a completely regular space. As usual, we denote by R

X the Riesz space of
all real-valued functions on X and by C(X) the Riesz subspace of all continuous
functions. By eX we mean the function in C(X) defined by eX(x) = 1 for all
x ∈ X . Therefore, the vector lattice C(X) has eX as an order unit if X in
addition is compact. The cozeroset of a function f in C(X) is denoted by coz(f)
and defined by

coz(f) = {x ∈ X : f(x) 6= 0} .

For more background on continuous functions spaces we refer to the classical book
[12] by Gillman and Jerison.
Let X, Y be completely regular spaces and let U be an algebra homomorphism

from C(X) into R
Y . It is clear that

FU = {w ∈ C (Y ) : wU maps C(X) into C(Y )}

is a Riesz subspace of C(Y ). Observe also that wU is an order bounded disjoint-
ness preserving operator from C(X) into C(Y ) for all w ∈ FU . Our first result is
a direct consequence of these two remarks.
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Proposition 3. If U is an algebra homomorphism from C(X) into R
Y then

MU = {wU : w ∈ FU} is a Lamperti Riesz subspace of Lb (C(X), C(Y )).

For an algebra homomorphism U from C(X) into R
Y we put

OU =
⋃

T∈MU

coz (TeX) .

It is a routine matter to prove that Uf is continuous on OU for all f ∈ C(X).
Observe also that T = (TeX)U for all T ∈ MU . Indeed, if T ∈ MU then there
exists w ∈ C(Y ) satisfying T = wU . It follows that

Tf = wUf = wU (eXf) = w (UeX) (Uf) = (TeX) (Uf) for all f ∈ C(X),

and then T = (TeX)U .
We say that U is maximal whenever
[
O

U
⊂ O

V
and (Uf)|O

U

= (V f)|O
U

for all f ∈ C(X)
]
=⇒ [O

U
= O

V
]

for all algebra homomorphisms V from C(X) into R
Y .

We claim that a subset M of Lb(C(X), C(Y )) is a maximal Lamperti Riesz
subspace of Lb(C(X), C(Y )) if and only if there exists a maximal algebra homo-

morphism U from C(X) into R
Y satisfying M =MU . To prove this result we

need some preparation.

Lemma 4. Let F be an Archimedean Riesz space and let T be an order bounded
disjointness preserving operator from C(X) into F . Then T = 0 if and only if
TeX = 0.

Proof: It is clear that if T = 0 then TeX = 0. Conversely assume that TeX = 0
and let f ∈ C (X)+. From

(f − neX)
2 = f2 − 2nf + n2eX ≥ 0,

it follows that

f − neX ≤ 2f − neX ≤
f2

n
and then

0 ≤ f − f ∧ neX = (f − neX)
+ ≤

f2

n
.

We deduce that

0 ≤ |Tf | ≤ |T (f − f ∧ neX)|+ |T (f ∧ neX)|

≤
1

n
|T |

(
f2

)
+ n |TeX | =

1

n
|T |

(
f2

)
,

for all natural numbers n. Since F is Archimedean, Tf = 0 for all f ∈ C(X)+.
This implies that T = 0 and the proof is finished. �

Our next result furnish a complete description of Lamperti Riesz subspaces of
C(X)′ = Lb (C(X), R).
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Proposition 4. If M is a nonzero Lamperti Riesz subspace of C(X)′, then there
exists a nonzero algebra homomorphism U from C(X) into R withM =MU . In

particular any nonzero Lamperti Riesz subspace of C(X)′ is maximal.

Proof: LetM be a nonzero Lamperti Riesz subspace of C(X)′. Using Lemma 4
it yields that {TeX : T ∈ M} is a nonzero vector subspace of R and consequently
{TeX : T ∈ M} = R. Let U ∈ M satisfying UeX = 1. By Theorem 18.8 in [23]
U is a nonzero algebra homomorphism from C(X) into R. Since M is a vector
space it is not hard to see thatMU = {wU : w ∈ R} ⊂ M. To prove the converse
inclusion let T ∈ M and observe that S = T − (TeX)U ∈ M and satisfies
SeX = 0. By Lemma 4, S = 0 and then T = (TeX)U ∈ MU . That isM ⊂ MU

and finallyM =MU .
Assume now that M ⊂ M′ where M′ is Lamperti Riesz subspace of C(X)′.

Let U ′ be a nonzero algebra homomorphism from C(X) into R withM′ =MU ′ .
It follows immediately from MU ⊂ MU ′ that U = U ′ and then M = M′. In
other wordsM is a maximal Lamperti Riesz subspace of C(X)′. �

We generalize the proposition above as follows.

Proposition 5. LetM be a Lamperti Riesz subspace of Lb(C(X), C(Y )). Then

there exists an algebra homomorphism U from C(X) into R
Y withM ⊂ MU . If

M in addition is maximal thenM =MU .

Proof: Let y ∈ Y and observe that M(y) =
{
δy ◦ T : T ∈ M

}
is a Lam-

perti Riesz subspace of C(X)′. By Proposition 4, M(y) = {0} or M(y) ={
wUy : w ∈ R

}
for a nonzero algebra homomorphism Uy from C(X) into R. Let

U be the mapping from C(X) into R
Y defined by

(Uf)(y) =

{
Uyf if M(y) 6= {0} ,

0 if M (y) = {0} .

It is easily shown that U is an algebra homomorphism from C(X) into R
Y . Let

T ∈ M and y ∈ Y . Observe that ifM (y) 6= {0} then

(Tf)(y) =
(
δy ◦ T

)
f = (TeX) (y) ·Uyf = (TeX) (y) · (Uf)(y) for all f ∈ C(X).

AlsoM (y) = {0} implies that

(Tf)(y) =
(
δy ◦ T

)
f = 0 = (TeX) (y) · (Uf)(y) for all f ∈ C(X).

It follows that

(Tf)(y) = (TeX) (y) · (Uf)(y) for all f ∈ C(X) and all y ∈ Y.

This shows that T = (TeX)U ∈ MU for all T ∈ M and then M ⊂ MU . This
inclusion together with Proposition 3 show that ifM is maximal thenM =MU .

�

We have gathered now all of the ingredients for the main result in this section.
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Proposition 6. LetM be a subset of Lb(C(X), C(Y )). Then the following are
equivalent.

(i) M is a maximal Lamperti Riesz subspace of Lb (C(X), C(Y )).

(ii) There exists a maximal algebra homomorphism U from C(X) into R
Y

satisfyingM =MU .

Proof: (i)⇒ (ii) Assume first that M is a maximal Lamperti Riesz subspace
of Lb(C(X), C(Y )). By Proposition 5, there exists an algebra homomorphism U

from C(X) into R
Y with M =MU . Let V be an algebra homomorphism from

C(X) into R
Y satisfying O

U
⊂ O

V
and (Uf)|O

U

= (V f)|O
U

for all f ∈ C(X). It

follows that if T ∈ MU and y ∈ Y then

(Tf)(y) =

{
(TeX) (y)(Uf)(y) if y ∈ O

U

0 if y /∈ O
U

=

{
(TeX) (y)(V f)(y) if y ∈ O

U

0 if y /∈ O
U

=

{
(TeX) (y)(V f)(y) if y ∈ O

V

0 if y /∈ O
V

= (TeX) (y)(V f)(y)

for all f ∈ C(X). So T = (TeX)V ∈ MV for all T ∈ MU . This means that
MU ⊂ MV . SinceMU is maximal we getMU =MV and then OU = OV . This
shows that U is maximal.
(ii)⇒ (i) Assume now that there exists a maximal algebra homomorphism U

from C(X) into R
Y satisfyingM =MU . From Proposition 3 it follows thatM

is a Lamperti Riesz subspace of Lb(C(X), C(Y )). Let M
′ be a Lamperti Riesz

subspace of Lb(C(X), C(Y )) with M ⊂ M′. By Proposition 5, there exists an

algebra homomorphism U ′ from C(X) into R
Y satisfyingM′ ⊂ MU ′ . It follows

immediately that MU ⊂ MU ′ and then OU ⊂ OU ′ . Let y0 ∈ OU and take
T ∈ MU with (TeX) (y0) 6= 0. Using the inclusionMU ⊂ MU ′ , we get

(Tf) (y0) = (TeX) (y0) (Uf) (y0) = (TeX) (y0)
(
U ′f

)
(y0)

for all f ∈ C(X). Consequently (Uf) (y0) =
(
U ′f

)
(y0) and then (Uf)|OU

=(
U ′f

)
|OU
for all f ∈ C(X). Since U is maximal it yields that OU = OU ′ .

A similar method to that used in the proof of the implication (i)⇒ (ii) shows
thatMU ′ ⊂ MU and thenM =M′. This proves thatM is a maximal Lamperti
Riesz subspace of Lb (C(X), C(Y )). �

Let τ be a function from Y into X and observe that we define an algebra
homomorphism Uτ from C(X) into R

Y by putting Uf = f ◦ τ for all f ∈ C(X).
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A slight modification of the proof of the standard Theorem 7.22 in [4] shows that
when X is a compact Hausdorff space any algebra homomorphism U from C(X)

into R
Y satisfies U = Uτ for a (unique) function τ from Y into X . For a sake of

simpleness we write Fτ ,Mτ , and Oτ instead of FUτ
,MUτ

, and OUτ
respectively.

Observe that τ is continuous on O
τ
as Uτf = f ◦ τ is continuous on O

τ
for all

f ∈ C(X).
We say that τ is maximal whenever Uτ is a maximal algebra homomorphism

from C(X) into R
Y . Maximal functions from Y into X can be characterized as

follows.

Lemma 5. Assume that X is a compact Hausdorff space. Then a function τ
from Y into X is maximal if and only if

[
Oτ ⊂ O and τ|Oτ

extends to a continuous function on O
]
=⇒ [O = Oτ ]

for all open subset O of Y .

Proof: The condition is obviously sufficient. To prove necessity, assume that τ
is maximal and let O be an open subset of Y satisfying

(i) Oτ ⊂ O;
(ii) τ|Oτ

extends to a continuous function α : O → X .

Let τ ′ be an arbitrary function from Y into X which extends α. Let y0 ∈ O.
Since Y is completely regular, there exists w ∈ C(Y ) satisfying w (y0) = 1 and
w(y) = 0 for all y ∈ Y rO. It is not hard to prove that T = wUτ ′ ∈ Mτ ′ and then
y0 ∈ coz (TeX) ⊂ Oτ ′ . This implies that O ⊂ Oτ ′ and consequently Oτ ⊂ Oτ ′ .
On the other hand, it follows from τ ′|Oτ

= τ|Oτ
that (Uτf)|Oτ

= (Uτ ′f)|Oτ
for all

f ∈ C(X). Since τ is maximal, it yields that Oτ = Oτ ′ and then O = Oτ . �

Lemma 5 together with Proposition 6 leads to the following corollary which is
the last result of this work.

Corollary 1. Assume that X is a compact Hausdorff space and let M be a

subset of Lb(C(X), C(Y )). Then the following are equivalent.

(i) M is a maximal Lamperti Riesz subspace of Lb(C(X), C(Y )).
(ii) There exists a maximal function τ from Y into X such thatM =Mτ .

Acknowledgment. The author is very grateful to the referee for valuable com-
ments that improved the quality of the paper.
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