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Linear hyperbolic problems in the whole scale

of Sobolev-type spaces of periodic functions

I. Kmit

Abstract. We study one-dimensional linear hyperbolic systems with L∞-coefficients sub-
jected to periodic conditions in time and reflection boundary conditions in space. We
derive a priori estimates and give an operator representation of solutions in the whole
scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regu-
larity trade-off for our problem.

Keywords: hyperbolic systems, periodic-Dirichlet problems, anisotropic Sobolev spaces,
a priori estimates

Classification: 35L50

1. Introduction

The traveling wave models in laser dynamics [1], [3], [8], [9], [11], [12], [13] de-
scribe the dynamical behavior of distributed feedback multisection semiconductor
lasers. The models include a couple of dissipative semilinear first-order hyperbolic
equations of a single space variable describing the forward and backward propa-
gating complex amplitudes of the light. We investigate a linearized version of this
system in the case of small periodic forcing of stationary states (see the discussion
in Section 5). Specifically, in the domain {(x, t) | 0 < x < 1, −∞ < t < ∞} we
consider system

(1)
∂tu+ ∂xu+ a(x)u + b(x)v = f(x, t)

∂tv − ∂xv + c(x)u + d(x)v = g(x, t),

subjected to periodic conditions

(2)
u(x, t+ T ) = u(x, t)

v(x, t + T ) = v(x, t)

and reflection boundary conditions

(3)
u(0, t) = r0v(0, t)

v(1, t) = r1u(1, t).
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The unknown functions u and v and all the data in (1) are complex functions, r0
and r1 are complex constants, and T > 0. The functions f and g are assumed to
be T -periodic in t and a, b, c, d ∈ L∞(0, 1).
We are motivated by the fact that a linearization is a first step in many tech-

niques for local investigation of nonlinear equations. Here the linearization is
done in a neighborhood of a stationary solution (the coefficients in (1) depend
only on x). Our analysis covers practically interesting cases of discontinuous co-
efficients and right-hand sides in (1). Discontinuity here corresponds to the fact
that different sections of multisection semiconductor lasers have different electrical
and optical properties.
Our goal is to investigate uniqueness and solvability questions in spaces pro-

viding us with an optimal regularity trade-off (see a preamble of Section 2 for
details). Since (1)–(3) allows separation of variables, it is natural to study our
problem within the spaces of periodic in t functions using their t-Fourier repre-
sentations (see, e.g., [10, Chapter 5.10] and [14, Chapter 2.4]). In Section 2 we
introduce Sobolev-type spaces of periodic functions of any real index γ including
distributions of any desired order of singularity. They serve as the spaces of so-
lutions to (1)–(3) and the spaces of right hand sides of (1). We show that, for
all sufficiently large γ, the spaces of solutions are embedded into the algebra L∞

with pointwise multiplication. This fact makes possible to apply our main results
to the aforementioned nonlinear problems of laser dynamics. In Section 3 we de-
rive a priori estimates, thereby proving a uniqueness result. This result is proved
under some not too restrictive and quite applicable to problems of laser dynamics
conditions imposed on the coefficients of (1). In Section 4, under some small-
ness assumption on the coefficients b and c, we give an operator representation of
solutions.
For the clarity of presentation, we restrict ourselves to the 2 × 2 hyperbolic

system, which is well enough for applications. However, similar results hold true
for the n× n hyperbolic systems (Remark 14).
In [7] we consider the case of b, c ∈ BV (0, 1) and a, d ∈ L∞(0, 1) and prove

Fredholm Alternative in the Sobolev-type spaces of periodic functions continu-
ously embedded into L∞.

2. Sobolev-type spaces of periodic functions and their properties

We here construct two scales of Banach spaces V γ (for solutions) and W γ

(for right-hand sides in (1)) with a scale parameter γ ∈ R, consisting of complex
valued functions. We will achieve the following properties:

• elements of V γ satisfy (2) and have traces in x, while elements of W γ

satisfy (2),
• elements of W γ allow discontinuities in x,
• for any γ ∈ R, the pair (V γ ,W γ) gives an optimal regularity for (1)–
(3). This means that, from one side, for all (u, v) ∈ V γ the left-hand side
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of (1) belongs toW γ and, from the other side, for all (f, g) ∈W γ solutions
to (1)–(3) belong to V γ .

We first introduce Sobolev spaces of T -periodic functions (see, e.g. [4], [5],

[10], [14]). Let ST = R/TZ. Define the (Banach) space Ck(ST ) of k-times

continuously differentiable functions on ST by

Ck(ST ) = {f : ST → C | f ◦ q ∈ Ck(R)},

where q is the quotient map q : R → R/TZ. For the (Freshet) space of smooth
functions we hence have

C∞(ST ) =
⋂

k

Ck(ST ).

As a topological vector space this is a projective limit of Ck(ST ) with projections

being the natural inclusions. Now the space of distributions on ST is defined as
the ascending union (colimit) of duals of the spaces Ck(ST ):

C∞(ST )∗ =
⋃

k

Ck(ST )∗ = colimk→∞Ck(ST )∗.

We are now prepared to define Sobolev spaces of periodic functions: Set ω = 2π/T

and ϕk(t) = e
ikωt and define

Hγ(ST )=

{

u ∈ C∞(ST )∗
∣

∣

∣

∣

‖u‖2Hγ(ST )= T
−1

∑

k∈Z

(1+k2)γ
∣

∣

∣[u, ϕ−k]C∞(ST )

∣

∣

∣

2
<∞

}

,

where [·, ·]C∞(ST ) : C
∞(ST )∗ × C∞(ST )→ C is the dual pairing.

Given l ∈ N0, denote

H l,γ = H l(0, 1;Hγ(ST )) =

{

u(·, t) : (0, 1)→ Hγ(ST )

∣

∣

∣

∣

‖u‖2Hl,γ = T
−1

∑

k∈Z

(1 + k2)γ
l

∑

m=0

∫ 1

0

∣

∣

∣

∣

dm

dxm [u(x, ·), ϕ−k]C∞(ST )

∣

∣

∣

∣

2

dx <∞

}

.

Set

(4) uk(x) = T
−1 [u(x, ·), ϕ−k]C∞(ST ) ,

the t-Fourier coefficients of u ∈ H l,γ .
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Finally, for each γ ∈ R we define the spaces W γ and V γ by

W γ = H0,γ ×H0,γ

and
V γ =

{

(u, v) ∈W γ | (∂tu+ ∂xu, ∂tv − ∂xv) ∈ W γ
}

.

These spaces will be endowed with norms

‖(u, v)‖2W γ = ‖u‖2H0,γ + ‖v‖2H0,γ

and
‖(u, v)‖2V γ = ‖(u, v)‖2W γ + ‖(∂tu+ ∂xu, ∂tv − ∂xv)‖

2
W γ .

Now we describe some useful properties of the function spaces introduced
above.

Lemma 1. W γ is a Hilbert space.

Proof: It is known that Hγ(ST ) is a Hilbert space (see, e.g., [4]). This implies
that H0,γ is a Hilbert space as well [2]. The lemma follows. �

Lemma 2. V γ is a Banach space.

Proof: Let (uj , vj)j∈N be a fundamental sequence in V
γ . Then (uj , vj)j∈N and

(∂tu
j + ∂xu

j , ∂tv
j − ∂xv

j)j∈N are fundamental sequences in W
γ . Since W γ is

complete (Lemma 1), there exist (u, v) ∈W γ and (ũ, ṽ) ∈ W γ such that

(uj , vj)→ (u, v) and (∂tu
j + ∂xu

j , ∂tv
j − ∂xv

j)→ (ũ, ṽ)

in W γ as j → ∞. It remains to show that ∂tu + ∂xu = ũ and ∂tv − ∂xv = ṽ in
the sense of generalized derivatives. Indeed, take a smooth function ψ : (0, 1) ×
(0, T )→ R with compact support. Then

[u, (∂t + ∂x)ψ] = lim
j→∞

[

uj , (∂t + ∂x)ψ
]

= − lim
j→∞

[

(∂t + ∂x)u
j , ψ

]

= − [ũ, ψ] ,

and similarly with v and ṽ. Here [·, ·] is the dual pairing on C∞
0 ((0, 1)× (0, T )).

The lemma follows. �

Define a Euclidian space

Eγ =

{

(uk(x))k∈Z

∣

∣

∣

∣

uk(x) ∈ L2(0, 1) for each k,
∑

k∈Z

(1 + k2)γ‖uk‖
2
L2(0,1) <∞

}

with inner product

〈(uk)k, (wk)k〉 =
∑

k∈Z

(1 + k2)γ
∫ 1

0
uk(x)wk(x) dx.
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Lemma 3. Eγ is a Hilbert space.

Proof: Let (uj)j∈N, where u
j = (u

j
k)k∈Z be a fundamental sequence in E

γ .
This means that for any ε > 0 there is N ∈ N such that

(5)
∑

k∈Z

(1 + k2)γ
∫ 1

0
|un

k − um
k |2 dx < ε

for all n,m ≥ N . It follows that for all k ∈ Z the sequence (uj
k)j∈N is fun-

damental and hence convergent in L2(0, 1) (by completeness of L2(0, 1)). Set

uk(x) = limj→∞ u
j
k(x) and u = (uk)k∈Z. Our aim is to show that

∑

k∈Z
(1 +

k2)γ
∫ 1
0 |uk|

2 dx <∞ and limj→∞ uj(x) = u(x) in Eγ . Indeed, from (5) we have

∑

|k|≤M

(1 + k2)γ
∫ 1

0
|un

k − um
k |2 dx < ε,

the estimate being uniform in M ∈ N. Fix n and pass the latter sum to the limit
as m→ ∞. We get

∑

|k|≤M

(1 + k2)γ
∫ 1

0
|un

k − uk|
2 dx ≤ ε,

which is true for any M ∈ N. This implies that limj→∞ uj(x) = u(x). Moreover,

∑

k∈Z

(1 + k2)γ
∫ 1

0
|un

k − uk|
2 dx ≤ ε.

Since the series
∑

k∈Z
(1 + k2)γ

∫ 1
0 |un

k |
2 dx is convergent for any n ∈ N, the last

inequality implies the convergence of the series
∑

k∈Z
(1 + k2)γ

∫ 1
0 |uk|

2 dx. The
proof is therewith complete. �

The following lemma is an analog of a result for the Sobolev spaces Hγ(ST )
in [5, Section 2, §6].

Lemma 4. The map u→ (uk(x))k∈Z is a Hilbert space isomorphism from H0,γ

onto Eγ .

Proof: By the definition of H0,γ , for any u ∈ H0,γ the sequence (uk(x))k∈Z

defined by (4) is in Eγ . Hence the injectivity of the map H0,γ → Eγ is a straight-
forward consequence.
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If γ ≥ 0, the surjectivity is a simple, well-known fact. Let us prove the surjec-
tivity if γ < 0. We can consider H0,γ as a space of distributions, namely,

H0,γ =
{

u ∈ L2(0, 1;C∞(ST ))∗
∣

∣

∣ ‖u‖H0,γ <∞
}

.

Given (uk)k∈Z in E
γ , let us define a distribution u ∈ H0,γ by

[u, f ]L2(0,1;C∞(ST )) =
∑

k∈Z

∫ 1

0
u−k(x)fk(x) dx,

where f ∈ L2(0, 1;C∞(ST )) and fk(x) is the k-th Fourier coefficient of f in t.
The following estimate is straightforward:

∣

∣

∣

∣

∣

∣

∑

k∈Z

∫ 1

0
u−k(x)fk(x) dx

∣

∣

∣

∣

∣

∣

≤
∑

k∈Z

∫ 1

0
(1 + k2)γ/2|u−k(x)|(1 + k

2)−γ/2|fk(x)| dx

≤





∑

k∈Z

∫ 1

0
(1 + k2)γ |uk(x)|

2 dx





1/2



∑

k∈Z

∫ 1

0
(1 + k2)−γ |fk(x)|

2 dx





1/2

= ‖(uk)k∈Z‖Eγ‖f‖H0,−γ .

This means that u is a continuous linear functional on H0,−γ , namely, that u ∈
L2(0, 1;H−γ(ST ))∗. Since C∞(ST ) is continuously embedded into H−γ(ST ),

u ∈ L2(0, 1;C∞(ST ))∗. The surjectivity of the t-Fourier coefficient map H0,γ →
Eγ is therewith proved. Thus, this map is a bijection and it is obviously an
isomorphism. �

Corollary 5. For any u, v ∈ H l,γ there exist sequences (uk)k∈Z, (vk)k∈Z in

H l(0, 1) given by (4) such that the series

(6)
∑

k∈Z

ukϕk,
∑

k∈Z

vkϕk

converge, respectively, to u and v in H l,γ . Vice versa, for any sequences (uk)k∈Z,

(vk)k∈Z in H
l(0, 1) such that

∑

k∈Z
(1 + k2)γ‖uk‖

2
Hl(0,1)

< ∞ and
∑

k∈Z
(1 +

k2)γ‖vk‖
2
Hl(0,1)

< ∞ there exist unique u, v ∈ H l,γ with uk and vk being their

t-Fourier coefficients.

In what follows, we will identify distributions u∈H l,γ and sequences (uk(x))k∈Z

in H l(0, 1) corresponding to these distributions by Corollary 5.
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Lemma 6. V γ is continuously embedded into [H1,γ−1]2.

Proof: Let (u, v) ∈ V γ . Since (u, v) ∈ [H0,γ ]2, we have (∂tu, ∂tv) ∈ [H
0,γ−1]2.

By the definition of V γ , (∂xu, ∂xv) ∈ [H
0,γ−1]2 and hence (u, v) ∈ [H1,γ−1]2.

Moreover, we have

‖(u, v)‖2[H1,γ−1]2 = ‖u‖2H0,γ−1 + ‖v‖2H0,γ−1 + ‖∂xu‖
2
H0,γ−1 + ‖∂xv‖

2
H0,γ−1

≤ ‖u‖2H0,γ−1 + ‖v‖2H0,γ−1 + ‖∂tu+ ∂xu‖
2
H0,γ−1 + ‖∂tv − ∂xv‖

2
H0,γ−1

+ ‖∂tu‖
2
H0,γ−1 + ‖∂tv‖

2
H0,γ−1 ≤ C‖(u, v)‖V γ ,

where the constant C does not depend on (u, v). �

Note that Lemmas 2 and 6 for γ ≥ 1 are proved in [7].

Corollary 7. If γ > 3/2, then V γ is continuously embedded into
[

C([0, 1]×R)
]2
.

Proof: By Lemma 6, V γ →֒ H1(0, 1;Hγ−1(ST )) continuously. The corollary
follows from the embedding (see, e.g., [6])

Hγ(ST ) →֒ C(R), γ >
1

2
.

�

Corollary 8. Let (u, v) ∈ V γ . Then for any x ∈ [0, 1] the traces u(x, ·) and

v(x, ·) are distributions in Hγ−1(ST ) and satisfy the estimate

‖(u(x, ·), v(x, ·))‖2[Hγ−1(ST )]2 ≤ C‖(u, v)‖2V γ ,

where C does not depend on x, u, and v.

Proof: The corollary follows from the continuous embedding

V γ →֒ H1(0, 1;Hγ−1(ST )) →֒ C(0, 1;Hγ−1(ST )).
�

3. A priori estimates

We here give conditions ensuring the uniqueness of generalized solutions to (1)–
(3). We start from the definition of a generalized solution.

Definition 9. A function (u, v) ∈ V γ is called a generalized solution to the

problem (1)–(3) if it satisfies (1) in H0,γ and (3) in Hγ−1(ST ).

To formulate the main result of this section, we will make the following as-
sumption about the coefficients of the differential equations and the reflection
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coefficients r0 and r1: There exist p, q ∈ R such that one of the following condi-
tions is fulfilled:

(7)

ess inf
[

2Rea− |b|2p − |c|2q
]

> 0

ess inf
[

2Re d− |b|2(1−p) − |c|2(1−q)
]

> 0

or

(8)

ess inf

[

−2Rea−

∣

∣

∣

∣

b

r0

∣

∣

∣

∣

2p

−

∣

∣

∣

∣

c

r1

∣

∣

∣

∣

2q]

+ 2(1−m) ln
1

|r0r1|
> 0

ess inf

[

−2Re d−

∣

∣

∣

∣

b

r0

∣

∣

∣

∣

2(1−p)

−

∣

∣

∣

∣

c

r1

∣

∣

∣

∣

2(1−q)]

+ 2m ln
1

|r0r1|
> 0,

for m = 0 or m = 1.

Theorem 10. Let γ ∈ R be a fixed real. Let a, b, c, d ∈ L∞(0, 1) and (f, g) ∈W γ .

Assume that |r0| < 1 and |r1| < 1. If at least one of the conditions (7) and (8)
(the latter with m = 0 or m = 1) is true, then every generalized solution to the
problem (1)–(3) satisfies the a priory estimate

(9) ‖(u, v)‖V γ ≤ C‖(f, g)‖W γ

for some constant C > 0 not depending on (f, g).

Note that the assumptions |r0| < 1 and |r1| < 1 are caused by physical reasons.
The condition (7) (resp. (8)) is fulfilled if Re a and Re d are sufficiently large (resp.
sufficiently small). These conditions cover, in particular, a wide range of piecewise
smooth coefficients. Note that even piecewise constant coefficients are of physical
and practical interest.

Proof: Due to the assumptions imposed on the functions f and g, they allow
the following series representations:

(10)
∑

k∈Z

fkϕk,
∑

k∈Z

gkϕk,

where fk(x) = T−1 [f(x, ·), ϕ−k]C∞(ST ) and gk(x) = T−1 [g(x, ·), ϕ−k]C∞(ST ).

Clearly, fk, gk ∈ L2(0, 1),

(11)
∑

k∈Z

(1 + k2)γ‖fk(x)‖
2
L2(0,1) <∞,

∑

k∈Z

(1 + k2)γ‖gk(x)‖
2
L2(0,1) <∞,



Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions 639

and the series (10) converge to f and g inH0,γ . Assume that (u, v) is a generalized
solution to the problem (1)–(3). Represent u and v as series (6). Hence uk, vk for
each k ∈ Z are in H1(0, 1) and satisfy the boundary value problem

(12)
u′k = fk(x) − (a(x) + ikω)uk − b(x)vk

v′k = −gk(x) + (d(x) + ikω)vk + c(x)uk,

(13)
uk(0) = r0vk(0)

vk(1) = r1uk(1).

Our aim is to show that

(14)
∑

k∈Z

(1 + k2)γ
[

‖uk(x)‖
2
L2(0,1) + ‖vk(x)‖

2
L2(0,1)

]

<∞,

(15)
∑

k∈Z

(1 + k2)γ
[

‖u′k(x) + ikωuk(x)‖
2
L2(0,1) + ‖v′k(x) − ikωvk(x)‖

2
L2(0,1)

]

<∞.

The estimate (15) follows from (11), (14), and (12). It remains to prove (14). We
will distinguish two cases.

Case 1. Condition (7) is fulfilled . Fix k ∈ Z. Multiplying the equations of
the system (12) by uk and vk, respectively, and then summing up the resulting
equalities with their complex conjugations, we arrive at the system

(16)

∫ 1

0

(

uku
′
k + uku

′
k

)

dx+ 2

∫ 1

0
Re a|uk|

2 dx

=

∫ 1

0

(

fkuk + fkuk

)

dx−

∫ 1

0

(

bukvk + bukvk

)

dx

∫ 1

0

(

vkv
′
k + vkv

′
k

)

dx− 2

∫ 1

0
Re d|vk|

2 dx

= −

∫ 1

0

(

gkvk + gkvk

)

dx+

∫ 1

0

(

cvkuk + cvkuk

)

dx.

Using integration by parts and boundary conditions (13), we get

∫ 1

0

(

uku
′
k + uku

′
k

)

dx = |uk(1)|
2 − |r0|

2|vk(0)|
2,

∫ 1

0

(

vkv
′
k + vkv

′
k

)

dx = |r1|
2|uk(1)|

2 − |vk(0)|
2.



640 I. Kmit

Subtraction of the second equality of (16) from the first one yields

(17)

(1− |r1|
2)|uk(1)|

2 + (1− |r0|
2)|vk(0)|

2 + 2

∫ 1

0

(

Rea|uk|
2 +Re d|vk |

2
)

dx

=

∫ 1

0

(

fkuk + fkuk

)

dx +

∫ 1

0

(

gkvk + gkvk

)

dx

−

∫ 1

0

(

bukvk + bukvk

)

dx−

∫ 1

0

(

cvkuk + cvkuk

)

dx.

Since |r0| < 1 and |r1| < 1, the sum of the boundary terms is positive. We will
make use of the following simple inequalities: Given ε0 > 0, we have

∣

∣

∣

∣

∫ 1

0
fkuk dx

∣

∣

∣

∣

≤
1

2ε0

∫ 1

0
|fk|
2 dx+

ε0
2

∫ 1

0
|uk|

2 dx,

∣

∣

∣

∣

∫ 1

0
bukvk dx

∣

∣

∣

∣

≤

∫ 1

0
|b|p|uk||b|

1−p|vk| dx

≤
1

2
‖b‖
2p
L∞(0,1)

∫ 1

0
|uk|

2 dx+
1

2
‖b‖
2(1−p)
L∞(0,1)

∫ 1

0
|vk|
2 dx.

We estimate all other integrals in the right-hand side of (17) similarly. Finally,
by assumption (7), one can choose ε0 > 0 so small that

(18) ‖uk(x)‖
2
L2(0,1) + ‖vk(x)‖

2
L2(0,1) ≤ C

[

‖fk(x)‖
2
L2(0,1) + ‖gk(x)‖

2
L2(0,1)

]

,

where the constant C depends on a, b, c, d, but not on k. Now, (11) and (18)
imply (14).

Case 2. Condition (8) is fulfilled . We first give the proof under the condition (8)
with m = 0. We start from the observation that (uk, vk) is a solution to the

problem (12)–(13) iff (wk, vk), where e
xα+(1−x)βwk = uk and α, β ∈ R are fixed

reals, is a solution to the problem

(19)
w′

k = e
−αx−(1−x)βfk(x) − (a(x) + ikω + α− β)wk − e−αx−(1−x)βb(x)vk

v′k = −gk(x) + (d(x) + ikω)vk + c(x)wke
αx+(1−x)β ,

(20)
eβwk(0) = r0vk(0)

vk(1) = r1e
αwk(1).
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Let us write down an analog of the equality (17) for the problem (19)–(20):

−
(

1− |r1|
2e2α

)

|wk(1)|
2 −

(

1− |r0|
2e−2β

)

|vk(0)|
2

+ 2

∫ 1

0

[

(−Re a− α+ β)|wk |
2 − Re d|vk|

2
]

dx

= −

∫ 1

0
e−xα−(1−x)β

(

fkwk + fkwk

)

dx−

∫ 1

0

(

gkvk + gkvk

)

dx

+

∫ 1

0
e−xα−(1−x)β

(

bwkvk + bwkvk

)

dx+

∫ 1

0
exα+(1−x)β

(

cvkwk + cvkwk

)

dx.

Fix ε1 > 0 and set α = ln |r1|
−1+ ε1 and β = − ln |r0|

−1− ε1. This clearly forces

−(1− |r1|
2e2α)|wk(1)|

2 − (1 − |r0|
2e−2β)|vk(0)|

2 > 0.

On the account of the assumption (8), similarly to Case 1, ε1 > 0 can be chosen
so small that estimate (18) with uk replaced by wk is true for some C independent

of k. Replacing wk with e
−xα−(1−x)βuk, we arrive at the estimate (18).

The estimate (18) under the condition (8) with m = 1 can be obtained in much
the same way, the only difference being in considering the problem (12)–(13) with

vk = e
xα+(1−x)βwk.

The estimate (14) is proved. This finishes the proof of the theorem. �

The following corollary is straightforward.

Corollary 11. Under the conditions of Theorem 10 a generalized solution to the
problem (1)–(3) (if such exists) is unique.

4. Operator representation of generalized solutions

In this section, under some smallness assumption on the coefficients b and c,
we give an explicit formula (an operator representation) of a generalized solution.
Set

V γ(r0, r1) =
{

(u, v) ∈ V γ
∣

∣

∣u(0, ·) = r0v(0, ·), v(1, ·) = r1u(1, ·)
}

,

where the traces u(0, ·), u(1, ·), v(0, ·), and v(1, ·) are interpreted as distributions

in Hγ−1(ST ) according to Corollary 8. Given a, b, c, d ∈ L∞, let us introduce
linear operators A ∈ L(V γ(r0, r1);W

γ) by

A

[

u
v

]

=

[

∂tu+ ∂xu+ au
∂tv − ∂xv + dv

]

and B ∈ L(W γ) by

B

[

u
v

]

=

[

bv
cu

]

.
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Lemma 12. Assume that a, b, c, d ∈ L∞(0, 1) and

(21) |r0r1| 6= exp

∫ 1

0
(Re a+Re d) dx.

Then the operator A is an isomorphism from V γ(r0, r1) onto W
γ .

In the case γ ≥ 1 this lemma is proved in [7].

Proof: Fix an arbitrary (f, g) ∈ W γ . The functions f and g are represented
by the series (10) with coefficients fk(x) ∈ L2(0, 1) and gk(x) ∈ L2(0, 1) satisfy-
ing (11). We have to show that there exists exactly one (u, v) ∈ V γ(r0, r1) such
that

∂tu+ ∂xu+ au = f, ∂tv − ∂xv + du = g.

Representing u and v as the series (6), we have to show that there exists ex-
actly one pair of sequences (uk)k∈Z and (vk)k∈Z with uk, vk ∈ H1(0, 1) satisfying
(13), (14), (15), and

(22)
u′k + (a(x) + ikω)uk = fk(x)

v′k − (d(x) + ikω)vk = −gk(x).

To simplify the formulae below, let us introduce the following notation:

α(x) =

∫ x

0
a(y) dy, δ(x) =

∫ x

0
d(y) dy,

∆k = e
ikω+δ(1) − r0r1e

−ikω−α(1).

By a straightforward calculation, the boundary value problem (22), (13) has a
unique solution (uk, vk) ∈ [H

1(0, 1)]2, and this solution is explicitly given by

(23)

uk(x) = e
−ikωx−α(x)

(∫ x

0
eikωy+α(y)fk(y) dy +

r0
∆k

wk(fk, gk)

)

,

vk(x) = e
ikωx+δ(x)

(∫ x

0
e−ikωy−δ(y)gk(y) dy +

1

∆k
wk(fk, gk)

)

with

wk(fk, gk) =

= r1e
−ikω−α(1)

∫ 1

0
eikωy+α(y)fk(y) dy − eikω+δ(1)

∫ 1

0
e−ikωy−δ(y)gk(y) dy.

Here we used assumption (21), which implies

(24) |∆k| ≥
∣

∣

∣eδ(1) − |r0r1|e
−α(1)

∣

∣

∣ > 0



Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions 643

for all k ∈ Z. From (23) and (24) it follows that

(25) |uk(x)|+ |vk(x)| ≤ C
(

‖fk‖L2(0,1) + ‖gk‖L2(0,1)

)

for all x ∈ [0, 1], where the constantC does not depend on k, fk, gk, and x. Finally,
(11) and (25) imply (14). Noting that the estimate (15) follows from (11), (14),
and (22), we finish the proof. �

Theorem 13. Let γ be a real, a, b, c, d ∈ L∞(0, 1), and (f, g) ∈ W γ . Assume

that the condition (21) is true. Suppose also that
(26)
[

1 + exp {3‖a‖L∞ + 3‖d‖L∞}

(

1 + (1 + |r0|)(1 + |r1|)
∣

∣

∣eδ(1) − |r0r1|e
−α(1)

∣

∣

∣

−1
)

× (1 + ‖a‖L∞ + ‖d‖L∞)

]

(

‖b‖L∞ + ‖c‖L∞

)

< 1.

Then the problem (1)–(3) has a unique generalized solution given by the formula

(27) (u, v) =
∞
∑

n=0

(−A−1B)nA−1(f, g).

Note that the conditions (7) and (8) do not cover the condition (26), nor vice
versa. Indeed, given a, d, r0, and r1, the inequality (26) is true for all sufficiently
small b and c, which is not so for (7) and (8). On the other hand, given b and
c, the inequality (7) (resp. (8)) is true for all sufficiently large (resp. sufficiently
small) a and d, which is not so for (26).

Proof: By Lemma 12, the problem (1)–(3) is equivalent to

(28) (u, v) = −A−1B(u, v) +A−1(f, g),

where A−1 is defined by means of (23). Since ‖A−1B‖L(V γ ;V γ) is bounded from

above by the left-hand side of (26), ‖A−1B‖L(V γ ;V γ) < 1. Since V
γ is a Banach

space for any γ ∈ R (Lemma 2), application of the Banach fixed point theorem to
the equation (28) gives the unique solvability of the latter. Hence (1)–(3) has a
unique generalized solution. Iteration of (28) now gives the desired formula (27).

�

Remark 14. The results of Sections 3 and 4 (Theorems 10 and 13) can be easily
generalized to n×n hyperbolic systems, namely, to the problems of the following
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kind:

∂tuj + λj(x)∂xuj +

n
∑

k=1

ajk(x)uk = fj(x, t), j = 1, . . . , n, 0 < x < 1, t ∈ R

uj(x, t+ T ) = uj(x, t), j = 1, . . . , n, 0 < x < 1, t ∈ R

uj(0, t) =

n
∑

k=m+1

r0jkuk(0, t), j = 1, . . . ,m, t ∈ R

uj(1, t) =

m
∑

k=1

r1jkuk(1, t), j = m+ 1, . . . , n, t ∈ R.

5. Concluding remarks

Let us turn back to the area of laser dynamics that is a motivation of this
paper. Our overall goal here, which remains a subject of future research, is to
obtain a local existence and uniqueness result for semilinear hyperbolic systems
with small periodic forcing

(29)
∂tu+ ∂xu+ g1(x, u, v, λ) = εf1(x, t, u, v, λ, ε)

∂tv − ∂xv + g2(x, u, v, λ) = εf2(x, t, u, v, λ, ε).

Let us choose a solution space to be V γ with γ > 3/2, which is advantageous due
to Corollary 7. A natural way to achieve our goal can now consist in application
of the Implicit Function Theorem to (29), (2), (3). For this purpose we would
need to have, first, the isomorphism property of a linearization of (29), second,
the C1-smoothness property of the Nemitsky composition operators defined by
the nonlinearities of (29).
Explicit sufficient conditions for the former property are provided by the results

of [7] and Theorem 10 of this paper (note that the explicitness here is really
important from the point of view of applications). More specifically, assume
that (u, v) = (0, 0) is a (stationary) solution to (29), (2), (3) and linearize this
system in a neighborhood of the stationary solution. Putting ε = 0 and λ =
0, we arrive at the system (1) with zero right hand side. Denote the operator
corresponding to this system by F . In [7] we proved that, if the condition (21)
is fulfilled, then F is a Fredholm operator from V γ onto W γ . Theorem 10 states
constructive conditions ensuring the injectivity of F . Since any Fredholm operator
is an isomorphism between two Banach spaces iff it is injective, we therefore have
the desired isomorphism property for F under rather wide explicit conditions on
the data of (29). Note that Theorem 13 ensures the isomorphism property for a
range of data, in which we cannot use the Fredholmness result from [7].

Acknowledgments. I thank Lutz Recke for helpful discussions.
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