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Interior regularity of weak solutions to the equations

of a stationary motion of a non-Newtonian fluid

with shear-dependent viscosity. The case q =
3d

d+2

Jörg Wolf

Abstract. In this paper we consider weak solutions u : Ω → R
d to the equations of

stationary motion of a fluid with shear dependent viscosity in a bounded domain Ω ⊂ R
d

(d = 2 or d = 3). For the critical case q = 3d
d+2

we prove the higher integrability of ∇u

which forms the basis for applying the method of differences in order to get fractional
differentiability of ∇u. From this we show the existence of second order weak derivatives
of u.

Keywords: non-Newtonian fluids, weak solutions, interior regularity

Classification: 35Q30, 35B65, 76A05

1. Introduction. Statement of the main result

Let Ω ⊂ R
d (d = 2 or d = 3) be a domain. The stationary motion of an

incompressible fluid through Ω is governed by the following two equations

− divS+ (u · ∇)u = −∇p+ f in Ω,(1.1)

divu = 0 in Ω,(1.2)

where

S = {Sij} = deviatoric stress tensor
(1),

p = pressure,

u = {u1, . . . , ud} = velocity,

f = {f1, . . . , fd} = external force.

On the boundary of Ω we assume the following condition of adherence

(1.3) u = 0 on ∂Ω.

(1) Throughout Latin subscripts take the values 1 to d. Repeated subscripts imply summation
over 1 to d.
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In addition, S may depend on the “rate of strain tensor” D = {Dij}, which is
defined by

Dij = Dij(u) :=
1

2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, . . . , d

(for the continuum mechanical background cf. [2], [3], [10]).

To motivate the conditions on S let us mention the following constitutive laws
which are often used in engineering practice

S = ν(DII)
(q−2)/2D, 1 < q < 2

S = ν(1 +DII)
(q−2)/2D, 1 < q < 2 (ν = const > 0),

where

DII =
1

2
DijDij = second invariant of D

(cf. [2], [4], [13]). A fluid which is determined by the first of these constitutive laws
is said “pseudoplastic” or “shear thinning”. Having in mind these constitutive
laws as special cases we impose the following conditions on the components of the
deviatoric stress S. Let µ denote either the number 1 or 0.

Sij ∈ C(Md2
sym)

(2);(I)

|Sij(ξ)| ≤ c0(µ+ |ξ|q−1) ∀ ξ ∈Md2
sym;(II)

(III)





(Sij(ξ)− Sij(η))(ξij − ηij) ≥ ν0(µ+ |ξ|+ |η|)q−2|ξ − η|2

∀ ξ, η ∈Md2
sym

(c0 > 0, ν0 > 0 and 1 < q < 2).

Weak solution to (1.1)–(1.3). Before we introduce the notion of a weak solution
to (1.1), (1.2) let us provide some notations and function spaces which will be used

in sequence of the paper. By W k, q(Ω), W k, q
0 (Ω) (k ∈ N; 1 ≤ q ≤ +∞) we denote

the usual Sobolev spaces. By C∞
0 (Ω) we denote the space of all smooth functions

having compact support in Ω. Then we set

Dσ(Ω) :=
{

ϕ ∈ C∞
0 (Ω)

d
∣∣∣ divϕ = 0

}
,

D
1, q
0 (Ω) := closure of Dσ(Ω) in W 1, q(Ω).

(2)
M

d2
sym = vector space of all symmetric d × d matrices ξ = {ξij}. We equip M

d2
sym with

scalar product ξ : η := ξijηij and norm |ξ| := (ξ : ξ)1/2. By |a| we denote the norm of a ∈ R
d.
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Definition 1.1. Let 2dd+2 ≤ q < 2. Assume (II). Let f ∈ L1(Ω)d. A vector-valued

function u ∈ D
1, q
0 (Ω) is called a weak solution to (1.1)–(1.3) if the following

integral identity is fulfilled for all ϕ ∈ Dσ(Ω):

(1.4)

∫

Ω
Sij(D(u))Dij(ϕ) dx −

∫

Ω
uiuj

∂ϕi

∂xi
dx =

∫

Ω
fjϕj dx.

�

Remarks. If q ≥ 3d
d+2 by Sobolev’s imbedding theorem we have uiuj

∂vi
∂xi

∈

L1(Ω) for all u,v ∈ W 1, q(Ω)d. Thus, in (1.4) the test function ϕ ∈ Dσ(Ω) can

be replaced by ϕ ∈ D1, q0 (Ω). Then applying the theory of pseudo-monotone
operators provides the existence of a weak solution to (1.1)–(1.3).

In case 2d
d+1 < q < 3d

d+2 the existence of weak solutions to (1.1)–(1.3) (f ∈

L1(Ω)d) has been proved independently by Frehse, Málek and Steinhauer [5] and
Růžička [12]. Afterwards Frehse, Málek and Steinhauer [6] obtained weak so-

lutions to (1.1)–(1.3) for all 2dd+2 < q < ∞ by using the Lipschitz truncation
method.
The interior regularity of any weak solution to (1.1)-(1.3)

(
3d

d+2 < q < 2
)
has

been proved in [11]. This result has been achieved by the method of differences.
The existence of the second weak derivatives are proved by a standard bootstrap
argument using fractional differentiability of ∇u together with Sobolev’s embed-
ding theorem. However in the special case q = 3d

d+2 we first have to prove the

higher integrability of ∇u (see Theorem 1 below) in order to start an similar
bootstrap argument as in [11].
Furthermore we wish to mention that the method of difference quotient fails if

the force f has not sufficient integrability.

Statement of the Main Result . The aim of the present paper is to prove the
interior regularity of any weak solution to (1.1)–(1.3) for the special case q = 3d

d+2 .

This will be achieved by an analogous reasoning as in [11] after having established
the higher integrability of ∇u, which will be our first main result.

Theorem 1. Let S = {Sij} fulfill conditions (I), (II) and (III). Assume

q =
3d

d+ 2
.

Let f ∈ Lσ
loc(Ω)

d
(
σ >

3d

2d+ 1

)
. Let u ∈ W

1, q
loc (Ω)

d with divu = 0 in Ω satisfy

(1.5)

∫

Ω
Sij(D(u))Dij(ϕ) dx+

∫

Ω
ui

∂uj

∂xi
ϕj dx =

∫

Ω
fiϕi dx
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for all ϕ ∈ Dσ(Ω). Then there exists q̃ > q, such that

u ∈ W
1, q̃
loc (Ω)

d.

�

As a consequence of Theorem 1 we may apply the method of differences to get
fractional differentiability of∇u, which by Sobolev’s embedding theorem improves
the integrability of ∇u iteratively. Then arguing similarly as in [11] one gets the
existence of the second derivatives of u. Thus, we have

Corollary 2. Let all assumption of Theorem 1 be fulfilled. Furthermore, suppose
f ∈ Lσ

loc(Ω)
d, where

σ >
27

13
if n = 3, σ > 2 if n = 2.

Then

(1.6) (1 + |D(u)|)
q−2
2 ∇Dij(u) ∈ L2loc(Ω)

d (i, j = 1, . . . , d),

(1.7)




u ∈ W

2, t
loc (Ω)

2 ∀ 1 ≤ t < 2 if d = 2,

u ∈ W
2, 3q
1+q

loc (Ω)3 if d = 3.

In particular, by Sobolev’s embedding theorem we have

u ∈ Cα(Ω)2 ∀ 0 < α < 1 if n = 2,

u ∈ C1−1/q(Ω)3 if n = 3.
�

2. Higher integrability. Proof of Theorem 1

The proof of Theorem 1 relies essentially on the following result of higher
integrability which is due to Giaquinta and Modica (cf. [9]).

Lemma 2.1. Let F ∈ Lt
loc(Ω) and G ∈ Ls

loc(Ω) (1 < t < s < +∞) be given
non-negative functions. Suppose there are constants K0 ≥ 1, 0 < ε0 < 1 and
r0 > 0 such that

(2.1)

∫

Br/2(x0)
F t dx ≤ K0

( ∫

Br(x0)
F dx

)t

+ε0

∫

Br(x0)
F t dx+

∫

Br(x0)
Gt dx
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for all x0 ∈ Ω, 0 < r < min{r0, dist(x0, ∂Ω)}. Then there exists t < τ0 ≤ s, such
that

(2.2) F ∈ Lτ
loc(Ω) ∀ τ ∈ [1, τ0[ .

�

Throughout this section let

q =
3d

d+ 2
.

Proof of Theorem 1: 1◦ Pressure estimate. Let Br ⊂ Ω with B2r ⊂ Ω. It is

readily seen that the mapping F(Br) :W
1, q
0 (Br)

d → R defined by

(2.3) ϕ 7→

∫

Br

Sij(D(u))Dij(ϕ) dx

+

∫

Br

ui
∂

∂xi
(uj − (uj)Br

)ϕj dx −

∫

Br

fi ϕi dx

is a linear continuous functional on W
1, q
0 (Br)

d (3) which vanishes for all ϕ ∈

D
1, q
0 (Br). Appealing to [7, III 3.1, Theorem III 5.2] there exists p̂ ∈ Lq′(Br)/R

such that for any p ∈ p̂:

(2.4)

∫

Br

(
Sij(D(u))−ui(uj−(uj)Br

)
)∂ϕj

∂xi
dx−

∫

Br

fi ϕi dx =

∫

Br

p divϕ dx

for all ϕ ∈ W 1, q
0 (Br)

d. In addition, by means of Sobolev’s embedding theorem
we have the estimate

∫

Br

|p − pBr
|q

′

dx

≤ c

{∫

Br

|S(D(u))|q
′

dx+

∫

Br

|u|q
′

|u− uBr
|q

′

dx

}
+ c

( ∫

Br

|f |q
∗
′

dx

) q′

q∗
′

,

(3) Note that from q = 3d
d+2

it follows that

2q′ = q∗, 2dq −
d

q′
= 2,

d

q

q∗ − q

q∗
=
1

q

�
1−

q

q∗

�
= 1.
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where c = const independent of r. Thus, observing (II) applying Hölder’s inequal-
ity gives

(2.5)

∫

Br

|p − pBr
|q

′

dx

≤ c

∫

Br

(1 + |D(u)|)q dx+ c

( ∫

Br

|u|2q
′

dx

) 1
2
( ∫

Br

|u− uBr
|2q

′

dx

) 1
2

+ c

( ∫

Br

|f |q
∗′

dx

) q′

q∗
′

,

where c = const > 0 depending on d only.

2◦ Caccioppoli-type inequality. Let ζ ∈ C∞
0 (Br) be a cut-off function, such

that 0 ≤ ζ ≤ 1 in Br, ζ ≡ 1 on B3r/4 and |∇ζ| ≤
c1
r
(c1 = const). Clearly,

ϕ = (u − uBr
)ζ2 is an admissible test function in (2.4). Inserting this function

into (2.4) using (III) gives

(2.6)

ν0

∫

Br

(1 + |D(u)|)q−2|D(u)|2ζ2 dx

≤ −2

∫

Br

(Sij(D(u)) − Sij(0))(ui − (ui)Br
)ζ

∂ζ

∂xj
dx

−

∫

Br

ui

( ∂

∂xi
(uj − (uj)Br

)
)
(uj − (uj)Br

)ζ2 dx

+ 2

∫

Br

p(ui − (ui)Br
)ζ

∂ζ

∂xi
dx+

∫

Br

f · (u− uBr
)ζ2 dx

= I1 + I2 + I3 + I4.

1) Applying Hölder’s and Young’s inequality implies

I1 ≤
c

r

( ∫

Br

(1 + |D(u)|)q dx

) 1
q′

( ∫

Br

|u− uBr
|q dx

) 1
q

≤ ε

∫

Br

|D(u)|q dx+
c

rq

∫

Br

|u− uBr
|q dx+ c rd.

2) Taking into account (I) and using integration by parts together with the
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Sobolev-Poincaré’s inequality and Hölder’s inequality one obtains

I2 =

∫

Br

|u− uBr
|2uiζ

∂ζ

∂xi
dx

≤
c

r

( ∫

Br

|u− uBr
|2q

′

dx

) 1
q′

( ∫

Br

|u|q dx

) 1
q

≤
c

r

( ∫

Br

|∇u|q dx

) 2
q
( ∫

Br

|u|q dx

) 1
q

≤ c r
d
q
− d
2q′

−1
( ∫

Br

|∇u|q dx

) 2
q
( ∫

Br

|u|2q
′

dx

) 1
2q′

≤ cΘ1(r)

∫

Br

|∇u|q dx,

where

Θ1(r) :=

( ∫

Br

|∇u|q dx

) 2−q
q

( ∫

Br

|u|2q
′

dx

) 1
2q′

.

3) First, applying Hölder’s inequality along with (2.5) one gets

I3 ≤
c

r

( ∫

Br

(1 + |D(u)|)q dx

) 1
q′

( ∫

Br

|u− uBr
|q dx

) 1
q

+
c

r

( ∫

Br

|u|2q
′

dx

) 1
2q′

( ∫

Br

|u− uBr |
2q′ dx

) 1
2q′

×

( ∫

Br

|u− uBr
|q dx

) 1
q

+
c

r

(∫

Br

|f |q
∗′

dx

) 1

q∗
′

( ∫

Br

|u− uBr
|q dx

) 1
q

.

Then, by the aid of Sobolev-Poincaré’s inequality and Young’s inequality one
arrives at

I3 ≤ ε

∫

Br

|D(u)|q dx+
c

rq

∫

Br

|u− uBr
|q dx+ c rd

+ cΘ2(r)

∫

Br

|∇u|q dx+ c

(∫

Br

|f |q
∗
′

dx

) q′

q∗
′

,

where

Θ2(r) :=

( ∫

Br

|∇u|q dx

) 2−q
q−1

( ∫

Br

|u|2q
′

dx

) 1
2

.
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4) Finally, with help of Hölder’s inequality and Sobolev-Poincaré’s inequality one
obtains

I4 ≤ c

( ∫

Br

|f |q
∗
′

dx

) 1

q∗
′

( ∫

Br

|∇u|q dx

) 1
q

.

By means of Young’s inequality from the estimate above it follows that

I4 ≤ ε

∫

Br

|∇u|q dx+ c

( ∫

Br

|f |q
∗′

dx

) q′

q∗
′

.

Inserting the estimates of I1, I2, I3 and I4 into (2.6) gives

∫

B3r/4

|D(u)|q dx

≤
c

rq

∫

Br

|u− uBr
|q dx+ c rd + c (ε+Θ1(r) + Θ2(r))

∫

Br

|∇u|q dx

+ c

∫

Br

|f |q
∗′

dx (4) .

Next, we divide the inequality above by measd(Br) and then apply Sobolev-
Poincaré’s inequality. This shows that

(2.7)

∫

B3r/4

|D(u)|q dx ≤ c

(∫

Br

(1 + |∇u|)dq/d+q dx

) d+q
d

+ c (ε+Θ1(r) + Θ2(r))

∫

Br

|∇u|q dx+ c

∫

Br

|f |q
∗
′

dx.

Now, let ζ̃ ∈ C∞
c (B3r/4) be a cut-off function, such that 0 ≤ ζ̃ ≤ 1 in B3r/4, ζ̃ ≡

1 on Br/2 and |∇ζ̃| ≤
c1
r
. Then by means of Korn’s inequality we estimate

∫

Br/2

|∇u|q dx ≤

∫

B3r/4

|∇((u− uBr
)ζ̃)|q dx

≤ c

∫

B3r/4

|D((u − uBr
)ζ̃)|q dx

≤

∫

B3r/4

|D(u)|q dx+
c

rq

∫

Br

|u− uBr
|q dx.

(4) Note that by q′

q∗
′

> 1 we have

�R
Br

|f |q
∗′

dx

� q
′

q∗
′

≤ c
R
Br

|f |q
∗′

dx.
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As before we divide both sides of this inequality by measd(Br); applying Sobolev-
Poincaré’s inequality yields

(2.8)

∫

Br/2

|∇u|q dx ≤

∫

B3r/4

|D(u)|q dx+ c

( ∫

Br

|∇u|dq/(d+q) dx

) d+q
d

.

Estimating the first integral on the right of (2.8) by (2.7) gives

(2.9)

∫

Br/2

(1 + |∇u|)q dx

≤ c

( ∫

Br

(1 + |∇u|)dq/d+q dx

) d+q
d

+ (c ε+Θ(r))

∫

Br

|∇u|q dx

+ c

∫

Br

|f |q
∗′

dx,

where Θ(r) goes to 0 as r → 0. Here c = const > 0 depending on d only. Choosing
0 < ε < 1 and r0 > 0 sufficiently small, our desired result of higher integrability
is an immediate consequence of Lemma 2.1. �
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