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Mapping theorems on ℵ-spaces

Masami Sakai

Abstract. In this paper we improve some mapping theorems on ℵ-spaces. For instance
we show that an ℵ-space is preserved by a closed and countably bi-quotient map. This
is an improvement of Yun Ziqiu’s theorem: an ℵ-space is preserved by a closed and open
map.
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1. Preliminaries

In this paper all spaces are regular T1 and all maps are continuous onto. For
A ⊂ X we denote by ∂A the boundary of A in X .

Definition 1.1. A cover P of subsets of a space X is a k-network for X [7] if
whenever K ⊂ U with K compact and U open in X , there is a finite subfamily
Q ⊂ P such that K ⊂ ∪Q ⊂ U . A space is an ℵ-space [7] if it has a σ-locally
finite k-network.

The notion of a k-network plays an important role in the theory of generalized
metric spaces. For instance, a Fréchet ℵ-space is precisely the closed s-image of
a metric space [2], [4].

Definition 1.2. A family {Aα : α ∈ I} of subsets of a space X is hereditarily

closure-preserving (simply, HCP) if
⋃

{Bα : α ∈ J} =
⋃

{Bα : α ∈ J}, whenever
J ⊂ I and Bα ⊂ Aα for each α ∈ J .

Every locally finite family is hereditarily closure-preserving.

The space Sω1 is the space obtained from the topological sum of ω1 many
convergent sequences by identifying all the limit points to a single point. The
following is due to Junnila and Ziqiu [3].

Theorem 1.3. Let X be a space with a σ-HCP k-network. Then X is an ℵ-space
iff X contains no closed copy of Sω1 .
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2. Results

Definition 2.1. A subset A of a space Y is a sequential neighborhood of a point
y ∈ Y if any sequence converging to y is eventually in A. A map ϕ : X → Y
satisfies property (ω1) if, whenever y ∈ Y and {Uα : α < ω1} is an increasing
open cover of X , then there is α such that ϕ(Uα) is a sequential neighborhood of
y. A map ϕ : X → Y satisfies property (ω) if, whenever y ∈ Y and {Un : n ∈ ω}
is an increasing open cover of X , then there is n such that ϕ(Un) is a sequential
neighborhood of y.

Lemma 2.2. Let A be a countably infinite subset of a space X such that every
infinite subset of A is not closed in X . If x ∈ A \ A and {x} is a Gδ-set, then

there is a sequence in A converging to x.

Proof: Let {Gn : n ∈ ω} be an open family in X satisfying {x} =
⋂

{Gn :
n ∈ ω} and Gn+1 ⊂ Gn. For each n ∈ ω, take a point xn ∈ A ∩ Gn. The
set {x} ∪ {xn : n ∈ ω} is closed in X . For every open neighborhood U of x,
{xn : n ∈ ω} \ U is closed in X , hence {xn : n ∈ ω} \ U is finite. Therefore
{xn : n ∈ ω} is a convergent sequence to x. �

Theorem 2.3. The following hold respectively:

(1) an ℵ-space is preserved by a closed map with property (ω1);
(2) an ℵ-space is preserved by a closed map with property (ω).

Proof: Let ϕ : X → Y be a closed map with property (ω1) (or property (ω))
and let X be an ℵ-space. Let P =

⋃

n∈ω Pn be a σ-locally finite k-network for X .
Without loss of generality, we may assume that each member of P is closed in X
and Pn ⊂ Pn+1 for n ∈ ω. As noted in the proof of [10, Proposition 1.8(3)], the
family {ϕ(P ) : P ∈ P} is a σ-HCP k-network for Y .
Assume that Y is not an ℵ-space. Then by Theorem 1.3, Y has a closed copy

of Sω1 . Let
Sω1 = {∞} ∪

{

yα,n : α < ω1, n ∈ ω
}

⊂ Y,

where {yα,n : n ∈ ω} is the α-th sequence converging to ∞.
By induction we show that for each α < ω1, there are nα ∈ ω and a finite

subfamily Fα ⊂ P such that

(a)
⋃

{ϕ−1(yα,n) : n ≥ nα} ⊂
⋃

Fα,

(b) for each P ∈ Fα, P ∩ (
⋃

{ϕ−1(yα,n) : n ≥ nα}) 6= ∅,
(c) Fα ∩ Fβ = ∅ for α < β < ω1.

Fix an arbitrary γ < ω1 and assume that for each α < γ we have already
found nα ∈ ω and a finite subfamily Fα ⊂ P . For each α < γ take a finite set
Fα ⊂

⋃

{ϕ−1(yα,n) : n ≥ nα} such that Fα ∩ P 6= ∅ for any P ∈ Fα. The set
F =

⋃

{Fα : α < γ} is closed in X . For each n ∈ ω, let

Qn = {P ∈ Pn : P ∩ F = ∅, P ∩ ϕ−1(yγ,k) 6= ∅ for infinitely many k ∈ ω}.
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Obviously Qn ⊂ Qn+1. Assume Pi ∈ Qn, i ∈ ω and Pi 6= Pj for i 6= j. Then we
can take a point xi ∈ Pi such that ϕ({xi}i∈ω) is a subsequence of {yγ,n : n ∈ ω}.
Since Qn is locally finite, {xi}i∈ω is closed in X . Since ϕ is closed, this is a
contradiction. Therefore each Qn is finite. Assume for each n ∈ ω, there are
infinitely many k ∈ ω with ϕ−1(yγ,k) \ (

⋃

Qn) 6= ∅. Then there are a sequence

k0 < k1 < · · · and a point xn ∈ ϕ−1(yγ,kn
)\ (

⋃

Qn). Since ϕ is closed, no infinite
subset of {xn : n ∈ ω} is closed in X . Moreover every point of an ℵ-space is a
Gδ-set. Hence by Lemma 2.2, {xn : n ∈ ω} contains a convergent sequence to
some point in ϕ−1(∞). Since P is a k-network for X , there is P ∈ P such that
P ∩ F = ∅ and P contains infinitely many xn’s. Let P ∈ Pl for some l ∈ ω.
Then P ∈ Ql. Since P contains only finitely many xn’s, this is a contradiction.
Consequently there is nγ ∈ ω such that

⋃

{ϕ−1(yγ,n) : n ≥ nγ} ⊂
⋃

Qnγ
. Let

Fγ = Qnγ
. The γ-th step of our induction is complete.

Since each Fα is finite, there are m ∈ ω and an uncountable set I ⊂ ω1 such
that Fα ⊂ Pm for any α ∈ I. For each α ∈ I, let Eα =

⋃

Fα. Since Pm is locally
finite, {Eα : α ∈ I} is a locally finite closed family in X .

The case of property (ω1). Consider the increasing open cover

{X \
⋃

β>α

Eβ : α < ω1, β ∈ I}

of X . By property (ω1), there is α such that ϕ(X \
⋃

β>α Eβ) is a sequential
neighborhood of ∞. But the set obviously fails to be a sequential neighborhood
of ∞. As a result, Y does not have any closed copy of Sω1 , therefore Y is an
ℵ-space.
The case of property (ω). The idea is the same as property (ω1). Take an

infinite subset J = {αn : n ∈ ω} ⊂ I, and consider the increasing open cover
{X \

⋃

m>n Eαm
: n ∈ ω} of X . �

Definition 2.4. A map ϕ : X → Y is countably bi-quotient [9] if for each y ∈ Y
and each countable increasing open family {Un : n ∈ ω} covering ϕ−1(y), there
is n ∈ ω such that ϕ(Un) is a neighborhood of y.

S. Lin asked the author whether an ℵ-space is preserved by a closed and count-
ably bi-quotient map. Since a countably bi-quotient map trivially satisfies prop-
erty (ω), we have a positive answer to the question.

Corollary 2.5. An ℵ-space is preserved by a closed and countably bi-quotient
map.

Corollary 2.6. (1) An ℵ-space is preserved by a closed map satisfying that
∂ϕ−1(y) is Lindelöf for any y ∈ Y [1], [4];
(2) An ℵ-space is preserved by a closed and open map [11].
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Proof: (1) Let ϕ : X → Y be a closed map satisfying that ∂ϕ−1(y) is Lindelöf
for any y ∈ Y . For each y ∈ Y , we define a set Ay as follows: if y is isolated

in Y , take an arbitrary point xy ∈ ϕ−1(y) and let Ay = {xy}; otherwise let

Ay = ∂ϕ−1(y). Let A =
⋃

y∈Y Ay . Then the restricted map ϕ|A : A → Y is

closed onto and each fiber of this map is Lindelöf. Since ϕ|A satisfies property
(ω1), Y is an ℵ-space by Theorem 2.3.
(2) Every open map is obviously countably bi-quotient. Apply Corollary 2.5.

�

Definition 2.7. A map ϕ : X → Y is sequence-covering in the sense of Siwiec [8]
if, whenever {yn}n∈ω is a sequence in Y converging to a point y ∈ Y , there are a
point x ∈ ϕ−1(y) and points xn ∈ ϕ−1(yn), n ∈ ω, such that {xn}n∈ω converges
to x.

C. Liu noted in [5] that an ℵ-space is preserved by a closed and sequence-
covering map. This result follows from our theorem.

Proposition 2.8. Let ϕ : X → Y be a closed and sequence-covering map. If X
has a σ-HCP k-network, then ϕ satisfies property (ω1).

Proof: Let P =
⋃

n∈ω Pn be a σ-HCP k-network for X . For each n ∈ ω, the

family {P : P ∈ Pn} is also hereditarily closure-preserving. Therefore we may
assume that each member of P is closed in X .
Assume that ϕ does not satisfy property (ω1). Then there are a point y ∈ Y

and an increasing open cover {Uα : α < ω1} of X such that each ϕ(Uα) fails to
be a sequential neighborhood of y. For each α < ω1, take a sequence Lα in Y
such that Lα converges to y and Lα ∩ ϕ(Uα) = ∅. Since ϕ is sequence-covering,
for each α ≥ 1, there are a sequence Kα in X and a point xα ∈ ϕ−1(y) such that
Kα converges to xα and ϕ(Kα) = L0 ∪ Lα. Let {Aα, Bα} be a decomposition
of Kα with ϕ(Aα) = L0 and ϕ(Bα) = Lα. For each α ≥ 1, take γα < ω1 with
{xα} ∪ Kα ⊂ Uγα

, and take Pα ∈ P such that xα ∈ Pα ⊂ Uγα
and Pα contains

infinitely many points in Aα.
We note that the family {Pα : α ≥ 1} is uncountable. Since each Pα is

contained in some member of the open cover, if the family is countable,
⋃

{Pα :
α ≥ 1} ⊂ Uδ for some δ < ω1. Because of Lδ ∩ ϕ(Uδ) = ∅, xδ /∈ Uδ. This is a
contradiction. Thus the family is uncountable. Hence there are m ∈ ω and an
uncountable set I ⊂ ω1 with {Pα : α ∈ I} ⊂ Pm. Take a sequence α0 < α1 < · · ·
in I, and take a point xn ∈ Pαn

∩Aαn
such that {ϕ(xn)}n∈ω converges to y. Since

{Pαn
: n ∈ ω} is hereditarily closure-preserving, {xn}n∈ω is closed in X . This is a

contradiction, because ϕ is a closed map. Consequently ϕ satisfies property (ω1).
�

By the above proposition and Theorem 2.3, we have the following.

Corollary 2.9 ([5]). An ℵ-space is preserved by a closed and sequence-covering
map.



Mapping theorems on ℵ-spaces 167

It was proved in [6] that a topological group is an ℵ-space if it is the closed
image of an ℵ-space.
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