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Ternary quasigroups and the modular group

Jonathan D.H. Smith

Abstract. For a positive integer n, the usual definitions of n-quasigroups are rather
complicated: either by combinatorial conditions that effectively amount to Latin n-
cubes, or by 2n identities on n + 1 different n-ary operations. In this paper, a more
symmetrical approach to the specification of n-quasigroups is considered. In particular,
ternary quasigroups arise from actions of the modular group.
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1. Quasigroups

For a positive integer n, a (combinatorial) n-quasigroup is a set Q equipped
with an n-ary multiplication operation

µ : Qn → Q; (xn, . . . , x1) 7→ xn . . . x1µ

such that, for an (n+ 1)-tuple

(1.1) (xn, . . . , x1, x0)

of elements of Q required to satisfy the condition

(1.2) xn . . . x1µ = x0,

specification of any n coordinates of (1.1) determines the remaining one uniquely.
Note that a combinatorial 1-quasigroup is just a set Q with a permutation (self-
bijection) µ : Q → Q, or in other words a dynamical system with state space Q
and invertible transition operator µ.
For each index 1 ≤ i ≤ n, and for each choice xn, . . . , xi+1, xi−1, . . . , x1 of fixed

elements of an n-quasigroup Q, a translation

(1.3) Ti(xn, . . . , xi+1, xi−1, . . . , x1) : Q → Q; xi 7→ xn . . . x1µ

is defined. The combinatorial definition of an n-quasigroup means precisely that
each translation is a permutation of the underlying set Q.
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The combinatorial definition of n-quasigroups may be reformulated in algebraic
terms of operations and identities. An (equational) n-quasigroup (Q, µ, µ1, . . . , µn)
is a set Q equipped with n-ary operations µ, µ1, . . . , µn satisfying the identities

(1.4) xn . . . xi+1 (xn . . . x1µ)xi−1 . . . x1µ
i = xi

and

(1.5) xn . . . xi+1 (xn . . . x1µ
i)xi−1 . . . x1µ = xi

for each 1 ≤ i ≤ n. The operations µ1, . . . , µn are described as divisions . Note
that the identity (1.4) gives the injectivity of the translation (1.3), while (1.5)
gives its surjectivity. Thus each equational n-quasigroup (Q, µ, µ1, . . . , µn) yields
a combinatorial n-quasigroup (Q, µ). Conversely, a combinatorial n-quasigroup
(Q, µ) yields an equational n-quasigroup (Q, µ, µ1, . . . , µn), defining

xn . . . xi+1x0xi−1 . . . x1µ
i = xi

if and only if (1.2) holds.

2. Groups

For a positive integer n, consider the group Mn presented as

〈σ, τ | σn = τ2 = 1〉.

In other words, Mn is the free product of two cyclic groups, one 〈σ〉 of order n,
and one 〈τ〉 of order 2.

Example 2.1. For n = 1, M1 is just the cyclic group 〈τ〉 of order 2.

Example 2.2. For n = 2, M2 is the infinite dihedral group ([2, p. 133]). Recall
that the dihedral group Dd of degree d and order 2d (the group of symmetries of
the regular d-gon) may be presented as

(2.1) 〈σ, τ | σ2 = τ2 = (στ)d = 1〉

([2, (1.53)]).

Example 2.3. For n = 3, M3 is the modular group SL2(Z)/{±I2} ([8, p. 128]).
For each element

A =

[
a b
c d

]

of SL2(Z), a matrix of determinant 1 with integral entries, write the corresponding
coset {±A} in M3 as {

a b
c d

}
.
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Setting

σ =

{
0 −1
1 1

}
and τ =

{
0 −1
1 0

}
,

one has σ3 = τ2 = 1, and SL2(Z)/{±I2} is generated freely by σ and τ , subject
to these order relations ([2, (7.25)], [8, p. 131]).

Lemma 2.4. Consider the symmetric group Sn+1 = {0, 1, . . . , n}!.

(a) For n ≥ 1, the group Sn+1 is a quotient of Mn.

(b) S3 = 〈σ, τ | σ2 = τ2 = (στ)3 = 1〉.
(c) S4 = 〈σ, τ | σ3 = τ2 = (στ)4 = 1〉.

Proof: (a): Apply the First Isomorphism Theorem to the surjective homomor-
phism

(2.2) r :Mn → Sn+1; σ 7→ (1 2 . . . n), τ 7→ (0 1).

(b): This is the case d = 3 of (2.1).
(c): See [2, (1.59)]. �

3. Spaces

For a positive integer n, an n-ary space (G, σ, τ) is a set G equipped with maps

(3.1) σ : G → G; g 7→ σg

and

(3.2) τ : G → G; g 7→ τg

satisfying σn = τ2 = 1. The map σ is known as the shift , while the map τ is
known as the inversion. Note that n-ary spaces are left Mn-sets.

Example 3.1. For each positive integer n, each set G furnishes a trivial n-ary
space, on which both σ and τ are the identity map idG.

Example 3.2. For n=1, each group G provides a unary space, with τg = g−1

for g in G.

Example 3.3. For n=2, the binary spaces are the reflexion-inversion spaces
of [9], the shift being described as reflexion in this case.

(a) For a field F , take G = F r {0, 1}. Then G is a binary space, with
σg = 1− g and τg = g−1 for points g of G ([9, Example 3.3]).

(b) The symmetric group S3 is a binary space. Taking σ = (1 2) and τ = (0 1),
the maps (3.1) and (3.2) are interpreted as left multiplications within S3
— compare Lemma 2.4(b).
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Example 3.4. The symmetric group S4 is a ternary space. Taking σ = (1 2 3)
and τ = (0 1), the maps (3.1) and (3.2) are interpreted as left multiplications
within S4 — compare Lemma 2.4(c).

Example 3.5. Let R be a unital ring, and let U be a group of units in R. For a
positive integer n, consider G = Un. Define

σ(un, . . . , u2, u1) = (un−1, . . . , u1, un)

and

τ(un, . . . , u2, u1) =
(
−unu1

−1, . . . ,−u2u1
−1, u1

−1
)

for a point (un, . . . , u1) of G. Then G becomes an n-ary space.

4. Hyperquasigroups

For a positive integer n, an n-hyperquasigroup (or n-ary hyperquasigroup) is a
pair (Q, G) consisting of a set Q and an n-ary space G, with an n-ary action

(4.1) Qn × G → Q; (xn, . . . , x1, g) 7→ xn . . . x1g

of G on Q, such that the (n-)hypercommutative law

(4.2) xn . . . x2x1g = xn−1 . . . x1xnσg

and the (n-)hypercancellation law

(4.3) xn . . . x2(xn . . . x1g) τg = x1

are satisfied for all x1, . . . , xn in Q and g in G.

Remark 4.1. A hyperquasigroup (Q, G) may be construed as a two-sorted or
heterogeneous algebra ([4], [6]), with the n-ary space operations σ and τ on the
sort G, and (4.1) as a third operation.

Example 4.2. For each positive integer n, and for each n-ary space G, the empty
set forms an n-hyperquasigroup (∅, G). The actions (4.1) reduce to id∅.

Example 4.3. For each positive integer n, consider the trivial n-ary space ∅ as in
Example 3.1. Let Q be a set. Then (Q, ∅) forms an n-hyperquasigroup, with (4.1)
as the insertion ∅ →֒ Q. The hypercommutativity (4.2) and hypercancellation
(4.3) are vacuously satisfied.

Example 4.4. For n = 1, let G be a group, construed as a unary space according
to Example 3.2. Consider a right G-set Q. For g in G and x in Q, define the unary
action xg = xg. The hypercommutativity is trivial, while the hypercancellation

is just (xg)g−1 = x. Thus (Q, G) is a unary hyperquasigroup.
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Example 4.5. For each positive integer n, consider the trivial n-ary space {1}.

(a) For n = 1, each set Q forms a unary hyperquasigroup (Q, {1}) as a {1}-set
for the trivial group {1}, according to Example 4.4.

(b) For n = 2, a binary hyperquasigroup (Q, {1}) is just a totally symmetric
quasigroup, with multiplication x1x21.

(c) For any positive n, let Q be an abelian group of exponent 2. Then (Q, {1})
forms an n-hyperquasigroup with

x1x2 . . . xn1 = x1x2 . . . xn

for x1, . . . , xn in Q.

Example 4.6. For n = 2, binary hyperquasigroups reduce to hyperquasigroups
in the sense of [9].

(a) For a field F , consider the binary space G = F r{0, 1} of Example 3.3(a).
For a vector space Q over F , define the binary action

Q2 × G → Q; (x2, x1, g) 7→ x2(1− g) + x1g.

Then (Q, G) forms a binary hyperquasigroup ([9, Proposition 5.1]).
(b) Let (Q, ·, /, \) be a (binary) quasigroup, and let G = S3, construed as
a binary space according to Example 3.3(b). Then (Q, G) is a binary
hyperquasigroup under the operations

xy 1 = x · y, xy στσ = x/y, xy τ = x\y,

xy σ = y · x, xy τσ = y/x, xy στ = y\x

([9, Proposition 5.2]).

Example 4.7. For a positive integer n and a unital ring R, consider the n-ary
space G of Example 3.5. Let Q be a unital right R-module. Define the n-ary
action

xn . . . x1 (un, . . . , u1) = xnun + . . . + x1u1

for xi in Q and (un, . . . , u1) in G. Then (Q, G) is an n-ary hyperquasigroup.

The meaning of hypercommutativity in an n-hyperquasigroup is immediate.
The significance of hypercancellation is interpreted as follows (compare [5], [9] for
the binary case).

Proposition 4.8. Let (Q, G) be an n-hyperquasigroup. For each point g in G,
define

ĝ : Qn → Qn; (xn, . . . , x2, x1) 7→ (xn, . . . , x2, xn . . . x1g).

Then τ̂ g is the two-sided inverse of ĝ in the semigroup of selfmaps on the set Qn.

Proof: The equation ĝ τ̂g = idQn is immediate from (4.3), while τ̂ g ĝ = idQn

follows from (4.3) with g replaced by τg, recalling ττg = g. �
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Remark 4.9. For an n-ary operation

Qn → Q; (xn, . . . , x1) 7→ xn . . . x1ω

on a set Q, the invertibility of the map

ω̂ : Qn → Qn; (xn, . . . , x2, x1) 7→ (xn, . . . , x2, xn . . . x1ω)

does not mean that (Q, ω) is a (combinatorial) n-quasigroup. For example, the
binary projection

π1 : Q
2 → Q; (x0, x1) 7→ x1

has π̂1 = idQ2 .

5. From hyperquasigroups to quasigroups

By Proposition 4.5 and Remark 4.9, hypercancellativity alone is insufficient
for a quasigroup. The following theorem shows that quasigroups are obtained
from the combination of hypercommutativity and hypercancellativity. The binary
case appeared as [9, Theorem 6.1]. The proof of the general case given here is
conceptually simpler, although the details are more complex.

Theorem 5.1. For a positive integer n, let (Q, G) be an n-hyperquasigroup.
Then for each element g of the n-ary space G, there is an equational n-quasigroup

(
Q, g, τg, . . . , σi−1τσ1−ig, . . . , σn−1τσ1−ng

)

with multiplication g and divisions σi−1τσ1−ig for 1 ≤ i ≤ n.

Proof: The identities (1.4) and (1.5) must be established for 1 ≤ i ≤ n, with
µ = g and µi = σi−1τσ1−ig. Consider the hypercancellativity

(5.1) xn . . . x2
(
xn . . . x1g

)
τg = x1

as in (4.3). Applying hypercommutativity i − 1 times to the inner operation of
(5.1) yields

xn . . . x2

(
xn−(i−1) . . . x2x1xn . . . xn−(i−2)σ

i−1g
)

τg = x1.

Applying hypercommutativity i − 1 times to the outer operation then gives

xn−(i−1) . . . x2

(
xn−(i−1) . . . x2x1xn . . . xn−(i−2)σ

i−1g
)

xn . . .

. . . xn−(i−2) σ
i−1τg = x1.
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Replacing xk by

{
xk+(i−1) for 1 ≤ k ≤ n − (i − 1),

xk+(i−1)−n for n − (i − 2) ≤ k ≤ n

yields

(5.2) xn . . . xi+1

(
xn . . . x1 σi−1g

)
xi−1 . . . x1 σi−1τg = xi.

Replace g in (5.2) by σ1−ig to obtain

xn . . . xi+1
(
xn . . . x1 g

)
xi−1 . . . x1 σi−1τσ1−ig = xi,

which is (1.4). Finally, replace g in (5.2) by τσ1−ig to obtain

xn . . . xi+1

(
xn . . . x1 σi−1τσ1−ig

)
xi−1 . . . x1 g = xi,

which is (1.5). �

Corollary 5.2. For a positive integer n, let (Q, G) be an n-hyperquasigroup.
Then each point g of the n-ary space G yields a combinatorial n-quasigroup
(Q, g).

6. The structure theorem

Let n be a positive integer. In the symmetric group Sn+1 = {0, 1, . . . , n}!,
consider the involution

α = (2 n)(3 n − 1) . . .

{
. . .

(
n
2

n+4
2

)
, n even;

. . .
(

n+1
2

n+3
2

)
, n odd.

Define a surjective homomorphism

(6.1) Mn → Sn+1; π 7→ π

by concatenating the surjective homomorphism r of (2.2) with conjugation by the
permutation α in Sn+1. In particular,

(6.2) σ = (1 2 . . . n)α = (1 n . . . 2)

and

(6.3) τ = (0 1)α = (0 1).
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Lemma 6.1. Let (Q, G) be an n-hyperquasigroup. Then

(6.4) xn . . . x2x1g = x0 ⇔ xnπ . . . x2πx1ππg = x0π

for each element π of Mn, point g in G, and elements x0, . . . , xn of Q.

Proof: The equivalence (6.4) holds trivially for π = 1. Suppose that it holds for
a certain element π of Mn. Then

xnπ . . . x2πx1π πg = x0π

⇔ x(n−1)π . . . x1πxnπ σπg = x0π

⇔ xnσπ . . . x2σπx1σπ σπg = x0σπ

by the hypercommutativity (4.2) and (6.2). Thus the equivalence (6.4) holds for
σπ in Mn. Again,

xnπ . . . x2πx1π πg = x0π

⇔ xnπ . . . x2πx0π τπg = x1π

⇔ xnτπ . . . x2τπx1τπ πg = x0τπ

by the hypercancellativity (4.3) and (6.3) Thus the equivalence (6.4) holds for τπ
in Mn. By induction, it follows that the equivalence (6.4) holds for each element
of Mn. �

Let (Q, G) be an n-hyperquasigroup. Set

G = {g : Qn → Q | g ∈ G}.

By Lemma 6.1, the action

Mn → G !; π 7→ (g 7→ πg)

factorizes through the homomorphism (6.1) to Sn+1. Thus the set G of n-ary
operations on Q is an Sn+1-set. For a point g in the space G, Corollary 5.2 yields
n-quasigroups (Q, πg) given by the Sn+1-orbit of g. The various n-quasigroups
in a given orbit are described as mutual conjugates or parastrophes . For binary
quasigroups, these concepts are well known ([1, Example II.6.1], [7]). For unary
quasigroups, as invertible dynamical systems, conjugation corresponds to time
reversal.
The structure of (Q, G) may now be summarized as follows (compare [9, The-

orem 6.7] for the binary case).

Theorem 6.2. Let n be a positive integer. Then each n-hyperquasigroup (Q, G)
yields an algebra structure (Q, G ) consisting of the union of mutually disjoint sets
of conjugate n-quasigroup operations.



Ternary quasigroups 317

Remark 6.3. Let (Q, ϕ, ϕ1, . . . , ϕn) be an n-quasigroup. Consider Mn as an
n-ary space (Mn, σ, τ) given by the free left Mn-set, so that the actions (3.1) and
(3.2) are the left multiplications by σ and τ in the groupMn. Use the specification

xn . . . x2x11 = xn . . . x2x1ϕ

together with (6.4) to define an n-ary action of Mn on Q. A comparison with
Theorem 5.1 and its proof shows that

ϕi = σi−1τσ1−i

for 1 ≤ i ≤ n. One then obtains (Q, Mn) as a hyperquasigroup. Within this
hyperquasigroup, the n-quasigroup (Q, 1) yielded by Theorem 5.1 realizes the
given n-quasigroup (Q, ϕ). By Theorem 6.2, the n-quasigroups (Q, g) for g inMn

are the conjugates of (Q, ϕ).

Acknowledgment. Thanks are due to an anonymous referee for valuable com-
ments on an earlier version of this paper.
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