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Further properties of 1-sequence-covering maps

Tran Van An∗, Luong Quoc Tuyen

Abstract. Some relationships between 1-sequence-covering maps and weak-open maps
or sequence-covering s-maps are discussed. These results are used to generalize a result
from Lin S., Yan P., Sequence-covering maps of metric spaces, Topology Appl. 109
(2001), 301–314.
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1. Introduction

To find internal characterizations of certain images of metric spaces is one of
central problems in general topology. Arhangel’skii [1] showed that a space is
an open compact image of a metric space if and only if it has a development
consisting of point-finite open covers. In 1996, Lin [14] introduced the notion of
1-sequence-covering maps and proved that a space is a 1-sequence-covering and
s-image of a metric space if and only if it has a point-countable sn-network, and
a space is a 1-sequence-covering, quotient and s-image of a metric space if and
only if it has a point-countable weak base. Then Lin and Yan [16] proved that
every sequence-covering, quotient and s-image of a locally separable metric space
is a local ℵ0-space. In that paper they also show the following

Theorem 1.1. Every sequence-covering and compact map of a metric space is a

1-sequence-covering map.

Recently, Xia [25] introduced the concept of weak-open maps, and by using it,
certain gf -countable spaces are characterized as images of metric spaces under
various weak-open maps. π-map is an another important map which was intro-
duced by Ponomarev in 1960, and π-images of metric spaces attract attention
again in [7], [11], [23].
The purpose of this paper is to establish some relationships between 1-sequence-

covering maps and weak-open maps or sequence-covering s-maps, and also to give
a generalization of Theorem 1.1.

∗ Corresponding author.
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We assume that all spaces are T2, all maps are continuous and onto, N denotes
the set of all natural numbers, ω = N∪{0}, and any convergent sequence includes
its limit point. Let f : X → Y be a map and P be a collection of subsets
of X . We denote st(x,P) =

⋃

{P ∈ P : x ∈ P},
⋃

P =
⋃

{P : P ∈ P},
⋂

P =
⋂

{P : P ∈ P}, f(P) = {f(P ) : P ∈ P}.

Definition 1.2. Let X be a space and P ⊂ X .

(1) A sequence {xn} in X is called eventually in P , if {xn} converges to x,
and there exists m ∈ N such that {x} ∪ {xn : n ≥ m} ⊂ P .

(2) P is called a sequential neighborhood of x in X [4], if whenever {xn} is a
sequence converging to x in X , then {xn} is eventually in P .

(3) X is a sequential space [4], if whenever A is a non closed subset of X ,
then there is a sequence in A converging to a point not in A.

Definition 1.3. Let P be a collection of subsets of X .

(1) P is point-countable, if each point x ∈ X belongs to only countably many
members of P .

(2) P is a network at x in X , if x ∈ P for every P ∈ P , and whenever x ∈ U
with U open in X , then x ∈ P ⊂ U for some P ∈ P .

Definition 1.4. Let P =
⋃

{Px : x ∈ X} be a cover of a space X . Assume that
P satisfies the following (a) and (b) for every x ∈ X .

(a) Px is a network at x.
(b) If P1, P2 ∈ Px, then there exists P ∈ Px such that P ⊂ P1 ∩ P2.

(1) P is a weak base of X [1], if for G ⊂ X , G is open in X if and only if for
every x ∈ G, there exists P ∈ Px such that P ⊂ G; Px is said to be a
weak neighborhood base at x.

(2) P is an sn-network for X [14], if every element of Px is a sequential
neighborhood of x for every x ∈ X ; Px is said to be an sn-network at x.

(3) A space X is gf -countable [1] (resp., snf -countable [6]), if X has a weak
base (resp., sn-network) P =

⋃

{Px : x ∈ X} such that Px is countable
for every x ∈ X .

Remark 1.5 ([5]). (1) Weak base =⇒ sn-network, so gf -countable =⇒ snf -
countable.

(2) In a sequential space, weak bases ⇐⇒ sn-networks, so gf -countable ⇐⇒
sequential and snf -countable.

Definition 1.6. Let f : X −→ Y be a map.

(1) f is a weak-open map [25], if there exists a weak base B =
⋃

{By : y ∈ Y }
for Y , and for y ∈ Y , there exists xy ∈ f−1(y) such that for each open
neighborhood U of xy, By ⊂ f(U) for some By ∈ By.
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(2) f is a 1-sequence-covering map [14], if for each y ∈ Y , there is xy ∈ f−1(y)
such that whenever {yn} is a sequence converging to y in Y , there is a
sequence {xn} converging to xy in X with xn ∈ f−1(yn) for every n ∈ N.

(3) f is a sequence-covering map [20], if every convergent sequence of Y is
the image of some convergent sequence of X .

(4) f is a quotient map [3], if whenever f−1(U) is open in X , then U is open
in Y .

(5) f is an s-map [8] (resp., a Lindelöf map [22], a compact map), if f−1(y)
is separable (resp., Lindelöf, compact) for each y ∈ Y .

Definition 1.7. Let f : (X, d) −→ Y be a map, and (X, d) be a metric space.

(1) f is a π-map [1], if for each y ∈ Y and its open neighborhood U in Y ,
d
(

f−1(y), X \ f−1(U)
)

> 0.
(2) f is a π-s-map, if f is both π-map and s-map.

Remark 1.8.

(1) 1-sequence-covering map =⇒ sequence-covering map.
(2) Sequence-covering map =⇒ quotient if Y is a sequential space.
(3) Weak-open map =⇒ quotient map.

2. Main results

Lemma 2.1. Let f : X −→ Y be a weak-open map. If X is first countable, then
Y is gf -countable.

Proof: Let f be a weak-open map, and X be first countable. Since f is a
weak-open map, there exists a weak base B =

⋃

{By : y ∈ Y } for Y such that

for each y ∈ Y there exists xy ∈ f−1(y) with the property that for every open
neighborhood U of xy , there exists By ∈ By such that By ⊂ f(U). Because X is
first countable, there is a countable neighborhood base Px for every x ∈ X . Now,
for each y ∈ Y , we put

Fy = {f(P ) : P ∈ Pxy
}, F =

⋃

{Fy : y ∈ Y }.

Since for each y ∈ Y , xy belongs to only countably many members of Pxy
. It

implies that Fy is countable for every y ∈ Y . So, we only need to prove that F is
a weak base Y . Indeed,

(1) Note that f is a continuous map, and Pxy
is a neighborhood base at xy, it

follows that Fy is a network at y in Y .
(2) For each y ∈ Y and U, V ∈ Fy, there exist P1, P2 ∈ Pxy

such that xy ∈
P1 ∩ P2, and f(P1) = U , f(P2) = V . Since Pxy

is a neighborhood base at xy ,
there exists P ∈ Pxy

such that xy ∈ P ⊂ P1 ∩ P2. This implies that f(P ) ∈ Fy,
and f(P ) ⊂ f(P1 ∩ P2) ⊂ U ∩ V .
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(3) Suppose that G is open in Y . Then for each y ∈ G, xy ∈ f−1(G). Since Pxy

is a neighborhood base at xy , there exists P ∈ Pxy
such that xy ∈ P ⊂ f−1(G).

Thus, f(P ) ∈ Fy, and f(P ) ⊂ G.
Conversely, suppose that G ⊂ Y is such that for each y ∈ G, there exists

F ∈ Fy satisfying F ⊂ G. Then there exists P ∈ Pxy
such that xy ∈ P , and

F = f(P ). Since P is an open neighborhood of xy , and f is a weak-open map,
there exists By ∈ By such that By ⊂ f(P ). So, for each y ∈ G, there exists
By ∈ By such that By ⊂ G. Because B is a weak base, G is an open subset of Y .
By (1), (2), and (3), F is a weak base for Y . Therefore Y is gf -countable. �

Proposition 2.2. Let f : X −→ Y be a sequence-covering map, and Y be
snf -countable. If (1) or (2) holds, then f is a 1-sequence-covering map.

(1) f is an s-map, and X has a point-countable base.
(2) f is a Lindelöf map, and X is first countable.

Proof: Let P =
⋃

{Py : y ∈ Y } be an sn-network for Y such that Py is countable
for every y ∈ Y . We can suppose that Py is closed under finite intersections for
every y ∈ Y .
(1) Let f be an s-map, and B a point-countable base of X .
Firstly, we prove that for each y ∈ Y , there exists a point xy ∈ f−1(y) such

that whenever U is an open neighborhood of xy , there exists P ∈ Py satisfying

P ⊂ f(U). Otherwise, there exists y ∈ Y so that for every x ∈ f−1(y), there is
an open neighborhood Ux of x such that P * f(Ux) for every P ∈ Py. Since B
is a base of X , for each x, there exists Bx ∈ B such that x ∈ Bx ⊂ Ux. This
implies that for every x ∈ f−1(y), P * f(Bx) whenever P ∈ Py. On the other

hand, because B is a point-countable base and f−1(y) is a separable subset of X ,
it follows that

{

Bx : x ∈ f−1(y)
}

is countable. Assume that {Bx : x ∈ f−1(y)} =
{Bm : m ∈ N}, and Py = {Fn : n ∈ N}. Put Ry = {Pn =

⋂n
i=1 Fi : n ∈ N}. It

is easy to see that Ry ⊂ Py, and Pn+1 ⊂ Pn, for every n ∈ N. Hence, for each
m, n ∈ N, there exists xn,m ∈ Pn \ f(Bm). For n ≥ m, we denote yk = xn,m with
k = m+ n(n − 1)/2. Since Py is a network at y and Pn+1 ⊂ Pn for each n ∈ N,
{yk} is a sequence converging to y in Y . Because f is a sequence-covering map,
{yk} is an image of some sequence {xn} converging to x ∈ f−1(y) in X . Since
x ∈ f−1(y) ⊂

⋃

{Bm : m ∈ N}, there exists m0 ∈ N such that x ∈ Bm0 . So
{x}∪{xk : k ≥ k0} ⊂ Bm0 for some k0 ∈ N. Thus, {y}∪{yk : k ≥ k0} ⊂ f(Bm0).
But if we take k ≥ k0, then there exists n ≥ m0 such that yk = xn,m0 , and it
implies that xn,m0 ∈ f(Bm0). This contradicts to xn,m0 ∈ Pn \ f(Bm0).
We now prove that f is a 1-sequence-covering map. Suppose that y ∈ Y . By the

above proof there is xy ∈ f−1(y) such that whenever U is an open neighborhood
of xy , there exists P ∈ Py satisfying P ⊂ f(U). Denote {Bn : n ∈ N} a countable
neighborhood base at xy such that Bn+1 ⊂ Bn for every n ∈ N. Let {yn} be any
sequence in Y , which converges to y. Now, we choose a sequence {zn} in X as
follows.
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Since Bn is an open neighborhood of xy , by the above argument, there exists
Pkn

∈ Py satisfying Pkn
⊂ f(Bn) for every n ∈ N, and by assumption every

P ∈ Py is a sequential neighborhood. It follows that for each n ∈ N, f(Bn) is a
sequential neighborhood of y in Y . Hence, for each n ∈ N, there exists in ∈ N
such that yi ∈ f(Bn) for every i ≥ in. Assume that 1 < in < in+1 for each n ∈ N.
Then for each j ∈ N, we take

zj =

{

zj ∈ f−1(yj) if j < i1,

zj,n ∈ f−1(yj) ∩ Bn if in ≤ j < in+1.

Denote S = {zj : j ≥ 1}. Then S converges to xy in X and f(S) = {yn}.
(2) Let f be a Lindelöf map, and X be first countable. Firstly, we prove that

for each y ∈ Y , there exists xy ∈ f−1(y) such that for every neighborhood U of
xy , there exists P ∈ Py satisfying P ⊂ f(U). Indeed, if not, there exists y ∈ Y

such that for each x ∈ f−1(y), there exists an open neighborhood Ux satisfying
P * f(Ux) for every P ∈ Py. Since f is a Lindelöf map, and {Ux : x ∈ f−1(y)}
is an open cover of f−1(y), there exists a countable family {Un : n ∈ N} ⊂ {Ux :
x ∈ f−1(y)} such that f−1(y) ⊂

⋃

{Un : n ∈ N}. Now, using the argument from
the proof of (1), this leads to a contradiction. Then, using again the proof of (1),
we obtain that f is a 1-sequence-covering map. �

Corollary 2.3. Let f : X −→ Y be a map. If one of the following conditions is
satisfied, then f is a 1-sequence-covering map.

(1) f is a sequence-covering s-map, X has a point-countable base and Y is
gf -countable.

(2) f is a sequence-covering Lindelöf map, X is first countable and Y is gf -
countable.

(3) f is a weak-open map and X is first countable.

Proof: It follows from Proposition 2.2 and Remark 1.5 that both (1) and (2)
imply that f is 1-sequence-covering. Assuming (3), because f is a weak-open map
and X is first countable, it follows from Lemma 2.1 that Y is gf -countable. Since
f is a weak-open map, for each y ∈ Y , there exists xy ∈ f−1(y) such that for
every neighborhood U of xy , there exists P ∈ Py satisfying P ⊂ f(U). Then
using the proof of Proposition 2.2(1), we have f is 1-sequence-covering. �

Corollary 2.4 ([14]). Every open map of a first countable space is 1-sequence-
covering.

Theorem 2.5. If f : X −→ Y is a sequence-covering π-s-map, then f is a
1-sequence-covering map.

Proof: Firstly, we prove that Y is snf -countable. Let f : (X, d) −→ Y be a
sequence-covering π-s-map, and (X, d) be a metric space. For each n ∈ N, denote

Fn =
{

f
[

B
(

z,
1

n

)]

: z ∈ X
}

, with B
(

z,
1

n

)

=
{

y ∈ X : d(z, y) <
1

n

}

.
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It is clear that Fn+1 refines Fn for each n ∈ N. Now, for each x ∈ Y , we put
Px = {st(x,Fn) : n ∈ N}, P =

⋃

{Px : x ∈ Y }. Then,
(i) It is obvious that Px is countable for every x ∈ Y .
(ii) Let U be an open neighborhood of x. Since f is a π-map, there exists

n ∈ N such that d(f−1(x), X \ f−1(U)) > 1
n . Take m ∈ N such that m ≥ 2n. It

is easy too see that if x ∈ f [B(z, 1m )] for some z ∈ X , then B(z, 1m ) ⊂ f−1(U),

so f [B(z, 1m )] ⊂ U . Since

st(x,Fm) =
⋃

{

f
[

B
(

z,
1

m

)]

: B
(

z,
1

m

)

∩ f−1(x) 6= ∅
}

,

this implies that st(x,Fm) ⊂ U . Therefore Px is a network at x.
(iii) Let P1, P2 ∈ Px. Then there exist m, n ∈ N such that P1 = st(x,Fm), and

P2 = st(x,Fn). Pick k ∈ N such that k > max{m, n} and put P = st(x,Fk). It is
obvious that P ∈ Px. Suppose y ∈ P = st(x,Fk); then there exists z1 such that

y ∈ f [B(z1,
1
k
)] ∈ Fk. Since Fk refines Fm and Fn, there exist f [B(z2,

1
m)] ∈ Fm

and f [B(z3,
1
n )] ∈ Fn such that f [B(z1,

1
k
)] ⊂ f [B(z2,

1
m)], and f [B(z1,

1
k
)] ⊂

f [B(z3,
1
n )]. Thus y ∈ f [B(z2,

1
m)] ∩ f [B(z3,

1
n )], so y ∈ st(x,Fm) ∩ st(x,Fn).

Therefore P ⊂ P1 ∩ P2.
(iv) Suppose P ∈ Px and let {xn} be any sequence in Y which converges to x

in Y . Because f is a sequence-covering map, {xn} is the image of some sequence
{zn} converging to z ∈ f−1(x) in X . Since P ∈ Px, there exists m ∈ N such that

P = st(x,Fm) =
⋃

{

f
[

B
(

z,
1

m

)]

: f−1(x) ∩ B
(

z,
1

m

)

6= ∅
}

.

Since {zn} converges to z ∈ f−1(x) and
⋃

{B(z, 1m) : f
−1(x)∩B(z, 1m) 6= ∅} is a

neighborhood of f−1(x), {zn} is eventually in
⋃

{B(z, 1m) : f
−1(x)∩B(z, 1m) 6= ∅}.

This implies that {xn} is eventually in P . Hence, P is a sequential neighborhood
of x in Y . Therefore, Y is snf -countable.
Then, it follows from Proposition 2.2(1) that f is a 1-sequence-covering map.

�

Remark 2.6. Since every compact map of a metric space is a π-s-map, Theorem 2.5
is a generalization of Theorem 1.1. Furthermore, this generalization is proper.

Example 2.7. There is a sequence-covering π-s-map f : X −→ Y of a metric
space X which is not a sequence-covering compact map.

Proof: Indeed, let R be the real line with usual Euclidean topology. Denote
X = R and Y = (−∞; 0]. Now, we define f : X −→ Y by

f(t) =

{

t if t ∈ (−∞; 0]

0 if t ∈ [0; +∞).
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Then, we have
(1) f is a surjective, continuous s-map. It is obvious.
(2) f is a π-map. Indeed, let y ∈ (−∞; 0] and U be an open neighborhood of y.

If y = 0, then f−1(0) = [0,+∞) and there is ε > 0 such that 0 ∈ (−ε; 0] ⊂ U .
Hence, we have

d
(

f−1(y), R \ f−1(U)
)

≥ d
(

[0,+∞), R \ f−1[(−ε; 0]
]

)

= d
(

[0,+∞), (−∞;−ε]
)

≥ ε > 0.

If y 6= 0, then f−1(y) = {y} and there is ε > 0 such that (y − ε, y + ε) ⊂ U . So,
we have

d
(

f−1(y), R \ f−1(U)
)

≥ d
(

{y}, R \ f−1[(y − ε; y + ε)
]

)

= d
(

y, (−∞; y − ε] ∪ [y + ε; 0]
)

≥ ε > 0.

Therefore, f is a π-map.
(3) f is a sequence-covering map. In fact, suppose S = {yn : n ∈ ω} is any

sequence converging to y0 in Y . Since Y ⊂ X , S = {yn : n ∈ ω} ⊂ X . By
definition of f , we have f(yn) = yn for every n ∈ ω. Therefore f is a 1-sequence-
covering map.
(4) f is not a compact map. Since f−1(0) = [0,+∞), and [0,+∞) is not

compact in R, it follows that f is not compact.
By Corollary 3.6 in [25], Remark 1.8 and Theorem 2.5, we get �

Corollary 2.8. Let f : M −→ X be a map. If M is a metric space, then the

following are equivalent:

(1) f is a weak-open π-s-map;
(2) f is a 1-sequence-covering, quotient π-s-map;
(3) f is a sequence-covering, quotient π-s-map.

Corollary 2.9. Let f : M −→ X be a map. If M is a metric space, then the

following are equivalent:

(1) f is a weak-open compact map;
(2) f is a 1-sequence-covering, quotient compact map;
(3) f is a sequence-covering, quotient compact map.

Proof: It follows immediately by Corollary 2.8. �
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