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On ω-resolvable and almost-ω-resolvable spaces

J. Angoa, M. Ibarra, A. Tamariz-Mascarúa

Abstract. We continue the study of almost-ω-resolvable spaces beginning in A. Tamariz-
Mascarúa, H. Villegas-Rodŕıguez, Spaces of continuous functions, box products and
almost-ω-resoluble spaces, Comment. Math. Univ. Carolin. 43 (2002), no. 4, 687–705.
We prove in ZFC: (1) every crowded T0 space with countable tightness and every T1 space
with π-weight ≤ ℵ1 is hereditarily almost-ω-resolvable, (2) every crowded paracompact
T2 space which is the closed preimage of a crowded Fréchet T2 space in such a way
that the crowded part of each fiber is ω-resolvable, has this property too, and (3) every
Baire dense-hereditarily almost-ω-resolvable space is ω-resolvable. Moreover, by using
the concept of almost-ω-resolvability, we obtain two results due the first one to O. Pavlov
and the other to V.I. Malykhin: (1) V = L implies that every crowded Baire space is
ω-resolvable, and (2) V = L implies that the product of two crowded spaces is resolvable.
Finally, we prove that the product of two almost resolvable spaces is resolvable.

Keywords: Baire spaces, resolvable spaces, almost resolvable spaces, almost-ω-resolvable
spaces, tightness, π-weight

Classification: Primary 54D10, 54E52, 54A35; Secondary 54C05, 54A10

1. Introduction

The relations between the topological properties of a crowded space X and
the space C�(X) of real-valued continuous functions defined on X with its box
topology were analyzed in [TV]. In particular, the authors determined for which
crowded spaces X , C�(X) is a discrete space. This analysis led the authors
of [TV] to consider the resolvable and irresolvable spaces and the measurable
cardinals. Resolvable and irresolvable spaces were studied extensively first by
Hewitt [H]. Later, El’kin and Malykhin published a number of papers on these
subjects and their connections with various topological problems. One of the
problems considered by Malykhin [M1] refers to the existence of irresolvable spaces
satisfying the Baire Category Theorem. He proved that there is such a space if
and only if there is a space X on which every real-valued function is continuous
at some point. The question about the existence of a Hausdorff space on which
every real-valued function is continuous at some point was posed by M. Katětov
in [K]. Bolstein introduced in [B] the spaces X on which it is possible to define
a real-valued function f with countable range and such that f is discontinuous
at every point of X (he called these spaces almost resolvable), and proved that



486 J. Angoa, M. Ibarra, A.Tamariz-Mascarúa

every resolvable space satisfies this condition (in [FL] it is proved that X is almost
resolvable iff there is a function f : X → R such that f is discontinuous at every
point of X). Almost-ω-resolvable spaces were introduced in [TV]; these are spaces
on which it is possible to define a real-valued function f with countable range,
and such that r ◦ f is discontinuous in every point of X , for every real-valued
finite-to-one function r. It was proved in that article that for a Tychonoff space
X , C�(X) is discrete if and only if X is almost-ω-resolvable, some relations were
analysed between almost-ω-resolvable spaces and spaces having resolvable-like
properties, and it was also proved that the existence of a measurable cardinal
is equiconsistent with the existence of a Tychonoff space without isolated points
which is not almost-ω-resolvable, and that, on the contrary, if V = L then every
crowded space is almost-ω-resolvable.
In this article we are going to continue the study of almost-ω-resolvable, almost

resolvable and resolvable spaces, and we will solve some problems related to these
posed in [TV]. In this work, each space will be considered a T0 topological space.
Section 2 is devoted to establishing basic definitions, examples and results.

In Section 3 we prove that every space with countable tightness and every T1
space with π-weight ≤ ℵ1 is hereditarily almost-ω-resolvable. Furthermore, we
are going to see in Section 4 that every crowded paracompact T2 space which
is the closed preimage of a crowded Fréchet T2 space in such a way that the
crowded part of each fiber is ω-resolvable, has this property too. Next, in Sec-
tion 5, we prove that every Baire dense-hereditarily almost-ω-resolvable space is
ω-resolvable, and that every crowded space which does not contain a Baire open
subspace is almost-ω-resolvable. In the last section we prove, using the concept
of almost-ω-resolvability, that the product of two almost resolvable spaces is re-
solvable.
The basic terms not defined and considered in this paper are presented as in

[W] with the difference that we are adding to all spaces the T0 separation axiom.
And all the basic definitions about the topological cardinal functions can be found
in [Ho].

2. Basic definitions and preliminaries

A point x in a spaceX is an isolated point ofX if {x} is open in X , and a space
X is crowded if it does not contain isolated points. Observe that every crowded
space is infinite and every open subset of a crowded space is still crowded.
A space X is resolvable if it is the union of two disjoint dense subsets. We

say that X is irresolvable if it is crowded and it is not resolvable. For a cardinal
number κ > 1, we say that X is κ-resolvable if X is the union of κ pairwise
disjoint dense subsets.
The dispersion character ∆(X) of a spaceX is the minimum of the cardinalities

of nonempty open subsets of X . If X is ∆(X)-resolvable, then we say that X is
maximally resolvable. A space X is hereditarily irresolvable if it is crowded and



On ω-resolvable and almost-ω-resolvable spaces 487

every subspace of X is irresolvable. And X is open-hereditarily irresolvable if it
is crowded and every open subspace of X is irresolvable.
We call a space (X, t) maximal if (X, t) is crowded and (X, t′) contains at least

one isolated point when t′ strictly contains the topology t. And a space X is
submaximal if it is crowded and every dense subset of X is open. Of course,
every κ-resolvable space is τ -resolvable if τ ≤ κ. Moreover, every maximal space
is submaximal, and these are hereditarily irresolvable spaces, which in turn are
open-hereditarily irresolvable.
In [B] it was proved that the following formulation can be given as a definition

of almost resolvable space: A space X is called almost resolvable if X is the union
of a countable collection of subsets each of them with an empty interior. And
in [TV] it was proved that the following formulation can be given as a definition
of almost-ω-resolvable space: A space X is called almost-ω-resolvable if X is the
union of a countable collection {Xn : n < ω} of subsets in such a way that for
each m < ω, int(

⋃

i≤m Xi) = ∅. In particular, every almost-ω-resolvable space
is almost resolvable, every ω-resolvable space is almost-ω-resolvable, every (T0)
almost resolvable space is infinite and crowded, and every T1 separable crowded
space is almost-ω-resolvable.
We shall say that a space X is hereditarily almost-ω-resolvable if each crowded

subspace of X is almost-ω-resolvable, and X is dense-hereditarily almost-ω-resolv-
able if each crowded dense subspace of X is almost-ω-resolvable.
Bolstein [B] proved that a space X is resolvable if it is the union of a finite col-

lection formed by subsets with an empty interior in each. That is, every resolvable
space is almost resolvable.

2.1 Examples. It was proved in Theorem 4.4 of [KST] that the existence of an
ω1-complete ideal I over ω1 which has a dense set of size ω1 implies the existence
of a T2 Baire open-hereditarily irresolvable topology T on ω1. On the other
hand, it was proved in [TV, Corollary 4.9] that every Baire irresolvable space
is not almost resolvable (see Proposition 5.10 below). Therefore, (ω1, T ) is not
almost resolvable; and, of course, it is not almost-ω-resolvable. (The existence
of a Baire irresolvable space is equiconsistent with the existence of a measurable
cardinal, see Corollary 3.6 in [KST] and Theorem 28 in [H]. Besides, each one of
these conditions is equiconsistent with the existence of a non-almost-ω-resolvable
Tychonoff space; see [TV, Theorem 4.16].)
The classes of almost resolvable, almost-ω-resolvable and resolvable spaces do

not coincide in ZFC (but in ZFC + V = L, almost resolvability and almost-ω-
resolvability are the same concept; see Theorem 5.11 above). First of all, if there
is a measurable cardinal α, then there is a resolvable space X which is not almost-
ω-resolvable. Indeed, let α be a non countable Ulam-measurable cardinal, and let
p be a free ultrafilter on α w+-complete. Let X = α ∪ {p}. We define a topology
t for X as follows: A ∈ t \ {∅} if and only if p ∈ A and A ∩ α ∈ p. This space
is resolvable and non-almost-ω-resolvable. (Moreover, this space X is Baire and
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∆(X) = α. See Example 4.2 in [TV].)
Furthermore, in ZFC, there are almost-ω-resolvable spaces which are not re-

solvable. To see this, observe that the union of Tychonoff (resp., regular) crowded
topologies inQ generates a Tychonoff (resp., regular) crowded topology. By Zorn’s
Lemma, we can consider a maximal Tychonoff topology T0 (resp., a maximal reg-
ular topology T1) in Q. It happens that (Q, T0) is hereditarily irresolvable ([H,
Theorems 15 and 26]), and it is almost-ω-resolvable because Q is countable. More-
over, in Example 3.3 in [vD], van Douwen proved that the subspace θ = {x ∈ Q :
there is no nowhere dense subset A of Q such that x ∈ clA \ A} of (Q, T1) is
maximal (and, of course, it is regular and almost-ω-resolvable).
Finally, there is a “concrete” (in the sense that we can say how its open sets

look like) countable irresolvable space. Indeed, in [A], the authors construct by
transfinite recursion a countable dense subset X of the space 2c which is irresolv-
able. (Even more, for every cardinal number κ, it was constructed in Example 4.1
of [TV] a Tychonoff spaceX which is almost-ω-resolvable, hereditarily irresolvable
and ∆(X) ≥ κ.)

On the other hand, the class of resolvable spaces includes spaces with well
known properties:

2.2 Theorem. All the spaces considered in this theorem are crowded.

(1) If X has a π-network N such that |N | ≤ ∆(X) and each N ∈ N satisfies
|N | ≥ ∆(X), then X is maximally resolvable [E2].

(2) The locally compact Hausdorff spaces are maximally resolvable [H].
(3) First countable T2 spaces are maximally resolvable [E1].
(4) Hausdorff k-spaces are maximally resolvable [P] (in particular, metrizable
spaces are maximally resolvable [H]).

(5) Countably compact regular T1 spaces are ω-resolvable [CGF].
(6) Arc connected spaces are ω-resolvable (in particular, every topological
vector space over R is ω-resolvable).

(7) Every biradial space (in particular, every linearly orderable topological
space) is maximally resolvable [Vi2].

(8) Every homogeneous space containing a non trivial convergent sequence is
ω-resolvable [Vi1].

(9) If G is an uncountable ℵ0-bounded topological group, then G is ℵ1-
resolvable [Vi2].

The following basic result will be very helpful (see, for example, [CF]).

2.3 Proposition. If X is the union of κ-resolvable (resp., almost-resolvable,
almost-ω-resolvable) subspaces, then X has the same property.

2.4 Remarks. (1) Every open and every regular closed subset of a κ-resolvable
(resp., almost resolvable, almost-ω-resolvable) space shares this property.
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(2) The free topological sum
⊕

j∈J Xj of crowded spaces is κ-resolvable (resp.,

almost resolvable, almost-ω-resolvable) if and only if each Xj satisfies the
same property.

(3) If X is crowded and Y is an arbitrary topological space, then X × Y is
crowded.

(4) Let X be a space which contains a dense subset which is κ-resoluble (resp.,
almost resolvable, almost-ω-resolvable). Then, X satisfies this property
too.

We cannot ameliorate Proposition 1 in the previous remarks by writing “a Gδ-
set” or even “a zero set” instead of “an open set”. In fact, if X is a crowded
space and does not satisfy P ∈ {κ-resolvability, almost resolvability, almost-ω-
resolvability}, then X × R is 2ω-resolvable (see, for example, [TV]) and X × {0}
is a zero-set (then, it is a closed Gδ-set).

2.5 Corollary. Let P be a topological property such that if X satisfies P , then
any open subset does. Then, the expression “Every crowded topological space
with P is κ-resolvable (resp., almost-resolvable, almost-ω-resolvable)” is equiva-
lent to “Every crowded topological space with P contains a non empty κ-resolvable
(resp., almost-resolvable, almost-ω-resolvable) subspace”. When “open” is substi-
tuted by “regular closed” and the topological spaces are regular in this proposition,
then also we obtain a true claim.

Proof: Assume that every space with property P contains a non empty κ-
resolvable (resp., almost-resolvable, almost-ω-resolvable) subspace. Let X be any
crowded space with property P . Let Y be the union of every κ-resolvable (resp.,
almost-resolvable, almost-ω-resolvable) subspace of X . The subspace Y is closed
in X and it is κ-resolvable (resp., almost-resolvable, almost-ω-resolvable) (see
Proposition 2.3 and Remark 2.4.4). Then X = Y ∪ A, where A contains no
κ-resolvable (resp., almost-resolvable, almost-ω-resolvable) subspace. If A is non-
empty, then A contains an open (a regular closed) subset which is crowded and
does not contain a κ-resolvable (resp., almost-resolvable, almost-ω-resolvable)
subspace. Then A must be empty and X is κ-resolvable (resp., almost-resolvable,
almost-ω-resolvable). �

The following results are easy to prove and well known.

2.6 Proposition. Let Y be a κ-resolvable (resp., almost-resolvable, almost-ω-
resolvable) space. If f : X → Y is a continuous and onto function, and for each
open subset A of X the interior of f [A] is not empty, then X is κ-resolvable
(resp., almost-resolvable, almost-ω-resolvable).

2.7 Corollary. If X is κ-resolvable (resp., almost resolvable, almost-ω-resolv-
able) and Y is an arbitrary topological space, then X × Y is κ-resolvable (resp.,
almost resolvable, almost-ω-resolvable).
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2.8 Proposition. Let f : X → Y be continuous and bijective. If X is κ-
resolvable (resp., almost-resolvable, almost-ω-resolvable), so is Y .

Let X be a κ-resolvable (resp., almost-resolvable, almost-ω-resolvable) space.
A resolution (resp., an almost resolution, an almost-ω-resolution) for X is a par-
tition {Vλ : λ < κ} (resp., a partition {Vn : n < ω}) of X such that each Vλ is a
dense subset of X (resp., int(Vn) = ∅ for every n < ω, int(

⋃n
i=0 Vi) = ∅ for every

n < ω).

2.9 Proposition. Let Y be a crowded space. Then the following propositions
are equivalent:

(1) Y is almost-ω-resolvable;
(2) there exist an almost-ω-resolvable space X , an almost-ω-resolution V =

{Vn : n < ω} on X and an onto continuous function f : X → Y such that,
for every y ∈ Y ,

|{V ∈ V : V ∩ f−1[{y}] 6= ∅}| < ℵ0.

Proof: The implication (1) ⇒ (2) is trivial; we only have to put X = Y , V an
arbitrary almost-ω-resolution on Y and the identity function f .
(2) ⇒ (1): For each y ∈ Y , we define n(y) = max{k < ω : f−1[{y}]∩ Vk 6= ∅}.

Now, for each t < ω we define Wt = {y ∈ Y : n(y) = t}. The collection
{Wt : t < ω} is an almost-ω- resolution for Y . �

The following can be proved in a similar way.

2.10 Proposition. Let Y be a crowded space. Then the following propositions
are equivalent:

(1) Y is almost resolvable;
(2) there exist an almost resolvable space X , an almost resolution V = {Vn :

n < ω} on X and an onto continuous function f : X → Y such that, for
every y ∈ Y , f−1[{y}] has a nonempty intersection with only one element
of V .

2.11 Corollary. Let X and Y be crowded spaces. If X is almost-ω-resolvable
and u : X → Y is an onto continuous function such that each fiber of u is finite,
then Y is almost-ω-resolvable.

2.12 Remarks. The last result cannot be ameliorated by putting “with count-
able fibers” or “with compact fibers”. In fact, assume that X is a non-almost-ω-
resolvable space. Now, take the space Y =

⊕

x∈X Yx where Yx is homeomorphic
to [0, 1] (resp., homeomorphic to Q). Now, let f : Y → X be defined as f(r) = x if
r ∈ Yx. The function f is continuous and onto, Y is almost-ω-resolvable, each fiber
is compact (resp., countable) and, nevertheless, X in not almost-ω-resolvable.
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Let κ be an infinite cardinal number. A space X is called Sκ-space if it has
the form X =

⋃

λ<κ Xλ where: (1) Xλ 6= ∅ for each λ < κ, (2) for λ 6= γ,
Xλ ∩ Xγ = ∅, (3) each x ∈ Xλ belongs to clX Xλ+1, and (4) if λ is an ordinal
limit, each x ∈

⋃

γ<λ Xγ is an accumulation point of the set Xλ. (Observe that

(3) and (4) are equivalent to (3’): for each λ < κ with 0 < λ, each x ∈
⋃

γ<λ Xγ

is an accumulation point of the set Xλ.)

2.13 Proposition. Every Sκ-space is κ-resolvable.

Proof: Let X =
⋃

λ<κ Xλ be an Sκ-space. Of course, X does not have any
isolated points. Let {Aλ : λ < κ} be a partition of κ constituted by subsets of
cardinality κ. For each λ ∈ κ, let Yλ be equal to

⋃

γ∈Aλ
Xγ . It happens that the

collection {Yλ : λ < κ} is a family of disjoint dense subsets of X . �

3. Tightness, π-weight and almost-ω-resolvability

It was noted in [TV] that every crowded space of the first category is almost-
ω-resolvable. It was also proved that every crowded T1 separable space is almost-
ω-resolvable. In our first two results of this section we will generalize this last
proposition in two different directions. First, a definition:

A collection of spaces P is called an r-ideal if it satisfies:

(1) if E is crowded and E ∈ P , then E is almost-ω-resolvable,
(2) if A, B are subspaces of a space X and both belong to P , then A∪B ∈ P ,
(3) if E ∈ P and F is a closed subset of E, then F ∈ P .

Naturally, r-ideals can contain very large classes of spaces as can be appreciated
in Theorem 2.2.

3.1 Proposition. Let P be an r-ideal. If X is a crowded space which is the
union of a countable collection of closed subsets of X each of them belonging
to P , then X is almost-ω-resolvable.

Proof: Let X be equal to
⋃

n<ω Kn where Kn ∈ P and is closed for each n < ω.

First case: For every n < ω, int(
⋃n

i=0Kn) = ∅.

In this case {Kn : n < ω} is an almost-ω-resolution for X , so X is almost-ω-
resolvable.

Second case: There is a natural number n0 such that int(
⋃n0

i=0Ki) 6= ∅, and for
all n > n0,

(*) int
(

n
⋃

i=0

Ki

)

= int
(

n0
⋃

i=0

Ki

)

.
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Since int(
⋃n0

i=0Ki) is an open subset of a crowded space, it is crowded. Thus,
Y = cl(int(

⋃n0
i=0Ki) is crowded and belongs to P because it is a closed subset of

⋃n0
i=0Ki. If Y = X we have finished our proof.
Assume that Z = X \ Y is not empty. The space Z is crowded and can be

written as Z =
⋃

n<ω Zn, where Zn = Kn \ Y . If T = {m < ω : Zm 6= ∅} is

finite, then Z would be a non empty open set of X contained in
⋃k0

i=0Ki \ Y for
a k0 < ω. But, this contradicts either the definition of n0 or (*). Hence, without
loss of generality, we can suppose that Zn is not void for every n.
Now, for every n < ω, intZ

⋃n
i=0 Zi is empty because, since Z is open in X ,

intZ
⋃n

i=0 Zi = intX
⋃n

i=0 Zi, so if intZ
⋃n

i=0 Zi is not empty we again arrive to
a contradiction with respect to either the definition of n0 or (*). Therefore, Z is
almost-ω-resolvable.

Third case: There is a sequence n0 < n1 < · · · < nk < . . . of natural numbers
such that int(

⋃nj

i=0Ki) is a proper subset of int(
⋃nj+1

i=0 Ki) for every j < ω.

In this case, each cl(int(
⋃nk

i=0Ki)) is a closed and crowded subset of
⋃nk+1

i=0 Ki.
So, it is almost-ω-resolvable. Therefore,

P = cl
[

⋃

k<ω

cl
(

int
(

nk
⋃

i=0

Ki

))]

is almost-ω-resolvable.
Now X \P is open, so, if it is not void it is crowded and it is equal to

⋃

i<ω(Ki\
P )). Moreover, following a similar argumentation to that given for the second
case, for every n < ω, intP (

⋃n
i=0(Ki \ P )) = ∅. Hence, {Ki \ P : i < ω} is an

almost-ω-resolution for X \P . That is, X \P is almost-ω-resolvable. We conclude
that, in this case too, X is almost-ω-resolvable. �

An evident consequence of Theorem 2.2 and Proposition 3.1 is:

3.2 Corollary. Let X be a crowded space. If X is T2 and σ-k-space (in parti-
cular, σ-compact or σ-metrizable), then X is almost-ω-resolvable.

Recall that there are countable irresolvable spaces (see Examples 2.1), so there
are σ-compact spaces which are not resolvable.

3.3 Problem. Is every crowded T2 Lindelöf space almost-ω-resolvable in ZFC?

3.4 Proposition. Let X be a crowded space. If the tightness of X is countable,
then each point x ∈ X is contained in a countable crowded subspace of X .

Proof: Let x0 ∈ X be an arbitrary fixed point. Since X is crowded, x0 ∈
clX [X \{x0}]; so there is a countable subset F1 ⊂ X \{x0} such that x0 ∈ clX F1.
If F0 ∪ F1 is crowded, where F0 = {x0}, then, being countable, it is an almost-
ω-resolvable space containing x0. Otherwise, for each isolated point x of F0 ∪F1,
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there is a countable subset F 2x ⊂ X \ ({x0} ∪ F1) such that x ∈ clX F 2x . Let
F2 =

⋃

x∈G1
F 2x where G1 is the set of isolated points of F0 ∪ F1. Again, there

are two possible situations: either F0 ∪ F1 ∪ F2 is a countable crowded subspace
containing x0, orG2 = {x ∈ F2 : x is an isolated point of F0∪F1∪F2} is not empty.
In this last case, for each x ∈ G2 we take a countable subset F

3
x ⊂ X\(F0∪F1∪F2)

for which x ∈ clX F 3x . We write F3 =
⋃

x∈G2
F 3x . Continuing this process if

necessary, we obtain either a finite sequence F0, . . . , Fn of subsets of X such that
x0 ∈ F =

⋃

0≤i≤n Fn and F is countable and crowded, or we have to go further:

x0 ∈ F =
⋃

n<ω Fn. In this last case too, F is countable and crowded. �

3.5 Corollary. Let X be a crowded space. If the tightness of X is countable,
then X is hereditarily almost-ω-resolvable.

Proof: Since the tightness is a monotone cardinal topological function, it is
sufficient to prove that a crowded space with countable tightness is almost-ω-
resolvable. By Proposition 3.4, each point of X is contained in a countable
crowded subspace Yx of X . Since each Yx is almost-ω-resolvable, X is almost-ω-
resolvable being the union of almost-ω-resolvable subspaces (Proposition 2.3).

�

This last theorem cannot be improved by putting “tightness ≤ ℵ1”. In fact,
as we have mentioned in Examples 2.1, it was proved in Theorem 4.4 of [KST]
the existence of a T2 Baire open-hereditarily irresolvable topology T on ω1. This
space (ω1, T ) is not almost-ω-resolvable (see Proposition 5.10 below).

Let X be a topological space. By πcnw(X) we will denote the smallest cardinal
number of a collection N of subsets of X with the property: each element in N
is crowded and N is a π-network of X . Such a family will be called π-crowded
network of X . The number πcnw(X) is called the π-crowded netweight of X .

3.6 Proposition. Let X be a crowded T1 space. If the π-crowded netweight
of X is less or equal to ℵ1, then X can be written as the union of two disjoint
subspaces Y and Z, where Y is a closed almost-ω-resolvable subspace of X , and
Z is an open maximal resolvable subspace of X .

Proof: If X is a crowded T1 space with a countable π-network, then it is almost-
ω-resolvable. In fact, let R0, . . . , Rn, . . . be a π-network in X . Take xn ∈ Rn for
each n < ω. So, D = {x0, x1, . . . , xn, . . . } is a dense set. Since X is T1 and
crowded, D is also crowded. Hence, X is an almost-ω-resolvable space.

Now assume that X is a T1 crowded space with πcnw(X) = ℵ1. Let N be a
π-crowded network of X of cardinality ℵ1. Let B0 = {U ⊂ X : U is open and
|{N ∈ N : N ⊂ U}| ≤ ℵ0}. Since {N ∈ N : N ⊂ U} is a π-network of U ,
each U ∈ B0 has countable π-network; thus it is almost-ω-resolvable. Therefore
Y0 = clX (

⋃

B0) is almost-ω-resolvable. Let Z0 be equal to X \ Y0 and assume
that Z0 6= ∅.
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Let B1 = {N ∈ N : N ⊂ Z0 and |N | ≤ ℵ0}. Since each N ∈ B1 is crowded,
it is almost-ω-resolvable. Thus, Y1 = clX(

⋃

B1) is almost-ω-resolvable. Now,
put Z = X \ (Y0 ∪ Y1), and let B2 = {N ∈ N : N ⊂ Z}. Then B2 is a π-
crowded network of Z, each N ∈ B2 has cardinality ℵ1 and |B2| ≤ ℵ1. Using
Theorem 2.2.1, we conclude that Z is maximally resolvable. �

3.7 Corollary. Every crowded T1 space with πcnw(X) ≤ ℵ1 is an almost-ω-
resolvable space.

Proof: In fact, because of Proposition 3.6 X can be written as Y ∪ Z where Y
is almost-ω-resolvable and Z is maximally resolvable. Every crowded T1 space is
infinite. So, if Z is not empty, Z is crowded T1 and at least ω-resolvable, then
it is almost-ω-resolvable. Therefore, because of Theorem 2.2, each crowded T1
space with πcnw(X) ≤ ℵ1 is almost-ω-resolvable. �

Since the π-weight is monotone and πcnw(X) ≤ πw(X), we have:

3.8 Corollary. Every crowded T1 space with πw(X) ≤ ℵ1 is hereditarily almost-
ω-resolvable.

As we have already said (see the paragraph that follows the proof of Corol-
lary 3.5), because of Theorem 4.4 in [KST] (see Examples 2.1, above), T2 crowded
spaces with density ≤ ℵ1 or even with cardinality ℵ1 are not necessarily almost-
ω-resolvable.

3.9 Problem. Is every T1 crowded space with π-crowded netweight ≤ ℵ2 al-
most-ω-resolvable?

Recall that a space X is collectionwise Hausdorff if for each relatively discrete
subspace Y of X there is a collection {Ay : y ∈ Y } of open sets such that y ∈ Ay

for each y ∈ Y and Ay ∩ Az = ∅ if y, z are two different points in Y .

3.10 Proposition. If each point x of a crowded spaceX is an accumulation point
of a relatively discrete subspace of X \ {x}, and X is collectionwise Hausdorff,
then each point x ∈ X is contained in an Sω subspace of X .

Proof: Assume that X is collectionwise Hausdorff. Let x0 be an element in X
and put F0 = {x0}. By hypothesis, there is a discrete subspace F1 of X \ F0
such that x0 ∈ clX F1. Since F1 is discrete and X is collectionwise Hausdorff
there is, for each y ∈ F1, an open set V

y
2 such that y ∈ V

y
2 , V

y
2 ∩ F1 = {y},

x0 /∈ V
y
2 and V

y
2 ∩ V z

2 = ∅ if y, z ∈ F1 and y 6= z. Now, for each y ∈ F1, we take

a discrete subspace F y
2 contained in V y

2 \ {y} in such a way that y ∈ clX F y
2 . We

set F2 =
⋃

y∈F1
F y
2 . Observe that F2 is a discrete subspace of X . We continue

in the same way: for each y ∈ F2 we select an open subset of X , V
y
3 , such that

V y
3 ⊆ V z

2 if y ∈ F z
2 , V

y
3 ∩ F z

2 = {y} and z /∈ V y
3 . Furthermore, V

y
3 ∩ V x

3 = ∅ if
y, x ∈ F2 and x 6= y. Let F3 be equal to

⋃

y∈F2
F y
3 .
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Following this process, we obtain a sequence F0, F1, . . . , Fn, . . . of disjoint dis-
crete subspaces such that F =

⋃

n<ω Fn is an Sω-subspace ofX which contains x0.
�

3.11 Corollary. If each point x of a crowded space X is an accumulation point
of a relatively discrete subspace of X \ {x}, and X is collectionwise Hausdorff,
then X is ω-resolvable.

Proof: Because of Proposition 3.10, each point x in X belongs to an ω-resolvable
subspace Yx of X (see Proposition 2.13). Therefore, X is ω-resolvable (Proposi-
tion 2.3). �

In [Pa], it is noted that, applying Ulam matrices to Malykhin’s method used in
[M1] in order to prove that V = L implies that every space is almost resolvable,
we can prove that every crowded space with countable cellularity and having
cardinality < the first inaccessible non-countable cardinal is almost resolvable.
Note that the topology constructed in [KST] which is Baire open-hereditarily
irresolvable on a set of cardinality ℵ1 is not almost resolvable (see Examples 2.1),
so its cellularity must be equal to ℵ1.

3.12 Problem. (1) Is every space of cardinality ℵ1 and countable cellularity
almost-ω-resolvable?

(2) Is every space with countable cellularity and cardinality less than the first
inaccesible non-countable cardinal almost-ω-resolvable?

4. Some remarks on generalized metric spaces

A natural question is: what subclasses, or similar classes, of the class of para-
compact crowded spaces are ω-resolvable (resp., almost-ω-resolvable, almost re-
solvable)? We can enumerate classes as submetrizable spaces, σ-spaces,M -spaces
and, in general, many of those studied in [Gr].
One of the more general classes of spaces studied in [Gr] is that of σ-spaces:

X is a σ-space if it is regular T1 and has a σ-discrete network (or, equivalently, a
σ-locally finite network).
We are going to give here a more inclusive definition of σ-space. A space X

will be called σ-space if X contains a σ-discrete network.
The proof of the following result is equivalent to that given for Theorem 4.8

in [Gr].

4.1 Lemma. If X is a Ti σ-space, with i ∈ {0, 1, 2}, then there is a Ti space Y
with a σ-discrete base and a continuous and bijective function f : Y → X . If,
additionally, X is regular and T1, Y is metrizable.

Every crowded countable space is a crowded σ-space. For example, Q with
its Euclidean topology T is a σ-space. Because of Theorem 4.3 in [CGF] (see
Examples 2.1, above), there is a topology T0 for Q such that (Q, T0) is Tychonoff
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and irresolvable. Of course, (Q, T0) is a σ-space because it is still countable. So,
there are Tychonoff σ-spaces, even countable, which are not resolvable.
Recall that a space X is σ-discrete if it is the countable union of relatively

discrete spaces, and X is strongly σ-discrete if it is the union of a countable
family of closed and discrete subspaces. Observe that every strongly σ-discrete
space is σ-discrete and it is a σ-space. It was proved in [TV] that every crowded
σ-discrete space is almost-ω-resolvable. We can also define the following: A space
X is σ-locally finite if X =

⋃

n<ω Xn and, for each n < ω, {{x} : x ∈ Xn} is a
relatively locally finite collection, and X =

⋃

n<ω Xn is a strongly σ-locally finite
space if for each n < ω, {{x} : x ∈ Xn} is locally finite in X . It can be proved
(see the proof of Theorem 3.5 in [TV]) that a crowded σ-locally finite space is
almost-ω-resolvable too.

4.2 Definition. A space X is a strictly-σ-space if it is a σ-space and it is the
condensation (the image under a continuous and bijective function) of a crowded
space with a σ-discrete base.

Observe that there are strictly-σ-spaces which are not first countable: in fact,
the netweight of the space Cp([0, 1]) of the real-valued continuous functions defined
on [0, 1] and with its pointwise convergence topology, is equal to nw([0, 1]) = ℵ0,
and so Cp([0, 1]) is a Tychonoff σ-space with character equal to |[0, 1]| = 2ω (see
[Ar]). Moreover, Cp([0, 1]) is the condensation of C([0, 1]) with its topology of
uniform convergence. Observe also that each strictly σ-space is crowded.
As a consequence of Proposition 2.8 and Theorem 2.2.3, we have:

4.3 Proposition. Each T2 strictly-σ-space is ω-resolvable.

It is easy to prove the following observation.

4.4 Remark. Let X be a T2 space. If X has a σ-discrete network N such that
for n ∈ N and N0, . . . , Nn ∈ N , N0 ∩ · · · ∩ Nn is empty or infinite, then X is a
strictly-σ-space.

The example given after Lemma 4.1 tells us that not every crowded σ-space is
a strictly σ-space.

4.5 Proposition. Every crowded σ-space is hereditarily almost-ω-resolvable.

Proof: The property of beeing a σ-space is herditarily; so, it is enought to prove
that every σ-space is almost-ω-resolvable. Let R =

⋃

n<ω Rn be a σ-discrete
network of a crowded σ-space X where each Rn is discrete. Take S = {

⋂

L : L ⊂
R and |L| < ℵ0}. For each F ∈ [ω]<ω let BF = {

⋂

L ∈ S : L ⊂
⋃

n∈F Rn and
L ∩ Rn 6= ∅ ∀ n ∈ F}. It happens that S is equal to

⋃

F∈[ω]<ω BF and each BF

is discrete because it is a refinement of Rn for n ∈ F . Then, S is a σ-discrete
network of X because S refines R. Now we modify the collection S as follows:
Take S0 = {R ∈ S : |R| ≥ ℵ0}, S1 = {{x} : ∃ R ∈ S such that x ∈ R and
|R| < ℵ0}, and S2 = S0 ∪ S1.
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The collection S0 is still a σ-discrete collection and S1 is σ-locally finite.

Assume that S1 is not empty and take Y = {x ∈ X : {x} ∈ S1}. If Y
is crowded, then it is a crowded σ-locally finite space. Hence, Y is almost-ω-
resolvable. If Y is not crowded, we can find an ordinal number α > 0, and for each
λ < α, an ω-resolvable subspaceMλ ofX such thatX1 = clX (Y ∪clX(

⋃

λ<α Mλ))
is almost-ω-resolvable. In fact, let D0 be the set of isolated points in Y0 = Y .
For each x ∈ D0, there is an open set Ax in X such that Ax ∩ Y0 = {x}.
Observe that Ax \ {x} is a dense subset of Ax and it is ω-resolvable because of
Remark 4.4. Thus, M0 = clX(

⋃

x∈D0
Ax) is an ω-resolvable space. Assume that

we have already constructed ω-resolvable subspaces Mλ of X with λ < γ. Put
Yγ = Y \ clX(

⋃

λ<γ Mλ). If Yγ is empty or crowded, we take α = γ, and in

this case clX(Y ∪ clX(
⋃

λ<γ Mλ)) is almost-ω-resolvable, because Yγ is empty or

crowded and σ-locally finite. If Yγ is not empty and is not crowded, let Dγ be
the set of isolated points in Yγ . For each x ∈ Dγ there is an open set Ax in X
such that Ax ∩ Yγ = {x} and Ax ∩ clX (

⋃

λ<γ Mλ) = ∅. Observe that Ax \ {x}
is a dense subset of Ax and it is ω-resolvable because of Remark 4.4. Thus,
Mγ = clX(

⋃

x∈Dγ
Ax) is an ω-resolvable space. Continuing with this process we

have to find an ordinal number α for which X1 = clX(Y ∪ clX(
⋃

λ<α Mλ)) must
be almost-ω-resolvable.

Now, if X0 = X \ X1 is not empty, then it is a crowded space and N = {N ∈
S0 : N ⊂ X0} is a σ-discrete net in X0 such that the intersection of the members
of each finite subcollection of N is empty or infinite. Then, again by Remark 4.4,
X0 is ω-resolvable. Therefore, X = X0 ∪ X1 is almost-ω-resolvable. �

The Lasnev spaces (which are the closed and continuous images of metrizable
spaces) are M1 spaces (Theorem 5.5 in [Gr]) which are defined as the regular T1
spaces containing a σ-closure preserving base, and these areM3 spaces, also called
stratifiable, which are contained in the class of σ-spaces. The countable hered-
itarily irresolvable space constructed in Example 3.3 of [vD] (see Examples 2.1,
above) is an M3-space. Finally, the regular T1 σ-spaces are semi-stratifiable.

4.6 Problem. Is every crowded semi-stratifiable space almost-ω-resolvable in
ZFC?

Recall that an onto continuous function f : X → Y is irreducible if f [A] 6= Y
for every proper closed subset A ⊂ X . A particular case of Proposition 2.6 is the
following:

4.7 Lemma. The crowded irreducible closed preimage of a κ-resolvable (resp.,
almost resolvable, almost-ω-resolvable) space has the same property.

Proof: Let f : X → Y be a continuous, irreducible, closed and onto function.
Assume that Y is κ-resolvable (resp., almost resolvable, almost-ω-resolvable). If
A is a non-empty open subset of X , F = X \ A is a closed proper subset of X .
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Therefore, f [F ] is a closed proper subset of Y . That is, int f [A] 6= ∅. Applying
Proposition 2.6, we obtain what we wanted. �

The following result is due to Lasnev:

4.8 Lemma. For every continuous and closed function f : X → Y from a para-
compact T2 space X onto a Frechét space Y , there is a closed subset X0 of X
such that f [X0] = Y and f ↾ X0 : X0 → Y is irreducible.

4.9 Lemma. If f : X → Y is onto, closed and irreducible, and if Y is crowded,
then X is crowded.

Proof: If for a x ∈ X the set {x} is open in X , then f [X \ {x}] is closed in Y .
Then, either f [X \{x}] = Y and so f is not irreducible, or f [X \{x}] = Y \{f(x)}
and f(x) is an isolated point in Y , again a contradiction. �

4.10 Proposition. Every paracompact T2 space which is the continuous closed
preimage of a crowded Frechét T2 space, contains a closed ω-resolvable subset.

Proof: Let f : X → Y be a continuous, closed and onto function. Assume that
X is paracompact T2 and Y is crowded, Frechét and T2. Because of Lemma 4.8,
there is a closed subset X0 of X such that f [X0] = Y and f ↾ X0 : X0 → Y
is irreducible. The relation f ↾ X0 is an onto continuous closed and irreducible
function. By Lemma 4.9, X0 is crowded, and by Lemma 4.7 and Theorem 2.2.4,
X0 is ω-resolvable. �

It is not difficult to construct examples of crowded irresolvable paracompact
T2 spaces which are the closed inverse image of a crowded Fréchet T2 space. For
instance, let X0 be the quotient obtained by identifying in a point p all the 0-
points of a countable collection of disjoint copies of [0, 1] (this is the so called
non-metrizable hedgehog). Let X1 be a Tychonoff crowded irresolvable countable
space, and let φ : X0 ⊕ X1 → X0 be defined by φ(x) = x if x ∈ X0 and φ(x) = p
if x ∈ X1. Then φ, X0 ⊕ X1 and X0 constitute our example.
A consequence of Theorem 4.10 and Corollary 2.5 is:

4.11 Corollary. Every crowded space for which every open set contains a crow-
ded paracompact T2 space which is the continuous closed preimage of a crowded
Frechét T2 space is ω-resolvable.

Recall that a space X is scattered if every non empty subset Y of X has an
isolated point with respect to the subspace topology in Y . For each non-empty
topological space Z there is an ordinal number α ≥ 0 and, if α > 0, non-empty
subspaces Zλ for each λ < α, such that Z0 is the set of isolated points in Z
and, for each λ < α, Zλ is the set of isolated points belonging to the subspace
Z \

⋃

γ<λ Zγ , Zα does not have any isolated point, and Z =
⋃

λ≤α Zλ. Observe

that if
⋃

λ<α Zλ is not empty then it is scattered, and Zα is either empty or
crowded and closed. We will denote in the following theorem this Zα by Z⋆.
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4.12 Theorem. LetX be a crowded paracompact T2 space, Y a crowded Fréchet
T2 space and f : X → Y a continuous, closed and onto function. Assume that
for each y ∈ Y (f−1[{y}])⋆ is empty or ω-resolvable (resp., almost-resolvable,
almost-ω-resolvable). Then X is ω-resolvable (resp., almost-resolvable, almost-ω-
resolvable).

Proof: We give the proof for the ω-resolvable case. The proof of the other
cases is similar. Let X0 be the closure of

⋃

{E ⊂ X : E is ω-resolvable}. By
Proposition 2.3 and Remark 2.4.4, W = clX(

⋃

(f−1[{y}])⋆) is contained in X0.
Let X1 be the difference X \ X0. The subspace X1 is open and if it is not void,
we can choose a non-empty open set A such that V = clX A ⊂ X1. Observe that
f ↾ V : V → f [V ] is a continuous, closed and onto function, V is paracompact T2
and f [V ] is a Fréchet T2 space. If f [V ] were crowded, then V would contain an
ω-resolvable subspace (Proposition 4.10) which is not possible. So, f [V ] contains
an isolated point z. This means that there is an open subset B of Y such that
B∩f [V ] = {z}. The set f−1[B] is open in X , so f−1[B]∩X1 is open in X too, and
contains a point x ∈ V . Thus, there is a x0 ∈ A∩f−1[B]. But A∩f−1[B] is equal
to A ∩ f−1[{z}] (because, if the contrary, B would share with f [V ] two different
points). Therefore, A∩f−1[{z}] is a non-empty open subset of the crowded space
X contained in f−1[{z}] \ [f−1[{z}]]⋆. So, A ∩ f−1[{z}] has an isolated point x
in it. But A ∩ f−1[{z}] is open in X . So {x} is open in X . This contradiction
implies that X1 must be empty and X must be ω-resolvable. �

Observe that, in the last three results, if the Fréchet T2 space Y is κ-resolvable
(κ ≥ ω), so is X .
A particular case of the previous result is that when the paracompact T2 space

X is the perfect preimage of a Fréchet T2 space or, even more, of a metrizable
space. In this last case X is called paracompact M -space. All these kind of spaces
are T2 k-spaces and, therefore, maximally resolvable.

Recall that a regular T1 space X is anM -space if it is the quasi-perfect preim-
age of a metrizable space. Every countably compact regular T1 space is an M -
space, and in Example 3.23 in [Gr] is presented a countably compact subset X of
βN which is not a k-space. Nevertheless, this space X is an ω-resolvableM -space
because it is a countably compact regular T1 space (see Theorem 2.2.5). So, it is
natural to ask:

4.13 Problem. Is every M -space an ω-resolvable (almost-ω-resolvable) space?

5. Baire property and almost-ω-resolvable spaces

The following claims are obvious.

5.1 Lemma. (1) A space X is a Baire space iff each open subset of X is a Baire
space.
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(2) If X is of the first category and A its open subset, then A is of the first
category with respect to its relative topology.

The following two lemmas were proved in [FL].

5.2 Lemma. Suppose X is a topological space. Then X can be written as the
union of mutually disjoint subsets F , B and N (resp., R, I, and M) such that F ,
B, R and I are open, N and M are nowhere dense (in fact, N is the boundary of
F and M is the boundary of R), F is of first category, R is resolvable, B is Baire
or B = ∅, and I is irresolvable and does not contain an open resolvable subset,
or I = ∅.

5.3 Lemma. A crowded space X is almost resolvable if and only if X = X0∪X1
where X0 is closed (with a non empty interior if it is not void) and it is resolvable,
and X1 is an open set of the first category.

As a consequence of this last result we have (see [FL]):

5.4 Corollary. In the class of Baire spaces, resolvability and almost-resolvability
are the same concept.

As every Tychonoff pseudocompact space is a Baire space, we obtain a partial
answer to Problem 8.12 posed in [CGF]:

5.5 Corollary. Every Tychonoff pseudocompact almost-resolvable space is re-
solvable.

By Corollary 5.4, every almost-ω-resolvable Baire space is resolvable. We are
going to see below that every Baire dense-hereditarily almost-ω-resolvable space
is ω-resolvable. (It was constructed in [TV], using a measurable cardinal, a (T0)
Baire resolvable space which is not almost-ω-resolvable, as it was already men-
tioned in Examples 2.1.)

5.6 Problem. Is every Baire almost-ω-resolvable space 3-resolvable?

For a cardinal number κ ≥ 1, we will say that X is exactly κ-resolvable, in
symbols EκR, if X is κ-resolvable but is not κ+-resolvable. The space X is said
to be OEκR if every nonempty open set in X is EκR. The concept and examples
of EnR spaces for n ∈ ω have existed in the literature for some time (see, for
example, [E3] and [vD]). It is clear that the OEκR spaces are EκR. The above
definitions can be viewed as natural generalizations of the concepts of irresolvable
and open-hereditarily irresolvable spaces since E1R and irresolvability are the
same concept and OE1R and open-hereditarily irresolvability coincide.

5.7 Proposition. Let X be an OEnR space for a n ∈ N with n ≥ 2 and such
that every crowded dense subspace of X is almost-ω-resolvable. Then, X is of
the first category.
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Proof: Let D1, . . . , Dn be disjoint and dense subsets of X whose union is equal
to X . Since n ≥ 2 and Di ∩ Dj = ∅ for different i, j ∈ {1, . . . , n}, each Di is
crowded. So, each Di is almost-ω-resolvable, and it can be expressed as

Di =
⋃

n<ω

T i
n

where {T i
n : n < ω} is an almost-ω-resolution. For each k < ω, let Mk be the set

⋃n
i=1 T i

k.

Claim 1: {Mn : n < ω} is an almost-ω-resolution of X .

Indeed, assume that there is a nonempty open set A of X , and A ⊂ M0 ∪ · · · ∪
Mk. It happens that A ∩ D0 6= ∅ because D0 is dense. Moreover, A ∩ D0 ⊂
(M0 ∪ · · · ∪ Mk) ∩ D0 = T 00 ∪ · · · ∪ T 0k . But this contradicts the hypothesis that

we made about {T 0n : n < ω}.

Assume now that X is not of the first category. Then, for a k < ω, W =
intX clX(M0 ∪ · · · ∪ Mk) 6= ∅. Put M =M0 ∪ · · · ∪ Mk.

Claim 2: M ∩ W and W \ M are dense subsets of W .

In fact, clX M = M ∪ FrX M and W ⊂ M ∪ FrX M . Let A be an open and
nonempty subset of W and let a ∈ A. If a ∈ M , then A ∩ M 6= ∅. If a ∈ FrX M ,
then, since A is open in X , A must intersect M .
On the other hand, if A ⊂ M , then intX(M0,∪ · · · ∪ Mk) 6= ∅ contradicting

Claim 1. So, A ∩ (W \ M) 6= ∅.

Claim 3: M ∩ W , (W \ M) ∩ D0, . . . , (W \ M) ∩ Dn are (n+ 1) disjoint dense
subsets of W .

In fact, by Claim 2, M ∩ W is dense in W . Now, assume that A is a non-
empty open subset of W such that A ∩ [(W \ M) ∩ Di] = ∅ for a i ∈ {1, . . . n}.
Then A is open in X and A ∩ Di is an open set of Di contained in M ∩ Di =
(M0∪· · ·∪Mk)∩Di = T i

0∪T i
1∪· · ·∪T i

k, but this assertion contradicts the nature

of {T i
n : n < ω}.

Therefore, X must be of the first category. �

The following Theorem is due to Li Feng and O. Masaveu [FM].

5.8 Theorem. Let X be a crowded topological space. Then X can be written
as

X = Ω ∪ clX

(

∞
⋃

n=1

On

)

,

where

(1) for each n, On is an open, possibly empty, subset of X ;
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(2) for each n, if On 6= ∅, then it is OEnR;
(3) for n 6= m, On ∩ Om = ∅; and
(4) Ω is an open, possibly empty, ω-resolvable subset of X .

Now, we present the main result of this section.

5.9 Theorem. Let X be a crowded Baire space such that every crowded dense
subset of it is almost-ω-resolvable. Then X is ω-resolvable.

Proof: Observe that since every crowded dense subset of X is almost-ω-resolv-
able, then every crowded dense subset D of each non-empty open subset A of
X is almost-ω-resolvable too because D is an open and crowded subset of the
crowded and dense subset D ∪ (X \A) of X . The space X can be written as Ω∪
clX (

⋃∞
n=1On) where Ω and each On satisfy the properties listed in Theorem 5.8.

For each n ∈ N, n ≥ 2, On must be empty, because if we had the contrary, every
crowded dense subset of On would be almost-ω-resolvable and so On would be
of the first category (Proposition 5.7), but this is not possible (Lemma 5.1.1).
Moreover, O1 is empty because if not then O1 would be a Baire irresolvable
subspace ofX ; but this class of spaces is not almost-ω-resolvable (see Corollary 4.9
in [TV]), contrary to our hypothesis. So, X must be equal to Ω which is ω-
resolvable. �

The proof of the following propositions can be found in [TV].

5.10 Proposition. (1) If X is a Baire irresolvable space, then X is not almost
resolvable.

(2) If we assume V = L, then every Baire crowded space is resolvable.
(3) V = L implies that every crowded space is almost resolvable.

(Proposition 5.11.3 is due to Malykhin [M1].) Moreover, we can deduce from
Section 4 in [TV] that V = L implies that every crowded space is almost-ω-
resolvable. Next, we are going to make the proof of this last result explicit.

5.11 Theorem. V = L implies that every crowded space is almost-ω-resolvable.

Proof: In Theorem 4.14 of [TV] it was proved that if every Baire space without
isolated points is resolvable, then every maximal space is almost-ω-resolvable. By
Proposition 2.8, every space is almost-ω-resolvable. �

Also, by using Proposition 2.8 and other results we obtain:

5.12 Proposition. The following assertions are equivalent:

(1) every crowded Baire space is resolvable;
(2) every crowded space is almost-resolvable;
(3) every crowded space is almost-ω-resolvable.



On ω-resolvable and almost-ω-resolvable spaces 503

Proof: If every Baire space is resolvable, then, by Lemma 4.14 in [TV], every
maximal space is almost resolvable, and so, every crowded space is almost resolv-
able (Proposition 2.8). The implication (2) ⇒ (3) is trivial, and Corollary 4.9 in
[TV] gives us (3) ⇒ (1). �

5.13 Question. Is every pseudocompact Tychonoff space almost-ω-resolvable in
ZFC?

As a consequence of Theorems 5.9 and 5.11 we obtain the following results
which were already presented by O. Pavlov in [Pa] and proved using different
tools.

5.14 Corollary. (1) (V = L) Every crowded Baire space is ω-resolvable.
(2) (V = L) Every crowded Tychonoff pseudocompact space is ω-resolvable.

Because of Corollary 3.5, Corollary 3.7, Proposition 4.5 and Theorem 5.9, we
conclude:

5.15 Corollary. Every crowded Baire space with countable tightness, every
crowded Baire T1 space with π-weight ≤ ℵ1 and every crowded Baire σ-space
is ω-resolvable.

So, every crowded pseudocompact Tychonoff space with either π-weight ≤ ℵ1
or with countable tightness or σ is ω-resolvable. With respect to the tightness,
in [BM] even more was proved: every crowded pseudocompact Tychonoff space
with countable tightness is maximally resolvable.

5.16 Corollary. Every dense-hereditarily almost-ω-resolvable space X can be
written as

X = X0 ∪ X1 = Y0 ∪ Y1

where X0 (resp., Y0) is empty or open (resp., regular closed) and ω-resolvable
and X1 (resp., Y1) is empty or regular closed (resp., open) of the first category.
Moreover, X0 ∩ X1 = ∅ = Y0 ∩ Y1.

Proof: Because of Theorem 5.8,

X = Ω ∪ clX

(

∞
⋃

n=1

On

)

,

where

(1) for each n, On is an open, possibly empty, subset of X ;
(2) for each n, if On 6= ∅, then On is an OEnR space;
(3) for n 6= m, On ∩ Om = ∅; and
(4) Ω is an open, possibly empty, ω-resolvable subset of X .
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By Theorem 5.9 each non-empty On is of the first category. Then
⋃

n<ω On is
empty or of the first category.
Moreover, if

⋃

n<ω On is not empty, Fr(
⋃

n<ω On) is nowhere dense because it
is the boundary of an open set. Take X0 = Ω, X1 = clX(

⋃∞
n=1On), Y0 = clX Ω

and Y1 =
⋃∞

n=1On. �

5.17 Problem. Is every crowded Baire (respectively, Tychonoff pseudocompact)
hereditarilly almost-ω-resolvable space maximally resolvable?

5.18 Proposition. (1) Each topological non-Baire space X can be represented
as the union of three mutually disjoint subsets O, R and I, where O is a
closed and almost-ω-resolvable subspace and int(O) 6= ∅, R is resolvable,
Baire, int(R) 6= ∅ and no subspace of R is almost-ω-resolvable or R = ∅,
and I is open, irresolvable and Baire and no subspace of I is almost-ω-
resolvable or I = ∅.

(2) Each Baire space X can be represented as the union of three mutually
disjoint subsets O, R and I, where O is a closed and almost-ω-resolvable
subspace, R is resolvable, Baire, int(R) 6= ∅ and no subspace of R is
almost-ω-resolvable or R = ∅, and I is open, irresolvable and Baire and
no subspace of I is almost-ω-resolvable or I = ∅.

(3) Each almost resolvable space X is the union of two disjoint subsets O and
R, where O is a closed and almost-ω-resolvable (and int(O) 6= ∅ if X is
not Baire) and R is open, resolvable and Baire, and no subspace of R is
almost-ω-resolvable.

Proof: 1. By Lemma 5.2, X can be represented as F ∪ B ∪ N where F is of
the first category and open, B is Baire or empty and N is nowhere dense. In the
proof of Lemma 6.3 in [FL], N is the boundary of F . Since X is not Baire, F is
not empty. Let O be equal to the union of all almost-ω-resolvable subspaces of
X . Observe that O must be closed and F ∪ N ⊂ O. Since the open set F is not
empty, int(O) 6= ∅. It remains to consider the open set A = X \ O ⊂ B (possibly
empty). Assume that A is not an empty set. Since A is an open subset of the
Baire space B, A is a Baire space. By Lemma 5.2, A can be written as R′∪I ∪M
where R′ and I are open in A, R′ is resolvable, I is irresolvable or empty and M
is the boundary of R′. The sets O, R = R′ ∪ M , and I satisfy the requirements.
Observe, in particular that if R is not empty, it is a Baire space being a regular
closed subset of a Baire space. The same for I: if I is not empty, then I is a Baire
space because it is open in A.

2. We obtain the proof of this proposition in the same way that we proved (1).
In this case, we cannot guarantee that int(O) 6= ∅ because F can be void.

3. We writeX asX0∪X1 as Lemma 5.3 says. Because of (1) and (2), X = O∪R∪I
with the characteristics explained in these points. Assume that X is not Baire.
Since X1 is of the first category and open, X1 ⊂ O and int(O) 6= ∅. Then X \ O
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is a subset of X0, and it is open; so I must be void because every open subset of
a resolvable space is resolvable.
Assume now that X is a Baire space. If I is not empty, then it must contain

a non-empty open-hereditarily irresolvable subspace W (see Theorem 28 in [H]).
The setW ∩X1 is void because, on the contrary, it would be Baire and of the first
category with respect to its relative topology because it is an open subset of both
X and X1, which is a contradiction. So W is an open subset of the resolvable
space X0 which is again a contradiction. Thus, we must have I = ∅. �

An immediate consequence of Theorem 5.18.1 (or 5.18.2) is:

5.19 Corollary. For crowded spaces, the following assertions are equivalent:

(1) every Baire space is almost-ω-resolvable;
(2) every Baire space contains an almost-ω-resolvable subspace;
(3) every space is almost-ω-resolvable.

An immediate consequence of Theorem 5.18.3 is:

5.20 Corollary. For crowded spaces, the following assertions are equivalent:

(1) every almost resolvable space is almost-ω-resolvable;
(2) every resolvable space is an almost-ω-resolvable space;
(3) every resolvable space contains an almost-ω-resolvable subspace.

5.21 Corollary. Every crowded space X which does not contain an open Baire
subspace, is almost-ω-resolvable.

Proof: In fact, because of Theorem 5.18.1 X can be represented as O ∪ R ∪ I
where O is closed and almost-ω-resolvable, R is resolvable, is Baire and with non-
empty interior if it is non void, and I is open Baire irresolvable. By hypothesis,
R and I must be empty and, so, X is almost-ω-resolvable. �

6. Product of almost-ω-resolvable spaces

It is proved in [M1] that V = L implies that the product of two crowded spaces
is always resolvable. We will prove in this section that, in ZFC, the product of two
almost resolvable spaces is resolvable, and the product of an infinite collection of
almost resolvable spaces is ω-resolvable.

6.1 Proposition. If X and Y are almost-ω-resolvable, then X×Y is resolvable.

Proof: Let D = {Dn : n < ω} and F = {Fn : n < ω} be almost-ω-resolutions of
X and Y , respectively. Define

P0 = {(x, y) : x ∈ Dn, y ∈ Fm and n < m}

and
P1 = {(x, y) : x ∈ Dn, y ∈ Fm and n > m}.
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Of course P0∩P1 = ∅. We are going to prove that P0 and P1 are dense subsets in
X×Y . Let A×B be a canonical open set in X×Y , and let Dk0 , Dk1 , . . . , Dkn

, . . .
and Fs0 , Fs1 , . . . , Fsm , . . . the sequences of elements in D and F , respectively,
which have a non-empty intersection with A and B, respectively, with k0 < k1 <
· · · < kn < . . . and s0 < s1 < s2 < · · · < sm < . . . . So, there is x ∈ A ∩ Dk0 .
There is sm satisfying sm > k0. Take y ∈ B ∩ Fsm . Then (x, y) ∈ P0 ∩ (A × B).
In a similar way we can prove that there is an element in P1 ∩ (A × B). �

6.2 Corollary. The product of two almost resolvable spaces is resolvable.

Proof: Let X and Y be two almost resolvable spaces. By Lemma 5.3, X =
X0 ∪X1 and Y = Y0 ∪ Y1 where X0 and Y0 are closed and resolvable, X1 and Y1
are crowded, open and of the first category. (Of course, some of the spacesX0, X1,
Y0, Y1 could be empty, but this situation does not modify our argumentation.) So,
X×Y = (X0×Y0)∪(X0×Y1)∪(X1×Y0)∪(X1×Y1). By virtue of Theorem 3.5 in
[TV], Corollary 2.7 and Proposition 6.1, each Xi × Yj (i, j ∈ {0, 1}) is resolvable.
Thus, X × Y is resolvable. �

As a consequence, we obtain Malykhin’s result:

6.3 Corollary. [V = L] The product X × Y is resolvable for every crowded
spaces X and Y .

Proof: In fact, V = L implies that every crowded spaceX is almost-ω-resolvable
(see Theorem 5.11). Now, applying Corollary 6.2 we get our result. �

6.4 Lemma. The product of two spaces X and Y such that X is k-resolvable
and Y is m-resolvable (k, m < ω) is (k · m)-resolvable.

Proof: In fact, let D1, D2, . . . , Dk be disjoint dense subsets of X and let F1, F2,
. . . , Fm be disjoint dense subsets of Y . Then, for each i ∈ {1, . . . , k} and j ∈
{1, . . . , m}, Di × Fj is dense in X × Y . Moreover, if (i, j) 6= (k, l) with i, k ∈
{1, . . . , k} and j, l ∈ {1, . . . , m}, then (Di × Fj) ∩ (Dk × Fl) = ∅. �

6.5 Corollary. Let n be a natural number bigger than 1. The product of n
almost resolvable spaces X1, X2, . . . , Xn,

∏n
i=1Xi, is 2

m-resolvable where either
2m = n or 2m+ 1 = n.

As a consequence of the previous result and using the so well known fact that
every space X which is n-resolvable for all n ∈ N is ω-resolvable [I], we conclude
that the product of an infinite family of almost resolvable spaces is ω-resolvable.
However, as was pointed out by W.W. Comfort to the authors, a more general
fact was already proved by O. Masaveu: If X =

∏

λ<κ Xλ where κ ≥ ω and each
space Xλ has more than one point, then X is 2κ-resolvable. In fact, it can be
proved that there are 2κ pairwise disjoint σ-products in X .

Theorem 7 in [M2] states that under CH there is an ultrafilter a on ω such that
the filter base a × a is contained in exactly three ultrafilters. As a conclusion,
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under CH there is a crowded T1 countable space X such that X2 is at most
3-resolvable.

6.6 Problems. (1) [Pa1, Question 24] Is there a Hausdorff (regular) crowded
space X such that X2 is not ω-resolvable?

(2) Is the product of two almost-ω-resolvable Hausdorff (regular, Tychonoff )
crowded spaces ω-resolvable?

(3) Is X almost-ω-resolvable if X2 satisfies this property?
(4) Is every ω-resolvable space hereditarily almost-ω-resolvable?
(5) Is every dense subspace of an ω-resolvable space ω-resolvable (almost-ω-
resolvable)?

(6) Is the square X2 almost-ω-resolvable for every crowded space X?
(7) Is the product of two hereditarily almost-ω-resolvable spaces almost-ω-
resolvable (ω-resolvable)?

(8) Let X and Y be hereditarily almost-ω-resolvable (resp., hereditarily al-
most resolvable, hereditarily κ-resolvable) spaces, can we, then, imply
that X × Y is hereditarily almost-ω-resolvable (resp., hereditarily almost
resolvable, hereditarily κ-resolvable) too?

(9) Let X be hereditarily almost-ω-resolvable (resp., hereditarily almost
resolvable, hereditarily ω-resolvable), and let Y be closed-hereditarily
almost-ω-resolvable (resp., closed-hereditarily almost resolvable, closed-
hereditarily ω-resolvable), can we deduce from this that X × Y is closed-
hereditarily almost-ω-resolvable (resp., closed-hereditarily almost resolv-
able, closed-hereditarily ω-resolvable)?
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