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Lower bounds for the colored mixed

chromatic number of some classes of graphs

R. Fabila-Monroy, D. Flores, C. Huemer, A. Montejano

Abstract. A colored mixed graph has vertices linked by both colored arcs and colored
edges. The chromatic number of such a graph G is defined as the smallest order of
a colored mixed graph H such that there exists a (color preserving) homomorphism
from G to H. These notions were introduced by Nešeťril and Raspaud in Colored
homomorphisms of colored mixed graphs, J. Combin. Theory Ser. B 80 (2000), no. 1,
147–155, where the exact chromatic number of colored mixed trees was given. We prove
here that this chromatic number is reached by the much simpler family of colored mixed
paths. By means of this result we give lower bounds for the chromatic number of colored
mixed partial k-trees, outerplanar and planar graphs.
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1. Introduction

In this paper we study homomorphisms of (n, m)-colored mixed graphs , which
are graphs with both edges and arcs colored with n andm colors respectively. This
notion was introduced by Nešetřil and Raspaud [4] as a common generalization
of the notion of edge-colored graphs, obtained by taking (n, m) = (0, m), and
the notion of oriented colorings, which arises when (n, m) = (1, 0), (see e.g. [1]
and [7] respectively). Formally, an (n, m)-colored mixed graph G consists of a set of
vertices V (G) linked by arcs A(G) and edges E(G) (satisfying that the underlying
undirected graph is simple) together with partitions A(G) = A1(G)∪ · · · ∪An(G)
and E(G) = E1(G)∪· · ·∪Em(G) where Ai(G) (resp. Ei(G)) consists of the set of
arcs (resp. edges) colored by color i. For n = 0 there are no arcs, and for m = 0
there are no undirected edges. In particular, a (0, 1)-colored mixed graph is a
simple graph, and a (1, 0)-colored mixed graph is an oriented graph.
Let G and H be two (n, m)-colored mixed graphs. A homomorphism from G to

H is a mapping h:V (G)→ V (H) satisfying: (u, v) ∈ Ai(G) implies (h(u), h(v)) ∈
Ai(H) for every i ∈ {1, . . . n}, and uv ∈ Ei(G) implies h(u)h(v) ∈ Ei(H) for every
i ∈ {1, . . .m}. In other words, the homomorphisms of colored mixed graphs map
edges into edges and arcs into arcs preserving the colors. The existence of a
homomorphism from G to H is denoted by G → H . Given a colored mixed
graph G, the smallest number of vertices of a colored mixed graph H such that
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G → H , is called the chromatic number of G. For a simple graph G, the (n, m)-
mixed chromatic number , denoted by χ(n,m)(G), is defined as the maximum of

the chromatic numbers taken over all the possible (n, m)-colored mixed graphs
having as underlying graph G. Note that χ(0,1)(G) is the ordinary chromatic

number, and χ(1,0)(G) is the oriented chromatic number.

Given a family F of simple graphs, we denote by χ(n,m)(F) the maximum of

χ(n,m)(G) taken over all members in F . The most natural question to consider

in this framework is whether or not a given family of graphs has a finite (n, m)-
mixed chromatic number. When the answer is affirmative, we are interested in
determining or bounding this number. Nešetřil and Raspaud [4] proved that for P ,
the family of planar graphs, we have:

(1) χ(n,m)(P) ≤ 5(2n+m)4.

This is the best known upper bound even for oriented graphs where the cor-
responding value is 80. This result is a consequence of a more general result
dealing with the acyclic chromatic number (smallest number of colors needed in
an acyclic coloring, which is a proper vertex coloring satisfying that every cycle
receives at least three colors). Nešetřil and Raspaud [4] proved that for Ak, the
family of graphs with acyclic chromatic number at most k, it holds:

(2) χ(n,m)(Ak) ≤ k(2n+m)k−1.

Thus (1) follows from (2) and the well-known result of Borodin that every
planar graph has acyclic chromatic number at most five [2]. Upper bounds for
the (n, m)-mixed chromatic number of partial k-trees and outerplanar graphs are
also given as a consequence of (2). A k-tree is a simple graph obtained from the
complete graph Kk by repeatedly inserting new vertices linked to all vertices of
an existing clique of order k. A partial k-tree is a subgraph of some k-tree. It is
not difficult to see that every partial k-tree has acyclic chromatic number at most
(k+1): starting with a proper k-coloring of the complete graph Kk, every newly
inserted vertex has exactly k neighbors and can be thus colored using a (k+1)-th
color. Moreover, this coloring is clearly acyclic since all the neighbors of a newly
inserted vertex have pairwise distinct colors.Therefore by (2) we get the following

upper bound for the class T k of partial k-trees:

(3) χ(n,m)(T
k) ≤ (k + 1)(2n+m)k.

Since the class of outerplanar graphs O is strictly included in T 2, we also get:

(4) χ(n,m)(O) ≤ 3(2n+m)2.
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In this paper we study the tightness of (1), (2), (3) and (4). Note that the
family of graphs with acyclic chromatic number at most 2, is in fact the family of
forest; in this case (k = 2) we know the exact colored mixed chromatic number
(see (5) in Section 3), and it is not difficult to see that the upper bound given
in (2) is tight just in the cases of simple graphs (n, m) = (0, 1), and 2-edge
colored graphs (n, m) = (0, 2). For k ≥ 3 the prospect is very different. The
techniques used to prove Theorem 1 suggested that, maybe in this case, the
bound is not tight. However, recently Ochem [5] surprisingly proved that the
bound in Theorem 1 is tight for every k ≥ 3 in the class of oriented graphs
(n, m) = (1, 0). In Section 2 we extend Ochem’s construction to show that:

χ(n,m)(Ak) = k(2n + m)k−1. Concerning the class of planar graphs, the best

known lower bound was: (2n+m)3+3 ≤ χ(n,m)(P) [4]. In Section 4 we improve

this, and also provide lower bounds for the (n, m)-mixed chromatic numbers of
partial k-trees and outerplanar graphs. For this purpose we determine the exact
(n, m)-mixed chromatic number of the class of paths, which is our main result
(Theorem 2 in Section 3).

1
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Figure 1: The 2n+m different types.

Notation: First we give some useful notation to handle (n, m)-colored mixed
graphs. Let G be an (n, m)-colored mixed graph. Consider any vertex u of G.

Let N+i (u) (resp. N−

i (u)) be the set of all vertices in G adjacent from (resp.

adjacent to) u by an arc of color i. Similarly, let N0i (u) be the set of all vertices in
V (G) connected with u by an edge of color i. Note that the maximum number of
possible edges and arcs incident to u of particular colors and orientation is 2n+m.
Label these possibilities from 1 to 2n+m as it is shown in Figure 1. According
to this, we define the type neighborhood of a vertex u as:

Ni(u) =















N+i (u) for 1 ≤ i ≤ n,

N−

(i−n)
(u) for n+ 1 ≤ i ≤ 2n,

N0(i−2n)(u) for 2n+ 1 ≤ i ≤ 2n+m.

Now we say that an ordered pair (u, v) of adjacent vertices in G has type i ∈
{1, . . . 2n +m} if v ∈ Ni(u). In such a case we write t(u, v) = i. Given a set of
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vertices X ⊆ V (G), Ni(X) = {v ∈ V (G) : t(u, v) = i, u ∈ X}. Observe that it
may be happen that X ∩ Ni(X) 6= ∅.

2. Graphs with bounded acyclic chromatic number

Recall that Ak is the family of graphs with acyclic chromatic number at most k.

Theorem 1. For every k ≥ 3 and every m ≥ 0 and n ≥ 0, χ(n,m)(Ak) =

k(2n+m)k−1.

Proof: When (n, m) = (0, 1), the statement holds, since χa(Kk) = χ(Kk) = k.
For (n, m) 6= (0, 1) and k ≥ 3, we will construct an (n, m)-colored mixed graph

with chromatic number at least k(2n + m)k−1 such that the acyclic chromatic
number of its underlying graph is at most k.
Consider a complete bipartite graph B with independent sets U = {u1, u2, . . .

u(2m+n)k−1} and W = {w1, w2, . . . wk−1}. We can color and orient the edges of

B in such a way that the sequences of types of vertices in U are pairwise distinct.
That is, for every pair of different vertices ui, uj ∈ U , we have:

(t(ui, w1), t(ui, w2) . . . t(ui, wk−1)) 6= (t(uj , w1), t(uj , w2) . . . t(uj , wk−1)).

This can be done since there are (2m+ n)k−1 different vectors of length k − 1
with entries in {1, . . . 2n + m}. Now B is such that, if G → H , the vertices of
U necessarily get distinct images. Consider now k disjoint copies B1, B2, . . . Bk

of B with their respective stable sets labeled U1, U2, . . . Uk and W1, W2, . . .Wk.
For each pair of subscripts 1 ≤ i < j ≤ k and each pair of vertices (x, y) ∈
Ui × Uj , we add an extra vertex z = zij(x, y), connected to x and y in such
a way that t(x, z) 6= t(y, z) (recall that (n, m) 6= (0, 1)). The obtained (n, m)-
colored mixed graph is our graph G. By construction, if G → H , the vertices in

U1 ∪ U2 · · · ∪ Uk get pairwise distinct images. Since |
⋃k

i=1 Ui| = k(2m+ n)k−1,

we have χ(n,m)(G) ≥ k(2n+m)k−1.
Now we color acyclically the underlying undirected graph G0 of G as follows.

Every vertex in Ui gets color i and all vertices in Wi get pairwise distinct colors
in {1, 2 . . . k}\{i}. Thus every cycle in each copy of B gets at least three different
colors. It remains to color the extra vertices. For each pair (x, y) ∈ Ui × Uj we
color the extra vertex zij(x, y) by any color in {1, 2 . . . k}\{i, j}, so that every
cycle involving extra vertices has at least three colors and the resulting coloring
of G0 is proper. Thus G0 ∈ Ak. �

3. The chromatic number of colored mixed paths

Nešetřil and Raspaud [4] provided the exact (n, m)-mixed chromatic number
of F , the class of forests:

(5) χ(n,m)(F) = 2n+m+ ǫ
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where ǫ = 1 for m odd or m = 0, and ǫ = 2 for m > 0 even. The constructed
(n, m)-colored mixed trees which attain that chromatic number have maximum
degree 2n + m. This suggests the question of whether this chromatic number
can be improved by simpler classes of trees. Here we show that the (n, m)-mixed
chromatic number of forests can be attained by paths.

Theorem 2. Let L be the class of paths. Then χ(n,m)(L) = 2n+m+ ǫ, where

ǫ = 1 for m odd or m = 0, and ǫ = 2 for m > 0 even.

Proof: For any fixed (n, m)-colored mixed complete graph H on (2n+m+ǫ)−1
vertices, we will construct an (n, m)-colored mixed path L such that L 9 H . Since
the number of (n, m)-colored mixed complete graphs is finite, the concatenation of
all such paths cannot be mapped onto any (n, m)-colored mixed complete graph
of that size. Thus we get an (n, m)-colored mixed path with chromatic number
2n+m+ ǫ.
In order to construct the path L such that L 9 H , where H is a fixed complete

(n, m)-colored mixed graph on (2n+m+ǫ)−1 vertices, the key idea is to find a se-
quence of types: t1, . . . , tr where ti ∈ {1, . . . , 2n+m} and subsets X0, X1, . . . , Xr

of V (H), with the following properties: X0 = V (H), Xi = Nti(Xi−1) andXr = ∅.
This allows us to define L. Indeed, define L := v0, v1, . . . , vr where t(vi−1, vi) = ti.
Now, for every homomorphism from L to H , the first vertex of L must be mapped
onto a vertex of X0 = V (H), the second vertex onto a vertex of X1 and so on.
Since Xr is the empty set, no such homomorphism can exist. To find the sequence
of types and subsets with the properties defined above, we split the proof into
two cases according to the value of ǫ. Before that, we prove a simple but useful
counting lemma.

Lemma 1. Let X be a subset of vertices of a complete (n, m)-colored mixed

graph H . Then
∑(2n+m)

i=1 |Ni(X)| ≤ |X |(|V (H)| − 1).

Proof: Consider the bipartite (n, m)-colored mixed graph BX defined as follows.
The set of vertices is the disjoint union of a copy of X and a copy of V (H). We
add every edge or arc (x, v) ∈ X × V (H), with the same color and orientation as
(x, v) in H (thus the only edges we do not have in BX are the ones for which x

and v correspond to the same vertex in H). Denote by Ei(BX) the set of arcs or
edges from X to V (H) of type i. Observe that the total number of edges in BX

is |X |(|V (H)|−1). Then
∑2n+m

i=1 |Ei(BX )| = |X |(|V (H)|−1). The result follows
since |Ni(X)| ≤ |Ei(BX)| for every i ∈ {1, . . . , 2n+m}. �

Lemma 2. For any subset of verticesX of a complete (n, m)-colored mixed graph
on 2n+m vertices, there exists i ∈ {1, . . . , 2n+m} such that |Ni(X)| < |X |.

Proof: By Lemma 1, we have
∑(2n+m)

i=1 |Ni(X)| ≤ |X |(2n + m − 1), and the
result follows. �
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Case 1. ǫ = 1 (m odd or m = 0)

Let H be a complete (n, m)-colored mixed graph on 2n+m vertices. We start
with X0 = V (H). By means of Lemma 2, we are able to find a strictly decreasing
sequence of subsets |X0| > |X1| > . . . > |Xr| and a sequence of types t1, . . . tr
such that Xi = Nti(Xi−1). Since in every step the size of the subset decreases,
eventually we get Xr = ∅.

Case 2. ǫ = 2 (m > 0 even)

Let H be a complete (n, m)-colored mixed graph on 2n+m+1 vertices. In this
case we cannot construct a strictly decreasing sequence of subsets as in Case 1.
Instead we can guarantee that if we cannot decrease, then all neighborhoods have
the same size.

Lemma 3. For any subset of vertices X of a complete (n, m)-colored mixed
graph on 2n +m + 1 vertices, either there exists i ∈ {1, . . . , 2n +m} such that
|Ni(X)| < |X |, or |Ni(X)| = |X | for all i ∈ {1, . . . , 2n+m}.

Proof: By Lemma 1 we obtain
∑(2n+m)

i=1 |Ni(X)| ≤ |X |(2n+m) and the result
follows. �

Now more work is required. Suppose X ⊂ V (H) is such that |Ni(X)| = |X |
for all i ∈ {1, . . . , 2n+m}. In Lemma 5 we show that in at most three steps we
can reduce the size of the subset. In order to prove it, we need the next.

Lemma 4. In any (n, m)-colored mixed complete graph on 2n+m + 1 vertices
with m > 0 even, there exists a vertex incident to at least 2 edges of the same
type.

Proof: Any vertex v of H has degree 2n+m. If v were not incident to an edge
of a particular type, then v would be the desired vertex (being 2n +m types in
total). Assume that every vertex is incident to exactly one edge of every type.
Then any color class of edges would induce a perfect matching of H . This is a
contradiction since H has an odd number of vertices. �

Lemma 5. If a subset of vertices X of a complete (n, m)-colored mixed graph
on 2n + m + 1 vertices with m > 0 even is such that |Ni(X)| = |X | for all
i ∈ {1, . . . , 2n + m}, then there exists j, k, l ∈ {1, . . . , 2n + m} such that
|Nl(Nk(Nj(X)))| < |X |.

Proof: By Lemma 4, there exists a vertex u ∈ V (H) incident to at least two
edges of type k ∈ {1, . . . , 2n +m}. Since H is a complete (n, m)-colored mixed
graph, u ∈ Nj(X) for some j ∈ {1, . . . , 2n + m}. By hypothesis, |Nj(X)| =
|X |. We may assume that Nj(X) is such that |Ni(Nj(X))| = |Nj(X)| for ev-
ery i ∈ {1, . . . , 2n + m}, otherwise by Lemma 3 we are done. Then we have
|Nk(Nj(X))| = |Nj(X)| = |X |. Name Y := Nk(Nj(X)). We will use the bipar-
tite graph BY , defined as in the proof of Lemma 1. By construction, there are two
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vertices v, w ∈ Y with a common k-neighbor (u). Therefore |Nk(Y )| < |Ek(BY )|.
We suppose |Nk(Y )| = |Y | (otherwise by Lemma 3 we are done). Thus we have

|Y | < |Ek(BY )|, and the result follows since
∑2n+m

i=1 |Ei(BY )| = |Y |(2n+m).
�

4. Partial k-trees, outerplanar and planar graphs

In this section we give lower bounds for the (n, m)-mixed chromatic number of
the families of partial k-trees, outerplanar and planar graphs, which we denote by
T k, O and P respectively. The key idea is to generalize a construction proposed
by Sopena [6]. For the class of partial k-trees we use (5), and for the classes of
outerplanar and planar graphs we use Theorem 2.

Theorem 3. Let ǫ = 1 for m odd or m = 0, and ǫ = 2 for m > 0 even. Then,

(1) (2n+m)k + ǫ(2n+m)k−1 + (2n+m)k−2 + · · ·+ 1 ≤ χ(n,m)(T
k),

(2) (2n+m)2 + ǫ(2n+m) + 1 ≤ χ(n,m)(O),

(3) (2n+m)3 + ǫ(2n+m)2 + (2n+m) + 1 ≤ χ(n,m)(P).

Figure 2: Given G we construct G′ with higher chromatic number.

We will use the following construction. Let G be an (n, m)-colored mixed
graph. Define G′ as the (n, m)-colored mixed graph obtained by taking 2n +m

disjoint copies G1, G2, . . . , G2n+m of G and adding a new vertex u adjacent to
all other vertices in such a way that t(u, v) = i for every v ∈ Gi (see Figure 2).

Let Gk be defined inductively by G0 := G and Gk := (Gk−1)′. By construction,

if Gk → H , a vertex in Gk−1
i has a different image of a vertex in Gk−1

j when

i 6= j. Moreover the vertex u has a different image from all other vertices. Thus
we have:

Remark 1. χ(n,m)(G
k) ≥ (2n+m)χ(n,m)(G

k−1) + 1.
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Proof of Theorem 3(1): We proceed by induction on k. If k = 1 we are

done by (5). Suppose now that the result holds up to (k − 1) and let T (k−1)

be an (n, m)-colored mixed partial (k − 1)-tree with chromatic number at least:
(2n+m)k−1+ ǫ(2n+m)k−2+(2n+m)k−3+ · · ·+1. We consider T k := (T k−1)′

which is a partial k-tree, and the statement follows by Remark 1. �

Proof of Theorem 3(2): Observe that if G is a path, then G′ is an outerplanar
graph. Thus, by starting with an (n, m)-colored mixed path with chromatic num-
ber at least 2n+m+ ǫ (provided by Theorem 2), we get (according to Remark 1)
an (n, m)-colored mixed outerplanar graph with the required chromatic number.

�

Proof of Theorem 3(3): Observe that if G is an outerplanar graph, then
G′ is a planar graph. Thus, starting with an (n, m)-colored mixed outerplanar
graph with chromatic number at least (2n +m)2 + ǫ(2n +m) + 1 (provided by
Theorem 3(2)), we get (according to Remark 1) an (n, m)-colored mixed planar
graph with the required chromatic number. �

5. Conclusions and remarks

In this paper we gave lower bounds for the (n, m)-mixed chromatic number of
various classes of graphs. We also computed the exact (n, m)-mixed chromatic
number of graphs with bounded acyclic chromatic number and paths. Due to
these results, we found interesting the following problems:

1. Regarding the classes of partial k-trees and outerplanar graphs, the lower
bounds given in Theorem 3 state that the upper bounds given in (3) and (4) are
tight up to a constant multiplicative factor:

χ(n,m)(T
k) = Θ((2n+m)k),

χ(n,m)(O) = Θ((2n+m)2).

We were not able to do the same for the class of planar graphs, where we have:

Ω((2n+m)3) ≤ χ(n,m)(P) ≤ Θ((2n+m)4).

We consider closing the gap to be an interesting problem.

2. Most of the work related to the study of homomorphisms as a generalization of
colorings has been done in the context of (1, 0)-mixed graphs, which are actually
oriented graphs [7]. In this case the (1, 0)-mixed chromatic number (oriented
chromatic number) of the family of planar graphs can be significantly lowered
when considering planar graphs with large girth, as Borodin, Kostochka, Nešetřil,
Raspaud and Sopena showed [3]. We think results of this kind can be extended
to the class of (n, m)-colored mixed graphs.

3. We think it is an interesting problem to ask what is the shortest path that
attains the (n, m)-mixed chromatic number given in Theorem 2.
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