Richard Pastorek; František Březina; Jiří Mach Vínany trojmocného ceru v neutrální a alkalické oblasti

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica, Vol. 8 (1967), No. 1, 133--141

Persistent URL: http://dml.cz/dmlcz/119865

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1967

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

1967 — ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS FACULTAS RERUM NATURALIUM. TOM 24.

Katedra anorganické chemie a metodiky chemie přírodovědecké jakulty Vedoucí katedry: doc. Alois Přidal

Chemie prvků vzácných zemin XIII*

Vínany trojmocného ceru v neutrální a alkalické oblasti

Richard Pastorek, František Březina, Jiří Mach

(Předloženo dne 1. července 1966)

O komplexních sloučeninách trojmocného ceru s kyselinou vinnou $(H_4T = C_4H_6O_6)$ v neutrální a alkalické oblasti najdeme v literatuře jen velmi málo údajů. Na základě potentiometrické titrace usuzují Zolotuchin a Oščapovskij [1] na vznik iontů CeTa Ce(OH)_gH_2T – při pH 6,8––10. Mironov a Mazin [2] popisují izolaci soli typu K_glCe(H_2T)_3], její bližší charakteristika však provedena nebyla. V poslední době jsme za použití pH-metrických měření určili disociační konstantu částice CeHT° (K_{dia} = (3.81 \pm 0.32). 10^{-12}) [3]. Cílem předložené práce bylo připravit výše uvedené částice v pevném stavu a blíže je charakterisovat pomocí DTA, GTA, RTG a IR-absorpčních spekter.

Experimentální část

Všechny užívané chemikálie byly čistoty p. a. (výrobky firmy Lachema). Chlorid ceritý byl připravován z 99,9 % CeO₂ metodou popsanou v práci [3]. Obsah ceru byl stanovován komplexometricky titrací chelatonem III na xylenoloranž. Vínanové ionty byly stanovovány podle [4], draslík pomocí tetrafenylbornatria dle [5].

Gravimetrická termická analýza byla provedena na maďarském derivátografu ..Orion" na katedře anorganické chemie přírodovědecké fakulty UJEP v Brné. Diferenční termická analýza pak na "Diferenčním termickém analyzátoru" (výrobek Vývojových laboratoří UP v Olomouci). Teplotní křivka byla zde registrována automaticky zapisovačem Regula a byla zkalibrována pomocí látek o definovaném bodu tání. Diference teploty byla odečítána vizuálně. Vzrůst teploty byl jak u GTA, tak u DTA 2.5 °C/min. Infračervená spektra byla získána na anglickém spektrometru "Infrascan" (fa Hilger Watts) za použití KBr techniky. Nalezená maxima absorpce byla přiřazována dle klasifikace uvedené v pracích [6], [7]. Intenzita absorpčních pásů byla hodnocena subjektivně jako1-3. Rentgenografické studium bylo provedeno na přístroji Mikrometa 1 (výrobek fy Chirana) za použití měděné anody s niklovým

^{*} V řadě: Koordinační sloučeniny organických oxosubstancí XXXI.

filtrem. Průměr komůrky 64 mm, doba expozice 1,5 hod. při 24 mA a 30 kV. Rozpustnost byla stanovena při 25 \pm 0,2 °C (ultratermostat Wobser, výrobek fy Werk Medingen — Dráždany) chelatometrickým stanovením kovu v nasyceném roztoku. Temperování bylo prováděno, za občasného protřepávání suspenze, až do získání konstantní hodnoty obsahu ceru.

Výsledky

Terciální vínan ceritý byl připraven smíšením 1M roztoků CeCl₃, H₄T, KOH v molárním poměru 1 : 1 : 3 jako špinavě bílá sraženina. Ta byla po 1 hodině stání odsáta, důkladně promyta vodou (až filtrát poskytoval negativní reakci na chloridové ionty), ethanolem, etherem a sušena pod infralempou při 40 °C. Analýzou bylo prokázáno složení CeHT . 4 H₂O. Výsledky analýz:

Ce vyp. 39,01; nal. 39,40

T4- vyp. 40,95; nal. 40,48

Obr. 1. Termický rozklad CeHT . 4 H₂O, navážka 0,5 g.

Tabulka 1 Termieký rozklad CeHT - 4 H₂O DTA GTA 55° počátek endoefektu 104° vrchol endoefektu 210° nasazuje exoefekt 230° zrychlení rozkladu 258° 1. vrchol exoefektu 258° 2. vrchol exoefektu 258° 3. vrchol exoefektu 358° konee rozkladu

Termický rozklad látky uvádí obr. 1, tab. 1, IR-spektrum tab. 6. Preparát je rentge-

Termicky rozklad látky uvádi obr. 1, tab. 1, 1K-spektrum tab. 6. Prepará je rentgenograficky amorfní, hodnota rozpustnosti je 1,4. 10^{-2} g na 100 ml roztoku. Kvarterní vínany byly připraveny dva: kvarterní vínan ceritodraselný KCeT. 4 H₂O a kvarterní vínan ceritý Ce₃T₃. 14 H₂O. První byl získán z terciárního vínanu přidáním jednoho molu 1M KOH k jednomu molu CeHT. 4 H₂O. Vzniklý roztok byl přefitrován a po dvou dnech stání ařázen absolutním ethanolem a sraženina pak v něm loužena, za občasné dekantace, pokud dekantovaný roztok poskytoval positivní reakci na K⁺. Po isolaci a vysušení byla hnědá látka analýzována. Výsledky zvzláz analýz:

KCeT . 4 H_2O	Ce vyp. 35,27; nal. 35,37
	T ⁴⁻ vyp. 36,77; nal. 36,20
	K vyp. 9,84; nal. 9,77

Termický rozklad látky je uveden na obr. 2 a v tab. 2, IR-spektrum v tab. 6. Preparát je opět rentgenograficky amorfní, rozpustnost je 1,6. 10⁻³ g/100 ml.

Obr. 2. Termický rozklad KCeT . 4 ${\rm H_2O},$ navážka $0.4~{\rm g}.$

Termický rozklad KCeT. 4 H₂O

Tabulka 2

	DTA	GTA
48 ° 90 °	počátek endoefektu vrchol endoefektu	počátek rozkladu vzork
155° 195°	počátek excefektu	zrychlení rozkladu
223°	1. vrchol excefektu	5
287°	2. vrchol excefektu	
388°	3. vrchol excefektu	
550°		konec rozkladu

Smíšením 1M roztoků CeCl₃, H₄T, KOH v molárním poměru 4:3:12 byl připraven kvarterní vínan ceritý Ce₄T₃. 14 H₄O, zprvu jako bílá sraženina, která po odsátí, důkladném promytí vodou (opět až do negativní reakce filtrátu na Cl⁻). ethanolem a etherem, zhnědla. Výsledky analýz:

Termický rozklad je uveden na obr. 3, v tab. 3, IR-spektra v tab. 6. Látka rentgenograficky amorfní s rozpustností1,5. $10^{-3}\,g/100$ ml.

Obr. 3. Termický rozklad $\mathrm{Ce}_4\mathrm{T}_3$. 14 $\mathrm{H}_2\mathrm{O},$ navážka $0.5~\mathrm{g}.$

		rabulka 3
	Termický rozklad	Ce4T3 . 14 H2O
	DTA	GTA
$rac{48}{106}$, 106 , 112 ° 185°	počátek endocfektu vrchol endoefektu nasazuje exoefekt	počátek rozkladu vzorku
220°	5	zrychlení rozkladu
240°	1. vrchol exoefektu	-
285°	2. vrchol exoefektu	
357°	3. vrchol excefektu	
550°		konec rozkladu

Reakcí normálního vínanu ceritého $\rm Ce_2(H_2T)_3$. 6 $\rm H_2O$ s normálním vínanem draselným K_2H_2T byla pro molární poměr 1 : 3 získána látka K_3Ce(H_2T)_3 . 3 H_2O a pro molární poměr 1 : 5 látka typu K_2Ce(H_2T)_4 . 3 H_2O. Vodní suspenze obou vínanů byla na vodní lázni vařena až do úplného rozpuštění. V obou případech vzniklá sirupovitá kapalina byla ponechána přes noc v klidu a poněvadž nedošlo ke krystalizaci byla druhého dne srážena absolutním ethanolem. Byla-li k vzniklému sirupu přidána voda, došlo k opětnému vyloučení vínanu ceritého, který se dalším varem znovu rozpustil. Po vyloužení v ethanolu a obvyklé isolaci byly preparáty podrobeny analýze. Výsledky analýzy:

Termický rozklad obou látek je uveden na obr. 4 a 5 resp. v tab. 4 a 5. Je vidět, že voda je odštěpována spojitě. Dehydrataci odpovídají dva endoefekty na DTA křivce u $\rm K_3Ce(H_2T)_3$. 3 $\rm H_2O$ a jeden endoefekt u $\rm K_5Ce(H_2T)_4$. 3 $\rm H_2O$. Rozpad organické

Termický rozklad K₃Ce(H₂T)₃.3 H₂O

	DIA	GTA
35°	počátek endoefektu	
45°		počátek rozkladu vzorku
107°	1. vrchol endoefektu	1
200°	2. vrchol endoefektu.	
	počátek excefektu	
205°	1	I. zrvchlení rozkladu
250°	1. vrchol exoefektu	
267°	2. vrchol exoefektu	zpomalení rozkladu
300°		2. zrychlení rozkladu
307°	3. vrchol exoefektu	
399°	4. vrehol exoefektu	
520°	2	konec rozkladu

Tabulka 5

Tabulka 4

Termický rozklad K5Ce(H2T)4.3H2O

	DTA	GTA
35°	počátek endoefektu	
45°		počátek rozkladu vzorku
109°	vrchol endoefektu	•
202°	nasazuje exoefekt	1. zrychlení rozkladu
221°	1. vrchol excefektu	
241°	2. vrchol exoefektu	zpomalení rozkladu
270°		2. zrychlení rozkladu
313°	3. vrchol exoefektu	U U
393°	4. vrchol exoefektu	
520°		konec rozkladu

složky je doprovázen exoefekty. Indikace exoefektů u posledně jmenovaného preparátu je snížena, zřejmě v důsledku značného puchnutí. Průběh termické analýzy obou látek je odlišný jak od vínanu ceritého [8], tak od vínanu draselného [9]. Odlišná jsou taky IR-absorpční spektra jak ukazuje tab. 6. Zatímeo u vínanu draselného jsou v oblasti 1400–1420 cm⁻¹ dva absorpční pásy symetrické valenční vibrace disociovaného karboxylu COO-, u K₂Ce(H₂T)₄. 3 H₂O a K₂Ce(H₂T)₄. 3 H₂O pásy v této oblasti chybí. Studium pomocí RTG ukázalo, že obě látky jsou rentgenograficky amorfní, vínan ceritý [8] i vínan draselný [10] však interferenční maxima vykazují, stejně jako směsi připravené pouhým smíšením obou komponent v příslušných poměrech (1 : 3; 1 : 5). Rozpustnost nebyla určena, jelikož se obě látky působením vody rozpadají na málo rozpustný vínan ceritý. Na základě výše uvedených fakt lze předpokládat, že v obou případech se jedná o chemická individua.

Diskuse

Izolace terciárního a kvarterních vínanů ceritých potvrdila, že v neutrální a alkalické oblasti dochází i k substituci vodíků v OH skupinách vinné kyseliny. Je tudíž možno předpokládat, že donorem elektronů se stává i kyslík hydroxylových skupin.

Tento závěř byl již ostatně vysloven v pracích [11] až [13]. Výsledky DTA a GTA ukázaly, že voda se počíná u všech látek odštěpovat při teplotách okolo 50 °C, což je na DTA křivkách doprovázeno endoefekty. Na GTA

- 11	0	n.
1	.3	ö

Tabulka 6

IR-absorpční spektra

	C-O val. (alkohol.)	C-O val., OH deform. (alkoholkarboxyl.)	coo- sym. val.	COO- as. val.	H ₂ O def.	0-H-0 val.
HT . 4 H ₂ O	1067 (2); 1123 (2)	1312-1322 (1)	1405 (2)	1584 (3)	I	3360 (3)
eT . 4 H ₂ O	1103 (2)	1313 (1); 1384 (2)		1580 (3)	1	3390 - 3400 (3)
T ₃ . 14 H ₂ O	1073 - 1080 (2) 1107 (2)	$\frac{1320-1323}{1385-1389} \stackrel{(1)}{(2)} \\ 1385-1389} \stackrel{(2)}{(2)} \\ 1392 \stackrel{(2)}{(2)} \\$	1	1585 (3)	1	3340-3360 (3)
26(H2T)3 . 3 H2O	$\substack{1068\ (2)\\1120-1125\ (2)}$	$\frac{1220-1224}{1376} (1)$	1	1605-1610 (3)		3300-3340 (3) 3415 (3)
2e(H2T)4 . 3 H2O •	$\substack{1070\ (2)}{1120-1125\ (2)}$	$\frac{1218-1225}{1385-1394} \begin{pmatrix} 1 \end{pmatrix}$		1602 (3)	1	3340 - 3400 (3)
H2T	1077 (3) 1112 (3)	$\begin{array}{c} 1218 \ (2); \ 1295 \ (1) \\ 1325{-} 1330 \ (2) \end{array}$	1402(2) 1420(2)	1605 (2)	1695 (1)	3310 (3); 3325 (3)

Intensita: (1) = slabý(2) = střední<math>(3) = silný

.

křivkách nepozorujeme žádné plato. Konec dehydratace se překrývá s počátkem rozkladu organické složky, čemuž odpovídá zvětšení váhových úbytků na GTA křiv-kách a je doprovázen exoefekty na DTA křivkách. Porovnáme-li termickou stabilitu terciárního a kvarterních vínanů, docházíme k závěru, že nejméně stabilní je vínan vrité dreubé ick je číš, smrduně, docházíme k závěru, že nejméně stabilní je vínan ceritodraselný jak je níže uvedeno:

	Počátek	Vrchol	Počátek	Vrchol
	endoef.	endoef.	exoef.	1. exoef.
KCeT . 4 H ₂ O	48°	90°	155°	$223^{\circ} \\ 240^{\circ} \\ 285^{\circ}$
Ce ₄ T ₃ . 14 H ₂ O	48°	106–112°	185°	
CeHT . 4 H ₂ O	55°	104°	210°	

Konečnými produkty rozkladu jsou CeO₂, eventuelně směsi CeO₂ a K₂CO₃, jak uvádí tabulka 7. Studium látek pomocí IR-spekter ukázalo, že všech pět sloučenin

Tabulka 7

Konečné produkty termických rozkladů

· · · · · · · · · · · · · · · · · · ·	váhový úbytek v %		V X d h+
	teoretický	praktický (z GTA)	Konecny produkt
$\begin{array}{c} {\rm Ce}{\rm HT} . 4 {\rm H_2O} \\ {\rm Ce}_4{\rm T_3} . 14 {\rm H_2O} \\ {\rm KCeT} . 4 {\rm H_2O} \\ {\rm K_3Ce}({\rm H_2T})_3 . 3 {\rm H_2O} \\ {\rm K_3Ce}({\rm H_2T})_4 . 3 {\rm H_2O} \end{array}$	52,0844,96 $39,2949,7947,29$	52,77 45.0 40,75 51,60 49,20	$\begin{array}{c} \operatorname{CeO}_2\\ \operatorname{CeO}_2\\ \operatorname{CeO}_2 + \mathrm{K}_2\mathrm{CO}_3\\ \operatorname{CeO}_2 + \mathrm{K}_2\mathrm{CO}_3\\ \operatorname{CeO}_2 + \mathrm{K}_2\mathrm{CO}_3\\ \end{array}$

postrádá absorpční pás nedisociovaných karboxylových skupin COOH, které mají podle Freie, ve vínanových sloučeninách vlnočet minimálně 1740 cm⁻¹ [14]. Potvrzuje to skutečnost, že všechny vodíky karboxylových skupin jsou substituovány.

Závěr

V neutrální a alkalické oblasti systému $\rm Ce^{3+}-H_4T--KOH$ byly isolovány látky o složení CeHT 4 H₂O, KCeT 4 H₂O, Ce_4T_3 . 14 H₂O, K_3Ce(H_2T)_3 . 3 H_2O. K_5Ce(H_2T)_4 . 3 H_2O. Tyto byly blíže charakterisovány pomocí DTA, GTA a IRabsorpčních spekter.

Literatura

[1] Zolotuchin V. K., Oščapovskij V. V.: Ukrajin. chim. žur. 26, 510 (1960).

[2] Mironov N. N., Mazin A. I.: Žur. po chim. i chim. technol. 3, 53 (1960).

[3] Pastorek R., Březina F.: Mh. Chem. 97, 1095 (1966).

[4] Frei V.: Čs. farm. 11, 397 (1962).
[5] Raff P., Brotz W.: Z. anal. Chem. 133, 241 (1951).

[6] Ševčenko L. L.: Usp. chim. 32, 457 (1963).

[7] Juchnévič G. V.: Usp. chim. 32, 1397 (1963).

[9] Breina F., Rosický J., Pastorek R.: Mh. Chem. 96, 553 (1965).
 [9] Frei V., Čáslavská V.: Chem. zvesti 16, 794 (1962).

[10] X-Ray Diffraction Data Cards, American Society for Testing Materials, Philadelphia, doplněno do roku 1955.

[11] Manning P. G.: Can. J. Chem. 41, 2557 (1963).

[12] Pjatnickij I. V.: Usp. chim. 32, 93 (1963).

[13] Cozzi D., Vivarelli S.: Z. Elektrochem. 58, 907 (1954).

[14] Frei V., Laub J., Čáslavská V., Mach K.: Chem. zvesti 18, 739 (1964).

Резюме

Церотартаратные комплексные соединения в нейтралной и щелочной областях

РИХАРД ПАСТОРЕК, ФРАНТИШЕК БРЖЕЗИНА и ИРЖИ МАХ

В нейтральной и щелочной областях системы Се³⁺---Н₄T--КОН (H₄T=C₄H₆O₆) были выделены вещества следующего состава:

CeHT.4H2O, KCeT.4H2O, Ce4T3.14H2O, K3Ce(H2T)3.3H2O,

К₅Се(H₂T)₄. ЗН₂О. Эти были точнее характеризованы при помощи термогравимстрического и дифференциального термического анализа, рентгенографии и инфракрасных спектров.

Zusammenfassung

Komplexverbindungen des dreiwertigen Cers mit Weinsäure im neutralen und alkalischen Bereich

RICHARD PASTOREK, FRANTIŠEK BŘEZINA UND JIŘÍ MACH

Es wurden im neutralen und alkalischen Bereich des Systems Ce3+ - HaT -