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Katedra matematické analyzy pfirodovédecké fakulty
Vedouci katedry: Prof. RNDr. Miroslay Laitoch, CSc.

ON THE SOLUTION OF CERTAIN NON-LINEAR
DIFFERENTIAL EQUATIONS OF THE THIRD ORDER

JAN VORACEK
( Received May 12th, 1969)

1. Let us at first consider the equation
x4 f(x) x" + g(x) X"+ h(x) = e(t) 0

with f(y), g(x), h(x), e(t) continuous for every real argument, With (1) deals our note
[1]: here we will prove some more general results.

¥y x
Let us pose F(y) = [ f(s) ds, G(x) = | g(s) ds. In what follows we will also use some
o 0
assumptions about £, g, &, e.

Assumption Ay: There exist positive numbers g, &, ¥ > 1, H, E, such that

lgtx)| =g  foreveryx, (@)
=z for every y. —flfvvyl)* = for every |y| 2 Y, 3)
|h(x)| £ H for every x, @)
le()| £ E for every . (5)
Assumption A, : A, holds and
gx) =&  foreveryx, (6)
Ié['e(s) ds| < E for every 1. )

Assumption A, : A, holds and there exists a positive number A, such that
h(x)sgnx 2 0 forevery | x| 2 h. 8)

Assumption A, : A, holds and there exist a real function r(x) and a positive
number g, such that r(x) is continuous for every | x| = ¢ and

lim inf r(x) sgn x > 0. ()

Jx|=+o0
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Simultaneously, A(x) satisfies the relation

lim inf r(x) h(x) > 0. (10)
|

x|+ o
Remark 1 : r(x) from A, may be f.i. ¢""™ sgn x.
Assumption A5 : A, holds and we have

lim sup G(x) h(x) < — H(Dy + max F(y) + E), (1

Jxl =+ SDy
where the constant Dj is defined in (25).

Theorem I: If Ay holds, then each solution x(7) of (l) exists on the interval
= {1y, + ®) (1, stands for a feal number) and is bounded on 7. There also exists
a constant D' such, that every x(¢) fulfils the relations

fimsup{x'(r)} £ D", limsup | x"(t)| £ D". (12)
[

4o
The proof of theorem 1 will be divided in several steps.
Lemma I: 1f A, holds, then every x(7) exists on / and the relation
Iin:l.supj\'"(l)l §»2—(gY+H+ E)+ 1=K (13)
holds. o
The proof of lemma 1 can be obtained with the same method as in the mentioned
note [1]: a change is nccessary only in the estimations for the function ITX"Z(l).

We get
1o

P TR (1) = XX = —f(X')x"? = g(x) x'x" — h(x)x" + e(t) x"

and hence, using (2), (3), (4) and (5)

for |x'| <Y :—dg’—%x"z(t)g —|x"|(e|x"| — gY = H — E), (14)

!

x| 2Y =)
for [x"| = d’2x

) x| EIX X = glx| = H—E). (I5)

For [x'| =2 Yand | x"| = K we then obtain
el XX 2@Y+H+E+e)|x|28x)+ H+E+e (16)
We have thus from (14), (15), (16)

d 1, N .
R — < —
T (1) £ —¢K for every | x"| = K.

The remaining part of the proof equals that of [1].
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Lemma 2: If A, holds, then there exists a constant D', such that for every x(t) the
relations (12) hold.

Proof: Let us prove at first that

lim inf | x'(£) | g%n. a7

tsd o

We fix a x(¢). By lemma | there exists a f; 2 #, such that | x"(¢) | < K + 1 for every
H

t=t,. 1f, forat, > t;, should be | x'(¢) | = e + 2 for every ¢ = t,, we should get

from (6)

| G(x)(1) — G(x(1,)) | = _[g(x(s))“ x'(s)dssgn x'(s) = (H + &) (t — ¢,). (18)
But (4) implies
[ fh(x(s) ds| < H(t — ;) (t 2 1), (19)
and we thus obtain from (18) and (19) for every t > ¢,
[G(x(1)) = G(x(12)] sgn x'(2) — | [ h(x(s)) ds | = &(t — 1,). (20)
Integrating (1) from 7, to t = ¢, we have
F(x'(1) + G(x(1) — G(x(1,)) + [ h(x(s)) ds = x"(t;) — x"(1) +
+ Fix(ty) + ] () ds,
and hence, using (7) and multiplying with the constant sgn x'(¢):
F(x'(1)) sgn X'(1) + [G(x(1)) — G(x(1,))]) sgn x'(t) — | [ h(x(s)) ds | <
S AR+ 1+ E) + FE(). @1
By means of (20) we get from (21) the inequality

F(X'() sgn x'(1) < 2K + 1 + E) + F(x'(t)) — &(t — 1),

which is, for 7 — ¢, large enough in contradiction to the properties of the function F
(cf. (3)). Thus, (17) is proved.

Let us suppose now that there exists an interval (T, T,) ({; £ T, < T, < +0),
such that x'(T,) = x'(T,) = % +2,x'(1) > _1;_ +2on (T, T,). Let@e(T,, T,) be
the number with the property x'(@) = max x'(t) on (T, T,). Integrating (1) from T,
to ® we obtain (x"(@) = 0):
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, H . ; .
0% r(x@) = (-4 2) + ¥(1) - [6(x(60) - 6(x(r)] -
e o
— [ h(x(t)) df + [ e(r) dr. (22)
Ty Ty
On {T,,@) one can easily prove an inequality analogous to (20) i.e. in a weaker form

e
~ [G(x(©)) ~ G(x(T)] — [ h(x(t)) dt <O,
T
and thus, we obtain from (22)

05 F(x(0) £ F(—l: + 2) +K+14+2E=1L,. @3)
, H . . .
The case x'(1) = - - 2 on (T}, T,) leads to the inequality
. (H i
0;F(x(6))§f<T-2)—K—1—2E=L2. (24)

Herewith the lemma 2 is proved. We have seen also that D’ must satisfy the
inequality
D’ < max (K, F_y(Ly), —F_,(Ly) = Di, (25)

(F_- () is the inverse function of F(y)).
Proof of theorem 1: We fix again a x(7). There exists then by lemma 2 a 7, > 1,
with the property that

Ix(M1=D+1, |x(0]sD +1 foreveryr>t,. (26)
If on any interval {z,,1,) (t, < t; < t, £ + o0) the inequality
I x(t)| =2 h, 27)

holds, then, integrating (1) from ¢; to te (¢, t;), multiplying it by the constant
sgn x(¢) and using (27), (8), (26), (7) and (3) we get

sgn x(N[G(x(1)) — G(x(1,)] £ | Fx'(t) — FO'(¢)) | + | x"(t) —
— x"(t) | = [ h(x(s)) ds sgn x(t) + | [ e(s) ds | £ 2[max (F(D’ + 1),

~F(-D'-1))+D +1+E]=P
Hence
[Gx) | =1 Gx(ty)) | + P. (28)

If (27) is valid on {t;, +c0), then our theorem easy follows from (28). Is ¢, < +o0,
then it is possible by the same method we have deduced (28) to prove the inequality

[ G(x(0)) | = max (G(h), — G(—h)) + P,

for every t 2 1,. Theorem 1 is proved.
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Remark 2: When A, holds and
xh(x) > 0 for every x + 0, (29)
then every x(7) is oscillatory or fulfils the relation

lim x(r) = 0.

t+=+o0
The proof of this assertion can be obtained by the same method as f.i. the proof of
theorem 5 in [2].

Theorem 2: If A, holds, is (1) dissipative.

Proof: From (10) we see, that a positive constant /1, exists, such that sgn r(x) =
= sgn A(x) for every | x | = /. By (9) there also exists a positive constant r,, such
that | x | = r, implies sgn r(x) = sgn x. If we now pose » = max (h,, r,) it is clear
that A, implies A3 and thus the validity of theorem 1. With a fixed x(¢) we now define

sup [ x(1) | =X, sup|x'()| =X, sup|[x"()| = X" (30)

1z10 B 1210

Let us further set lim inf r(x) A(x) = 2. By (11) it is # > 0 and a positive number
[x]=+w N

r > max (g, r,) may be find, such that for every | x | = r the inequality r(x) (x) =

holds, i.e.

h(x)sgn x = forevery | x| =r. 31)

_B
r(x) sgn x
We assume X > r and pose R = max r(x) sgn x on {r, X). Then (30) and (31) yield

h(x(1)) sen x(1) 2 % for every | x| = r. (32)

Hence, if there exists a 7, such that | x(r) | = r for all ¢ > #,, we obtain from (32)
and (8)

t r
lim [ A(x(s)) ds sgn x(r) = lim | [ A(x(s))ds | = +oo0. 33)
1= +wto 1= +ow 1o
But, by integration of (1) from f, to 1 = t, and by use of (7) it follows

[ j'h(x(s)) ds| < 2[X" + max (F(X), —F(—X")) + max (G(X), —G(~X)) + E]

i.e. a contradiction to (33). Thus, the relation

liminf | x(t) | < r, (34)
t=>+w
is proved. The proof can be achieved again with the method of [1].
Remark 3: If (1) fulfils a condition of unicity and e(t) is periodical, then, if 4,
holds, (1) has a periodical solution.
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Theorem 3: If A5 holds, there exist solutions of (1), satisfying the relation
lim| x(t) | = +00, (35
=+ oo
(and simultaneously the relations (12)).
This assertion can be proved by transforming (1) into the system

dx dx dx
Shox, SEex S o —f(x)x - glx)xn - hx) + e()

and using the function
N ¢
2U(xy, x5, X530 1) = (X3 + F(x;) + G(x)) — [ e(s) ds)?
0
in the manner shown in the proof of an analogous assertion in [3].

2. Let us now, consider the equation
X"+ fx) X"+ g(x) + h(x) = e(t), (36)

with f, g, h, e continuous for every real value of their argument. For the purpose of
studying this equation we recall the following theorem, proved in [4].

Theorem: Let us consider the differential equation
X = flx, x, ..., x"7Dg), 37)

with f(x;, X5, ...., X,; t) continuous on E,;(x,, x; ..., X,; t). Assume further that
there exist functions vy(x, , x5, ..., x,) (i = 1, 2, 3),continuous on E, _ (x5, X3, ..., X,)
and a function V(x,, X3, ..., X,; {), with all partial derivatives continuous on
E. (x5, X3, ... X,; 1). These functions may have following properties:

(i) There exists a positive number R such that for Z | x;| = R and for every ¢ the
i=2
inequality
Dy(Xg, X340y X)) 2 V(Xp. X3, .0y X3 1) Z 0y(xX,, X3, ..., X,) holds. (38

(ii) We have

1im vy(x5, X300y X,y = + 00 for Y |x;| = +o0. (39)
i=2
n
(iii) On the set ) | x;| = R the inequality v3(x;, X3, ..., x,) > 0 holds.
i=2
(iv) For every point fromE, , ,(x;, X5, ..., x,; 1), satisfying the inequalities Y |x;| =
i=2

2 R, —o0 <t < +00 we have

v "lav

av
— X, —_— f(x,, 2 s Xy 1) £ = 04(Xg, ., X,). 40
ot +x§zaxi ¥ier T 0x, J(xis %2 wit) £ 3(x2 ) (40)
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Then there exists each solution x(¢) of (37) on the interval I = (to, +0) and satisfies
the inequality

n=1
limsup Y | x®| < D’ @1

4w i=1
with a common constant D’.
Next, we will use following assumptions:
Assumption Ag: There exist positive numbers ¢, H, E, Y, such that (4), (5) hold
and
J(») z 4e foreveryy, “42)
gy)sgny = E+ H+¢e forevery|y| =Y. (43)

Assumption A, : Ag and (7) hold and there exist positive numbers d, m, such that
lg(y) —dyl <m  foreveryy. 44
Assumption Ag : A, holds and there exist a positive number h, such that
h(x)sgnx = m forevery | x| = h. 45)
Assumption Aq: A, holds and further
lim inf A(x) sgn x > m. (46)

|x]= + 0
Assumption Ay: A, holds and there exist two positive constants /4, 8, such that
h(x)sgnx < —m — § for every | x | = h. “n

Theorem 4: If Ag holds, then each solution x(7) of (36) exists on / and is bounded
there.
Proof: At first, the following lemma will be proved:
Lemma 3: If Ag holds, then every x(¢) exists on 7 and there exists a constant D',
such that (12) holds.
Proof of lemma 3: Let us consider two functions (inspired by [5])
¥y

. L sf(s)
u(y) = J.g(s) + z(l - _ITIST)T‘-%-;I—SI-dS

and
1

—_— &-——-—y
t+iyl)1+alyl”’
where a stands for a positive constant satisfying the inequality

0<a<83H+E)2 (48)

2w(y, z) = 2% + 252(] -

Using Ag, it is easy to show that , w are lower bounded and that

lim u(y)= lim w(y,z) = +oo.
Iy]=+o lzl=+ e
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Let us now consider the function

V(y,z) = u(y) + w(y, 2), (49)
with the property
lim  V(y,z) = +o0. (50)
Ixl+ ]z + o

The system equivalent to (36) is

dx dy dz
d;' = L(—i)f =z P —f(¥)z — g&(y) — h(x) + e(t)

and thus, the expression on the left side of (40) is

PRy YO 1Y |yl
Vs ('((|+-Ill,vl)(|+|ﬂ)2+(1+|.V|)(1+ﬂ|yll)2)—
— /()) + A.:l,((,(,) —_ h(.\‘))) + f']yly(e(‘)"h(x)—g()’)).

TralyD( +TyD ©h

Using (42). (4) and (5) we can estimate

e e bk ey y(e(r) = h(x) - g(v)
v gh( 2% + lzl(h+H))+ AT (52)

and hence for [ p| < Y (with G = max [ g(y)|for|y| < Y)

V' < :2<~21; + [—-l—T(Ii + H)) +eYXE + H + G).

This leads us finally to the inequality

V's —g<0forevery [yl < Yandevery |[z]| 2 M=
1 '
= max (T(E + H), (YHE + H + G) + 1) ”). (53)
For i y{ = Y we have because of (43)
ygy)=1ylgy)sgny =z | v (E+ H +¢), (54)

and thus also the following relation must be true (note that M > 1)

forevery {y| 2 Y
and every |z| = M.

22
2 &y

v + TFN0 Faivn < -t<0

A

(55)

—&Z

Let us further consider the case | z | £ M. From (52) it follows also

"< max (=262% + (E + H)| 2 1) + S0 1000 = hCx) — g(y) _
Vi max (=2t (B WD N - )

(E+ H)? 4+ -l oL

R
8¢
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Using (54) we see that it must hold

lim sup & y | y(e(t) ~ h(x) — g(y)) < __f_z

ot (L+aly(+1y]) = a

and thus, if a fulfils the inequality (48). there must exist a positive N, such that

, 4° a for every |z| £ M and
A — 24 5= <0 =
= (E+H ) "< every | y| = N. - (59)
Resuming, we tan write
V' < max (—g, —n) <O forevery|y!| + jz| 2 M+ N =R (57

Thus, if we pose v,(y, z) = v,(y, z) = V(y, 2), v3(y, z) = min (g, n), we see that by the
above mentioned theorem lemma 3 is proved,

Proof of theorem 4: We pose g(y) = dy + ¥(p): because of (44) is then | Y(y) | < m.
The above lemma results in the existence of a ¢, = ¢,, such that

X1 =D+ LIx"O =D +1 forevery t = 1. (58)
Integrating (36) and multiplying by sgn x(7) gives
d x| =d|x(t)] + (x"(r;) = x"(1) + F(x'(t) — F(X'(1) .

'
csgnx(t) = [ (h(x(s)) + y(x'(s)) — e(s)) ds sgn x(1), (59)
te
if we suppose sgn x(s) = const. for s € {1, t>. Hence, for | x(s) | = & on (t,, t)> (note
that from (41) and (42) it follows then | A(x(z)) | — | ¢ (x(¢)) | = 0) we obtain

dix()| =d|x(t)! + 2D + 1+ max F(y)+ E).
=D +1

Hereby is our theorem proved.

Theorem 5: If A, holds, then (35) is dissipative.
Proof: Let us pose y = lim inf /(x) sgn x; there exists a &, such that | A(x) | =
I

x| +on

> %(m + ) for every | x| = &,. From (59) we get now
1
dix()] £ dx(t)] + 2D+ 1+ max F(y) + E) = 5-(m + Dt = 1),
IIsD +1

ifonly | x(¢) | = hon {t,, t). For t — ¢t large enough this leads to a contradiction and
hence the relation

liminf | x(/)| < h,

1+ x

must be valid. Now the proof can be achieved as f.i. the proof of theorem 2.

Remark 4: 1f (36) fulfils a condition of unicity and e(¢) is periodical, then, if 4g
holds, (36) has a periodical solution.
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Theorem6: If A, holds, there exist x(t), satisfying the relation (35) and simultan-

eously (12).
Theorem 6 can be proved like theorem 3 using the function

W, y, 23 1) = (z + F(¥) + dx — je(s) ds)? + 2f(s) ds.
J 0
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Shrouti

O RESENICH JISTYCH NELINEARNICH
DIFERENCIALNICH ROVNIC TRETiHO RADU

JAN VORACEK

V prvni ¢asti prace jsou odvozeny postadujici podminky pro dissipativnost rov-
nice (1) (podminka 4,), resp. pro existenci D’ — divergentnich feseni (podminka A45).
Ve druhé &asti je uvedena postalujici podminka omezenosti feSeni rovnice (36)
(podminka Ag), resp. jeji dissipativnosti (podminka Ag). Je-li splnéna podminka 4,,,
pak ma (36) D' — divergentni FeSeni.
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