Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

Jan Voráček

On the solution of certain non-linear differential equations of the third order

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica, Vol. 11 (1971), No. 1, 147--156

Persistent URL: http://dml.cz/dmlcz/119933

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

$1971-$ ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM - TOM 33
Katedra matematické analýzy přirodovědecké fakulty
Vedoucí katedry: Prof. RNDr. Miroslav Laitoch, CSc.

ON THE SOLUTION OF CERTAIN NON-LINEAR DIFFERENTIAL EQUATIONS OF THE THIRD ORDER

JAN VORÁČEK

(Received May 12th, 1969)

1. Let us at first consider the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+f\left(x^{\prime}\right) x^{\prime \prime}+g(x) x^{\prime}+h(x)=e(t) \tag{1}
\end{equation*}
$$

with $f(y), g(x), h(x), e(t)$ continuous for every real argument. With (1) deals our note [1]; here we will prove some more general results.

Let us pose $F(y)=\int_{0}^{y} f(s) d s, G(x)=\int_{0}^{x} g(s) d s$. In what follows we will also use some assumptions about f, g, h, e.

Assumption A_{1} : There exist positive numbers $g, \varepsilon, Y>1, H, E$, such that
$|g(x)| \leqq g \quad$ for every x,
$f(y) \geqq \varepsilon \quad$ for every $y, \quad \frac{f(y)}{|y|} \geqq \varepsilon \quad$ for every $|y| \geqq Y$,
$|h(x)| \leqq H \quad$ for every x,
$|e(t)| \leqq E \quad$ for every t.
Assumption $A_{2}: A_{1}$ holds and

$$
\begin{gather*}
g(x) \geqq \varepsilon \quad \text { for every } x \tag{6}\\
\left|\int_{0}^{t} e(s) \mathrm{d} s\right| \leqq E \quad \text { for every } t \tag{7}
\end{gather*}
$$

Assumption $A_{3}: A_{2}$ holds and there exists a positive number h, such that

$$
\begin{equation*}
h(x) \operatorname{sgn} x \geqq 0 \quad \text { for every }|x| \geqq h \tag{8}
\end{equation*}
$$

Assumption $A_{4}: A_{2}$ holds and there exist a real function $r(x)$ and a positive number ϱ, such that $r(x)$ is continuous for every $|x| \geqq \varrho$ and
$\lim \inf r(x) \operatorname{sgn} x>0$.
$|x| \rightarrow+\infty$

Simultaneously, $h(x)$ satisfies the relation

$$
\begin{equation*}
\liminf _{|x| \rightarrow+\infty} r(x) h(x)>0 \tag{10}
\end{equation*}
$$

Remark 1:r(x) from A_{4} may be f.i. $e^{n|x|} \operatorname{sgn} x$.
Assumption $A_{5}: A_{2}$ holds and we have

$$
\begin{equation*}
\limsup _{|x| \rightarrow+\infty} G(x) h(x)<-H\left(D_{1}^{\prime}+\max _{|y| \leqq D_{1^{\prime}}^{\prime}} F(y)+E\right) \tag{11}
\end{equation*}
$$

where the constant D_{1}^{\prime} is defined in (25).
Theorem I : If A_{3} holds, then each solution $x(t)$ of (1) exists on the interval $I=\left\langle t_{0},+\infty\right)\left(t_{0}\right.$ stands for a real number) and is bounded on I. There also exists a constant D^{\prime} such, that every $x(t)$ fulfils the relations

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty}\left|x^{\prime}(t)\right| \leqq D^{\prime} . \quad \limsup _{t \rightarrow+\infty}\left|x^{\prime \prime}(t)\right| \leqq D^{\prime} \tag{12}
\end{equation*}
$$

The proof of theorem I will be divided in several steps.
Lemma 1: If A_{1} holds, then every $x(t)$ exists on I and the relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \sup \left|x^{\prime \prime}(t)\right| \leqq \frac{1}{\varepsilon}(g Y+H+E)+1=K \tag{13}
\end{equation*}
$$

holds.
The proof of lemma 1 can be obtained with the same method as in the mentioned note [1]; a change is necessary only in the estimations for the function $\frac{1}{2} x^{\prime \prime 2}(t)$.
We get

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} x^{\prime \prime 2}(t)=x^{\prime \prime} x^{\prime \prime \prime}=-f\left(x^{\prime}\right) x^{\prime \prime 2}-g(x) x^{\prime} x^{\prime \prime}-h(x) x^{\prime \prime}+e(t) x^{\prime \prime}
$$

and hence, using (2), (3), (4) and (5)

$$
\begin{gather*}
\text { for }\left|x^{\prime}\right| \leqq Y: \frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} x^{\prime \prime 2}(t) \leqq-\left|x^{\prime \prime}\right|\left(\varepsilon\left|x^{\prime \prime}\right|-g Y-H-E\right) \tag{14}\\
\text { for }\left|x^{\prime}\right| \geqq Y ; \frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} x^{\prime \prime 2}(t) \leqq-\left|x^{\prime \prime}\right|\left(\varepsilon\left|x^{\prime}\right|\left|x^{\prime \prime}\right|-g\left|x^{\prime}\right|-H-E\right) \tag{15}
\end{gather*}
$$

For $\left|x^{\prime}\right| \geqq Y$ and $\left|x^{\prime \prime}\right| \geqq K$ we then obtain

$$
\begin{equation*}
\varepsilon\left|x^{\prime}\right|\left|x^{\prime \prime}\right| \geqq(g Y+H+E+\varepsilon)\left|x^{\prime}\right| \geqq g\left(x^{\prime}\right)+H+E+\varepsilon \tag{16}
\end{equation*}
$$

We have thus from (14), (15), (16)

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \frac{1}{2} x^{\prime \prime 2}(t) \leqq-\varepsilon K \quad \text { for every }\left|x^{\prime \prime}\right| \geqq K
$$

The remaining part of the proof equals that of [1].

Lemma 2: If A_{2} holds, then there exists a constant D^{\prime}, such that for every $x(t)$ the relations (12) hold.

Proof: Let us prove at first that

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty}\left|x^{\prime}(t)\right| \leqq \frac{H}{\varepsilon}+2 \tag{17}
\end{equation*}
$$

We fix a $x(t)$. By lemma 1 there exists a $t_{1} \geqq t_{0}$ such that $\left|x^{\prime \prime}(t)\right| \leqq K+1$ for every $t \geqq t_{1}$. If, for a $t_{2}>t_{1}$, should be $\left|x^{\prime}(t)\right| \geqq \frac{H}{\varepsilon}+2$ for every $t \geqq t_{2}$, we should get from (6)

$$
\begin{equation*}
\mid G(x)(t))-G\left(x\left(t_{2}\right)\right) \mid=\int_{t_{2}}^{t} g(x(s))^{\prime} x^{\prime}(s) \mathrm{d} s \operatorname{sgn} x^{\prime}(s) \geqq(H+\varepsilon)\left(t-t_{2}\right) \tag{18}
\end{equation*}
$$

But (4) implies

$$
\begin{equation*}
\left|\int_{t_{2}}^{t} h(x(s)) \mathrm{d} s\right| \leqq H\left(t-t_{2}\right)\left(t \geqq t_{2}\right) \tag{19}
\end{equation*}
$$

and we thus obtain from (18) and (19) for every $t \geqq t_{2}$

$$
\begin{equation*}
\left[G(x(t))-G\left(x\left(t_{2}\right)\right)\right] \operatorname{sgn} x^{\prime}(t)-\left|\int_{t_{2}}^{t} h(x(s)) \mathrm{d} s\right| \geq \varepsilon\left(t-t_{2}\right) \tag{20}
\end{equation*}
$$

Integrating (1) from t_{2} to $t \geqq t_{2}$ we have

$$
\begin{aligned}
F\left(x^{\prime}(t)\right)+G(x(t))- & G\left(x\left(t_{2}\right)\right)+\int_{t_{2}}^{t} h(x(s)) \mathrm{d} s=x^{\prime \prime}\left(t_{2}\right)-x^{\prime \prime}(t)+ \\
& +F\left(x\left(t_{2}\right)\right)+\int_{t_{2}}^{t} e(s) \mathrm{d} s
\end{aligned}
$$

and hence, using (7) and multiplying with the constant $\operatorname{sgn} x^{\prime}(t)$:

$$
\begin{gather*}
F\left(x^{\prime}(t)\right) \operatorname{sgn} x^{\prime}(t)+\left[G(x(t))-G\left(x\left(t_{2}\right)\right)\right] \operatorname{sgn} x^{\prime}(t)-\left|\int_{t_{2}}^{t} h(x(s)) \mathrm{d} s\right| \leqq \\
\leqq 2(K+1+E)+F\left(x^{\prime}\left(t_{2}\right)\right) \tag{21}
\end{gather*}
$$

By means of (20) we get from (21) the inequality

$$
F\left(x^{\prime}(t)\right) \operatorname{sgn} x^{\prime}(t) \leqq 2(K+1+E)+F\left(x^{\prime}\left(t_{2}\right)\right)-\varepsilon\left(t-t_{2}\right)
$$

which is, for $t-t_{2}$ large enough in contradiction to the properties of the function F (cf. (3)). Thus, (17) is proved.

Let us suppose now that there exists an interval $\left\langle T_{1}, T_{2}\right\rangle\left(t_{1} \leqq T_{1}<T_{2}<+\infty\right)$, such that $x^{\prime}\left(T_{1}\right)=x^{\prime}\left(T_{2}\right)=\frac{H}{\varepsilon}+2, x^{\prime}(t)>\frac{H}{\varepsilon}+2$ on $\left(T_{1}, T_{2}\right)$. Let $\Theta \in\left(T_{1}, T_{2}\right)$ be the number with the property $x^{\prime}(\Theta)=\max x^{\prime}(t)$ on $\left\langle T_{1}, T_{2}\right\rangle$. Integrating (1) from T_{1} to Θ we obtain $\left(x^{\prime \prime}(\Theta)=0\right)$:

$$
\begin{align*}
& 0 \leqq F\left(x^{\prime}(\Theta)\right)=F\left(\frac{H}{\varepsilon}+2\right)+x^{\prime \prime}\left(T_{1}\right)-\left[G(x(\Theta))-G\left(x\left(T_{1}\right)\right)\right]- \\
&-\int_{T_{1}}^{\theta} h(x(t)) \mathrm{d} t+\int_{T_{1}}^{\Theta} e(t) \mathrm{d} t \tag{22}
\end{align*}
$$

On $\left\langle T_{1}, \Theta\right\rangle$ one can easily prove an inequality analogous to (20) i.e. in a weaker form

$$
-\left[G(x(\Theta))-G\left(x\left(T_{1}\right)\right)\right]-\int_{T_{1}}^{\theta} h(x(t)) \mathrm{d} t<0
$$

and thus, we obtain from (22)

$$
\begin{equation*}
0 \leqq F\left(x^{\prime}(\Theta)\right) \leqq F\left(\frac{H}{\varepsilon}+2\right)+K+1+2 E=L_{1} \tag{23}
\end{equation*}
$$

The case $x^{\prime}(t) \leqq-\frac{H}{\varepsilon}-2$ on $\left\langle T_{1}, T_{2}\right\rangle$ leads to the inequality

$$
\begin{equation*}
0 \geqq F\left(x^{\prime}(\Theta)\right) \geqq F\left(\frac{H}{\varepsilon}-2\right)-K-1-2 E=L_{2} \tag{24}
\end{equation*}
$$

Herewith the lemma 2 is proved. We have seen also that D^{\prime} must satisfy the inequality

$$
\begin{equation*}
D^{\prime} \leqq \max \left(K, F_{-1}\left(L_{1}\right),-F_{-1}\left(L_{2}\right)\right)=D_{1}^{\prime} \tag{25}
\end{equation*}
$$

$\left(F_{-1}(y)\right.$ is the inverse function of $\left.F(y)\right)$.
Proof of theorem 1: We fix again a $x(t)$. There exists then by lemma 2 a $t_{x} \geqq t_{0}$ with the property that

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \leqq D^{\prime}+1, \quad\left|x^{\prime \prime}(t)\right| \leqq D^{\prime}+1 \quad \text { for every } t \geqq t_{x} \tag{26}
\end{equation*}
$$

If on any interval $\left\langle t_{1}, t_{2}\right)\left(t_{x} \leqq t_{1}<t_{2} \leqq+\infty\right)$ the inequality

$$
\begin{equation*}
|x(t)| \geqq h \tag{27}
\end{equation*}
$$

holds, then, integrating (1) from t_{1} to $t \in\left(t_{1}, t_{2}\right)$, multiplying it by the constant sgn $x(t)$ and using (27), (8), (26), (7) and (3) we get

$$
\begin{gathered}
\operatorname{sgn} x(t)\left[G(x(t))-G\left(x\left(t_{1}\right)\right)\right] \leqq \mid F\left(x^{\prime}(t)-F\left(x^{\prime}\left(t_{1}\right)\right)|+| x^{\prime \prime}(t)-\right. \\
-x^{\prime \prime}\left(t_{1}\right)\left|-\int_{t_{1}}^{t} h(x(s)) \mathrm{d} s \operatorname{sgn} x(t)+\left|\int_{t_{1}}^{t} e(s) \mathrm{d} s\right| \leqq 2\left[\operatorname { m a x } \left(F\left(D^{\prime}+1\right)\right.\right.\right. \\
\left.\left.-F\left(-D^{\prime}-1\right)\right)+D^{\prime}+1+\mathrm{E}\right]=\mathrm{P}
\end{gathered}
$$

Hence

$$
\begin{equation*}
|G(x(t))| \leqq\left|G\left(x\left(t_{1}\right)\right)\right|+\mathrm{P} \tag{28}
\end{equation*}
$$

If (27) is valid on $\left\langle t_{1},+\infty\right\rangle$, then our theorem easy follows from (28). Is $t_{2}<+\infty$, then it is possible by the same method we have deduced (28) to prove the inequality

$$
|G(x(t))| \leqq \max (G(h),-G(-h))+\mathbf{P}
$$

for every $t \geqq t_{2}$. Theorem 1 is proved.

Remark 2: When A_{2} holds and

$$
\begin{equation*}
x h(x)>0 \quad \text { for every } x \neq 0 \tag{29}
\end{equation*}
$$

then every $x(t)$ is oscillatory or fulfils the relation

$$
\lim _{t \rightarrow+\infty} x(t)=0
$$

The proof of this assertion can be obtained by the same method as f.i. the proof of theorem 5 in [2].

Theorem 2: If A_{4} holds, is (1) dissipative.
Proof: From (10) we see, that a positive constant h_{1} exists, such that $\operatorname{sgn} r(x)=$ $=\operatorname{sgn} h(x)$ for every $|x| \geqq h_{1}$. By (9) there also exists a positive constant r_{1}, such that $|x| \geqq r_{1}$ implies $\operatorname{sgn} r(x)=\operatorname{sgn} x$. If we now pose $h=\max \left(h_{1}, r_{1}\right)$ it is clear that A_{4} implies A_{3} and thus the validity of theorem 1 . With a fixed $x(t)$ we now define

$$
\begin{equation*}
\sup _{t \geqq t_{0}}|x(t)|=X, \quad \sup _{t \geqq t_{0}}\left|x^{\prime}(t)\right|=X^{\prime}, \quad \sup _{t \geqq t_{0}}\left|x^{\prime \prime}(t)\right|=X^{\prime \prime} . \tag{30}
\end{equation*}
$$

Let us further set $\liminf _{|x| \rightarrow+\infty} r(x) h(x)=2 \beta$. By (11) it is $\beta>0$ and a positive number $r>\max \left(\varrho, r_{1}\right)$ may be find, such that for every $|x| \geqq r$ the inequality $r(x) h(x) \geqq \beta$ holds, i.e.

$$
\begin{equation*}
h(x) \operatorname{sgn} x \geqq \frac{\beta}{r(x) \operatorname{sgn} x} \quad \text { for every }|x| \geqq r \tag{31}
\end{equation*}
$$

We assume $X>r$ and pose $R=\max r(x) \operatorname{sgn} x$ on $\langle r, X\rangle$. Then (30) and (31) yield

$$
\begin{equation*}
h(x(t)) \operatorname{sgn} x(t) \geqq \frac{\beta}{R} \quad \text { for every }|x| \geqq r \tag{32}
\end{equation*}
$$

Hence, if there exists a t_{0} such that $|x(t)| \geqq r$ for all $t>t_{0}$, we obtain from (32) and (8)

$$
\begin{equation*}
\lim _{t \rightarrow+\infty} \int_{t_{0}}^{t} h(x(s)) \mathrm{d} s \operatorname{sgn} x(t)=\lim _{t \rightarrow+\infty}\left|\int_{t_{0}}^{t} h(x(s)) \mathrm{d} s\right|=+\infty \tag{33}
\end{equation*}
$$

But, by integration of (1) from t_{0} to $t \geqq t_{0}$ and by use of (7) it follows
$\left|\int_{i_{0}}^{1} h(x(s)) \mathrm{d} s\right| \leqq 2\left[X^{\prime \prime}+\max \left(F(X), \quad-F\left(-X^{\prime}\right)\right)+\max (G(X), \quad-G(-X))+E\right]$
i.e. a contradiction to (33). Thus, the relation

$$
\begin{equation*}
\liminf _{t \rightarrow+\infty}|x(t)| \leqq r, \tag{34}
\end{equation*}
$$

is proved. The proof can be achieved again with the method of [1].
Remark 3: If (1) fulfils a condition of unicity and $e(t)$ is periodical, then, if A_{4} holds, (1) bas a periodical solution.

Theorem 3: If A_{5} holds, there exist solutions of (1), satisfying the relation

$$
\begin{equation*}
\lim _{t \rightarrow+\infty}|x(t)|=+\infty \tag{35}
\end{equation*}
$$

(and simultaneously the relations (12)).
This assertion can be proved by transforming (1) into the system

$$
\frac{\mathrm{d} x_{1}}{\mathrm{~d} t}=x_{2}, \quad \frac{\mathrm{~d} x_{2}}{\mathrm{~d} t}=x_{3}, \quad \frac{\mathrm{~d} x_{3}}{\mathrm{~d} t}=-f\left(x_{2}\right) x_{3}-g\left(x_{1}\right) x_{2}-h\left(x_{1}\right)+e(t)
$$

and using the function

$$
2 U\left(x_{1}, x_{2}, x_{3} ; t\right)=\left(x_{3}+F\left(x_{2}\right)+G\left(x_{1}\right)-\int_{0}^{t} e(s) \mathrm{d} s\right)^{2}
$$

in the manner shown in the proof of an analogous assertion in [3].
2. Let us now, consider the equation

$$
\begin{equation*}
x^{\prime \prime \prime}+f\left(x^{\prime}\right) x^{\prime \prime}+g\left(x^{\prime}\right)+h(x)=e(t) \tag{36}
\end{equation*}
$$

with f, g, h, e continuous for every real value of their argument. For the purpose of studying this equation we recall the following theorem, proved in [4].

Theorem: Let us consider the differential equation

$$
\begin{equation*}
x^{(n)}=f\left(x, x, \ldots, x^{(n-1)} ; t\right) \tag{37}
\end{equation*}
$$

with $f\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right)$ continuous on $E_{n+1}\left(x_{1}, x_{2} \ldots, x_{n} ; t\right)$. Assume further that there exist functions $v_{i}\left(x_{2}, x_{3}, \ldots, x_{n}\right)(i=1,2,3)$, continuous on $E_{n-1}\left(x_{2}, x_{3}, \ldots, x_{n}\right)$ and a function $V\left(x_{2}, x_{3}, \ldots, x_{n} ; t\right)$, with all partial derivatives continuous on $E_{n}\left(x_{2}, x_{3}, \ldots x_{n} ; t\right)$. These functions may have following properties:
(i) There exists a positive number R such that for $\sum_{i=2}^{n}\left|x_{i}\right| \geqq R$ and for every t the inequality

$$
v_{1}\left(x_{2}, x_{3}, \ldots, x_{n}\right) \geqq V\left(x_{2}, x_{3}, \ldots, x_{n} ; t\right) \geqq v_{2}\left(x_{2}, x_{3}, \ldots, x_{n}\right) \text { holds. }
$$

(ii) We have

$$
\begin{equation*}
\lim v_{2}\left(x_{2}, x_{3}, \ldots, x_{n}\right)=+\infty \quad \text { for } \sum_{i=2}^{n}\left|x_{i}\right| \rightarrow+\infty \tag{39}
\end{equation*}
$$

(iii) On the set $\sum_{i=2}^{n}\left|x_{i}\right| \geqq R$ the inequality $v_{3}\left(x_{2}, x_{3}, \ldots, x_{n}\right)>0$ holds.
(iv) For every point from $E_{n+1}\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right)$, satisfying the inequalities $\sum_{i=2}^{n}\left|x_{i}\right| \geqq$ $\geqq R,-\infty<t<+\infty$ we have

$$
\begin{equation*}
\frac{\partial V}{\partial t}+\sum_{i=2}^{n-1} \frac{\partial V}{\partial x_{i}} x_{i+1}+\frac{\partial V}{\partial x_{n}} f\left(x_{1}, x_{2}, \ldots, x_{n} ; t\right) \leqq-v_{3}\left(x_{2}, \ldots, x_{n}\right) \tag{40}
\end{equation*}
$$

Then there exists each solution $x(t)$ of (37) on the interval $I=\left\langle t_{0},+\infty\right)$ and satisfies the inequality

$$
\begin{equation*}
\limsup _{t \rightarrow+\infty} \sum_{i=1}^{n-1}\left|x^{(i)}\right| \leqq D^{\prime} \tag{41}
\end{equation*}
$$

with a common constant D^{\prime}.
Next, we will use following assumptions:
Assumption A_{6} : There exist positive numbers ε, H, E, Y, such that (4), (5) hold and

$$
\begin{equation*}
f(y) \geqq 4 \varepsilon \quad \text { for every } y \tag{42}
\end{equation*}
$$

$g(y) \operatorname{sgn} y \geqq E+H+\varepsilon \quad$ for every $|y| \geqq Y$.
Assumption $A_{7}: A_{6}$ and (7) hold and there exist positive numbers d, m, such that

$$
\begin{equation*}
|g(y)-\mathrm{d} y| \leqq m \quad \text { for every } y \tag{44}
\end{equation*}
$$

Assumption $A_{8}: A_{7}$ holds and there exist a positive number h, such that

$$
\begin{equation*}
h(x) \operatorname{sgn} x \geqq m \quad \text { for every }|x| \geqq h \tag{45}
\end{equation*}
$$

Assumption $A_{9}: A_{7}$ holds and further

$$
\begin{equation*}
\liminf _{|x| \rightarrow+\infty} h(x) \operatorname{sgn} x>m \tag{46}
\end{equation*}
$$

Assumption $A_{10}: A_{7}$ holds and there exist two positive constants h, δ, such that

$$
\begin{equation*}
h(x) \operatorname{sgn} x \leqq-m-\delta \quad \text { for every }|x| \geqq h \tag{47}
\end{equation*}
$$

Theorem 4: If A_{8} holds, then each solution $x(t)$ of (36) exists on I and is bounded there.

Proof: At first, the following lemma will be proved:
Lemma 3: If A_{6} holds, then every $x(t)$ exists on I and there exists a constant D^{\prime}, such that (12) holds.

Proof of lemma 3: Let us consider two functions (inspired by [5])

$$
u(y)=\int_{0}^{y} g(s)+\varepsilon\left(1-\frac{1}{1+|s|}\right) \frac{s f(s)}{1+a|s|} \mathrm{d} s
$$

and

$$
2 w(y, z)=z^{2}+2 \varepsilon z\left(1-\frac{1}{1+|y|}\right) \frac{y}{1+a|y|}
$$

where a stands for a positive constant satisfying the inequality

$$
\begin{equation*}
0<a<8 \varepsilon^{3}(H+E)^{-2} \tag{48}
\end{equation*}
$$

Using A_{6}, it is easy to show that u, w are lower bounded and that

$$
\lim _{|y| \rightarrow+\infty} u(y)=\lim _{|z| \rightarrow+\infty} w(y, z)=+\infty
$$

Let us now consider the function

$$
\begin{equation*}
V(y, z)=u(y)+w(y, z) \tag{49}
\end{equation*}
$$

with the property

$$
\begin{equation*}
\lim _{|y|+|z|-+\infty} V(y, z)=+\infty \tag{50}
\end{equation*}
$$

The system equivalent to (36) is

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=y, \quad \frac{\mathrm{~d} y}{\mathrm{~d} t}=z . \quad \frac{\mathrm{d} z}{\mathrm{~d} t}=-f(y) z-g(y)-h(x)+e(t)
$$

and thus, the expression on the left side of (40) is

$$
\begin{align*}
V^{\prime}= & z^{2}\left(\varepsilon\left(\frac{|y|}{(1+a|y|)(1+|y|)} 2+\frac{|y|}{(1+|y|)(1+a|y| \mid)} 2\right)-\right. \\
& \left.-f(y)+\frac{1}{z}(e(t)-h(x))\right)+\frac{\varepsilon|y| y(e(t)-h(x)-g(y))}{(1+a|y|)(1+|y|)} \tag{51}
\end{align*}
$$

Using (42), (4) and (5) we can estimate

$$
\begin{equation*}
V^{\prime} \leqq z^{2}\left(-2 \varepsilon+\frac{1}{|z|}(E+H)\right)+\frac{\varepsilon|y| y(e(t)-h(x)-g(y))}{(1+a|y|)(1+|y|)} \tag{52}
\end{equation*}
$$

and hence for $|y| \leqq Y$ (with $G=\max |g(y)|$ for $|y| \leqq Y$)

$$
V^{\prime} \leqq z^{2}\left(-2 \varepsilon+\frac{1}{|z|}(E+H)\right)+\varepsilon Y^{2}(E+H+G)
$$

This leads us finally to the inequality

$$
\begin{align*}
V^{\prime} & \leqq-\varepsilon<0 \text { for every }|y| \leqq Y \text { and every }|z| \geqq M= \\
& =\max \left(\frac{1}{\varepsilon}(E+H),\left(Y^{2}(E+H+G)+1\right)^{1 / 2}\right) \tag{53}
\end{align*}
$$

For $: y: \geqq$ we have because of (43)

$$
\begin{equation*}
y g(y)=|y| g(y) \operatorname{sgn} y \geqq|y|(E+H+\varepsilon) \tag{54}
\end{equation*}
$$

and thus also the following relation must be true (note that $M>1$)

$$
V^{\prime} \leqq-\varepsilon z^{2}+\frac{\varepsilon^{2} y^{2}}{(1+|y|)(1+a|y|)}<-\varepsilon<0 \quad \begin{array}{ll}
\text { for every }|y| \geqq Y \tag{55}\\
\text { and every }|z| \geqq M
\end{array}
$$

Let us further consider the case $|z| \leqq M$. From (52) it follows also

$$
\begin{gathered}
V^{\prime} \leqq \max _{|z| \leqq M}\left(-2 \varepsilon z^{2}+(E+H)|z|\right)+\frac{\varepsilon|y| y(e(t)-h(x)-g(y))}{(1+a|y|)(1-|y|)}= \\
=\frac{1}{8 \varepsilon}(E+H)^{2}+\frac{\varepsilon|y| y(e(t)-h(x)-g(y))}{(1+a|y|)(1+|y|)}
\end{gathered}
$$

Using (54) we see that it must hold

$$
\limsup _{|y| \rightarrow+\infty} \frac{\varepsilon|y| y(e(t)-h(x)-g(y))}{(1+a|y|)(+|y|)} \leqq-\frac{\varepsilon^{2}}{a}
$$

and thus, if a fulfils the inequality (48), there must exist a positive N, such that

$$
V^{\prime} \leqq-\frac{4 \varepsilon^{3}}{(E+H)} 2+\frac{a}{2}=-\eta<0 \quad \begin{align*}
& \text { for every }|z| \leqq M \text { and } \tag{56}\\
& \text { every }|y| \geqq N
\end{align*}
$$

Resuming, we can write

$$
\begin{equation*}
V^{\prime} \leqq \max (-\varepsilon,-\eta)<0 \text { for every }|y|+|z| \geqq M+N=R \tag{57}
\end{equation*}
$$

Thus, if we pose $v_{1}(y, z)=v_{2}(y, z)=V(y, z), v_{3}(y, z)=\min (\varepsilon, \eta)$, we see that by the above mentioned theorem lemma 3 is proved.

Proof of theorem 4: We pose $g(y)=\mathrm{d} y+\psi(y)$; because of (44) is then $|\psi(y)| \leqq m$. The above lemma results in the existence of a $t_{x} \geqq t_{0}$, such that

$$
\begin{equation*}
\left|x^{\prime}(t)\right| \leqq D^{\prime}+1,\left|x^{\prime \prime}(t)\right| \leqq D^{\prime}+1 \quad \text { for every } t \geqq t_{x} \tag{58}
\end{equation*}
$$

Integrating (36) and multiplying by $\operatorname{sgn} x(t)$ gives

$$
\begin{gather*}
\mathrm{d}|x(t)|=\mathrm{d}\left|x\left(t_{x}\right)\right|+\left(x^{\prime \prime}\left(t_{x}\right)-x^{\prime \prime}(t)+F\left(x^{\prime}\left(t_{x}\right)\right)-F\left(x^{\prime}(t)\right)\right) \\
. \operatorname{sgn} x(t)-\int_{t_{x}}^{t}\left(h(x(s))+\psi^{\prime}\left(x^{\prime}(s)\right)-e(s)\right) \mathrm{d} s \operatorname{sgn} x(t) \tag{59}
\end{gather*}
$$

if we suppose $\operatorname{sgn} x(s)=$ const. for $s \in\left\langle t_{x}, t\right\rangle$. Hence, for $|x(s)| \geqq h$ on $\left\langle t_{x}, t\right\rangle$ (note that from (41) and (42) it follows then $|h(x(t))|-|\psi(x(t))| \geqq 0)$ we obtain

$$
\mathrm{d}|x(t)| \leqq \mathrm{d}\left|x\left(t_{x}\right)\right|+2\left(D^{\prime}+1+\max _{|y| \leqq D^{\prime}+1} F(y)+E\right)
$$

Hereby is our theorem proved.
Theorem 5: If A_{g} holds, then (35) is dissipative.
Proof: Let us pose $\gamma=\liminf _{|x| \rightarrow+\infty} h(x) \operatorname{sgn} x$; there exists a h_{1}, such that $|h(x)| \geqq$ $\geqq \frac{1}{2}(m+\gamma)$ for every $|x| \begin{gathered}|x| \rightarrow+\infty \\ \geqq\end{gathered} h_{1}$. From (59) we get now

$$
\mathrm{d}|x(t)| \leqq \mathrm{d}\left|x\left(t_{x}\right)\right|+2\left(D^{\prime}+1+\max _{|y| \leqq D^{\prime}+1} F(y)+E\right)-\frac{1}{2}(m+\gamma)\left(t-t_{x}\right)
$$

if only $|x(t)| \geqq h$ on $\left\langle t_{x}, t\right\rangle$. For $t-t_{x}$ large enough this leads to a contradiction and hence the relation

$$
\liminf _{t \rightarrow+\infty}|x(t)| \leqq \mathrm{h}
$$

must be valid. Now the proof can be achieved as f.i. the proof of theorem 2.
Remark 4: If (36) fulfils a condition of unicity and $e(t)$ is periodical, then, if A_{9} holds, (36) has a periodical solution.

Theorem 6: If A_{10} holds, there exist $x(t)$, satisfying the relation (35) and simultaneously (12).
Theorem 6 can be proved like theorem 3 using the function

$$
2 U(x, y, z ; t)=\left(z+F(y)+\mathrm{d} x-\int_{0}^{t} e(s) \mathrm{d} s\right)^{2}+2 \int_{0}^{y}(s) \mathrm{d} s .
$$

LITERATURE

[1] Voráček J.: Sur une équation différentielle non linéaire du troisième ordre. Publ. Fac. Sci. Univ. J. E. Purkyně, Brno, (to appear).
[2] Voráček J.: O některých nelineárních diferenciálních rovnicích třetího rádu. Acta Univ. Palackianae Olomucensis, F. R. N., T. 21., 1966.
[3] Voráćek J.: Einige Bemerkungen über eine nichtlineare Differentialgleichung dritter Ordnung. Archivum mathematicum, Brno, T. 2.. 1966.
[4] Voráček J.: Dissipativnost některých nelineárnich diferenciálních rovnic 3. a 4. řádu. Acta Univ. Palackianae Olomucensis, F. R. N., T. 28., 1968.
[5] Bhatia N. P.: Anwendung der direkten Methode von Ljapunow zum Nachweis der Beschränkheit und der Stabilität der Lösungen einer Klasse nichtlinearer Differentialgleichungen zweiter Ordnung. Abhandlungen der Deutschen Akademie der Wissenschaften, 5, 1961.

Shrnuti

O ŘEŠENÍCH JISTÝCH NELINEÁRNÍCH

 DIFERENCIÁLNÍCH ROVNIC TR̆ETíHO ŘÁDUJAN VORÁČEK

V první části práce jsou odvozeny postačující podmínky pro dissipativnost rovnice (1) (podmínka A_{4}), resp. pro existenci D^{\prime} - divergentních řešení (podmínka A_{5}). Ve druhé části je uvedena postačující podmínka omezenosti řešení rovnice (36) (podmínka A_{8}), resp. její dissipativnosti (podmínka A_{9}). Je-li splněna podmínka A_{10}, pak má (36) D^{\prime} - divergentní řešení.

