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DIRECTED CONVEX SUBGROUPS 
OF O R D E R E D GROUPS 

JlftA R A C H I J N E K 
(Received June 9, 1972) 

In this paper are studied the set F of all directed convex subgroups of a (partially) 
ordered group G and the set A of all convex subsemigroups of G+ that contain 0. 
There is given (Theorem 2.1) the isomorphism cp between the sets F and A ordered by 
inclusion (cp: A e F -> A+ e A, cp"l: S e A -> <S> e F). Then F, A are isomorphic 
complete lattices whose properties depend on properties of an order of G (there are 
considered Riesz groups and l-groups). 

The other section concerns the set Fx g F of all o-ideals of an ordered group G 
and the set A t g A of all convex invariant subsemigroups of G+ that contain 0 (if need 
be the set A\ in which invariancy in G is made up for invariancy in G+). In Theorem 
3A is proved: a restriction of the mapping cp (from Theorem 2A) on Fx is an iso
morphism between F. and A x. There holds again that Fj, Al are isomorphic complete 
lattices. If G is directed, we can obtain similar results for F1 and A\. In particular, 
we can obtain results for Riesz groups and l-groups. 

In accordance with these results now follows the known correspondence in an 
1-group G between l-ideals and invariant convex subsemigroups of G+ that contain 0. 

1. In this section we shall remind some basic concepts and relations. G will always 
denote a (partially) ordered group [G, + , ^ ] and G+ will denote the positive cone 
of G that is the set of all elements a e G, a J_ 0. If A is a subset of G, then G+ n A 
will be denoted by A + . For each subgroup A of G, A is an ordered group [A, -f, S] 
and A + is the positive cone of A. A subset A g G is convex in G if a, b e A, x e G, 
a ^ x = b imply that x e A. As is known, a subgroup A is a convex subgroup of G 
if and only if A + is a convex subset of G+. G is directedif U(a, b) 4= 0 for each a, be G, 
where U(a, b) = {x e G: a = x, b = x}. G is directed if and only if G = G+ — G + . 
It is known too that G is directed if and only if for each a e G there exists y e G+ such 
that a ^ j ' . 

A directed convex normal subgroup of G will be called an o-ideal of G. If G is 
a lattice-ordered group (notation: l-group), then a subgroup A of G which is also 
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a sublattice of the lattice G, will be called an l-subgroup. A convex normal /-subgroup 
will be called an l-ideal. 

Remind also the concept of a Riesz group ([4], I. V. 13). We shall call G a Riesz 
group if G is directed and if the following is satisfied: For any elements ax,a2,bx,b2 

in G such that at — bj (i = 1, 2;j = 1,2) there exists c in G such that at = c = bj 
(i = 1, 2; j = 1, 2). Each /-group is evidently a Riesz group; but there exist Riesz 
groups which are not /-groups. # 

2. In this section we shall investigate a relation among directed convex subgroups 
of an ordered group G and convex subsemigroups of G+ that contain 0. 

If A is an arbitrary subset 0 + A = G, we shall denote A — A by A and <A> will 
always denote the subgroup of G, generated by A. 

Lemma 2.1. (SIK [5]) If G is an ordered group, S a convex subsemigroup of G + 

containing 0, then (S)+ = S. 
Proof: Let x e (S)+ . By our assumption x = yx — y2, where yx, y2 e S. There

fore yt = yx — y2 = x ^ 0 and since S is convex, x e S. Hence (S)+ ~\ S. The con
verse is evident. 

Lemma 2.2. If G is an ordered group, S a convex subsemigroup of G+ containing 0, 
then S = <S>. 

Proof: Let xt, x2 e S. Then there exist a1,bl, a2,b2e S such that xx = ax — bx, 
x2 = a2 — b2. Therefore 

xl ~~ X2 ~ a\ ~ bl + °2 ~ a2 ~ a\ + °2 ~ °2 ~ °\ + °2 ~ a2 = 

= (ax + b2) - [a2 + ( - b2 + b! + b2)]. 

Furthermore, b1 + b2 = —b2 + bx + b2 = 0 and since S is convex, —b2 + bx + 
+ b2e S. That is to say x1 — x2e S, and hence S is a subgroup of G. Thus <S> = S. 
The converse is evident. 

Lemma 2.3. Let G be an ordered group, S a convex subsemigroup of G+ containing 0. 
Then <S>+ = S. 

Proof: Lemma is an immediate consequence of Lemmata 2.1 and 2.2. 

Now, let G be an ordered group. We shall denote the set of all directed convex 
subgroups of G by F. Similarly we shall denote the set of all convex subsemigroups 
of G+ containing 0 by A. 

We can prove the following theorem: 

Theorem 2.1. Let G be an ordered group. Then the mapping cp of the set F into the 
set of all subsemigroups of G+ defined by Axp = A+ for each A e F is a isomorphism 
of the ordered set F onto the ordered set A. (F, A are ordered by inclusion.) The in
verse-mapping (p~x is the mapping ij/ : A -» F defined by Sij/ = <S>fOr each S e A. 
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Proof : Let A e F. We shall show A+ e A. Clearly, 0 e A + . Since A is a convex 
subgroup of G, A+ is a convex subsemigroup of G+ . Now suppose that A, BeF 
and A+=B+. A+, B+is the positive cone of A, B respectively implies (by the 
direction) A = A+ - A + , B = B+ - B + a n d hence A = B. That is to say q> is the 
injection of F into A. Now consider arbitrary S e A. Thus S is convex in G+ and by 
Lemma 2.3 <S>+ = S. Therefore <S> is convex in G. And since the ordered group <S> 
is generated by its positive cone, <S> is directed ([4], I. II. 1) that is <S> e F. And 
since <S> cp = S, <p is a bijection of F onto A. 

Show that \jj = cp'1. If A e F, then A+ e A, <A + > e F. Since A is directed, A = 
= <A + >. T h u s Acpij/ = A + i/t = <A + > = A. Similarly Sij/q) = <S> <p = <S>+ = S 
for SeA. Finally it is evident that q> is an isomorphism between the ordered sets 
T and A. 

Theorem 2.2. Let G be an ordered group. Then A ordered by inclusion is a complete 
lattice (in which the intersection is an infimum). 

Proof: Let {St : i e 1} be an arbitrary system of convex subsemigroups of G+ that 
contain 0. Then 

(2) n $t ls ( a s a non-void intersection of convex subsemigroups) a convex sub-

semigroup of G+ . G+ is the unit in A. 

The following theorem is an immediate consequence of Theorems 2A and 2.2. 

Theorem 2.3. 1f G is an ordered group, then F ordered by inclusion is a complete 
lattice isomorphic to the complete lattice A. 

Consider now the case where an ordered group G is a Riesz group. 

Lemma 2.4. A directed group G is a Riesz group if and only if it holds: If a e G 
satisfies 0 _ a _ b1 + ... + bm, where 0 _ bt (i = I, 2, ..., m), then there exist 
such elements ateG that 0 _ a{ _ bx (i = /, ..., m) and a = ax + ... + am. (See 
[4], I. V. 13.) 

Theorem 2.4. Let G be a Riesz group. Then F ordered by inclusion is a distributive 
sublattice of the lattice of all subgroups of G. 

Proof: (I) Let A, BeF. Since A, B are convex, A n B is also convex in G. Let x, 
y e A n B. Since A, B are directed, there exist ae A, b e B such that x _ a, y _ a, 
-* _ b, y _ b. Since G is a Riesz group, there exists an element c e G such that 
x _ c, y _ c, c _ #> c _ b. And since A, B are convex, c e A n B. Thus A n B is 
directed. Therefore A n B e F. 

(2) Let A, BeF. Let x, y e <A, B>. We can express x, y in the form x = a« + 
+ .:. + OLn,y = px + ... + j?m, where a ; GA ; (i = 1, . . . ,«) , Af = AorB, Af + Ar+1 

(/ = 1, ..., n — 1). Similarly for ^(j = I, ..., m). Consider the set {a,} of all sum-
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mands of x and the set {fij} of all summands of y. Since A, B are directed, there exist 
elements yt e A, y2e B such that yx e U ({a,-} n A, {/?,-} n A, 0), y2 e U({af} n B, 
{/?,} n B, 0). We can suppose that it holds a t e A, /?, e A, /? = m. (In the other case 
we can add zeros.) Then 

x = ax + a2 + ... + af + ... + a„ <: yt + y2 + ... + y (0 + ... + y(n) = x\ 
y = Pl+ p2 + ... + p. + ... + ^ <I y i + ^ + ... + yd-) + _ + y(«) = ^ 

where y (0 is equal ]!x, y2 alternately (i = 1, ... , n). Therefore <A, B> is directed. 
We shall prove the convexity of <A, B>. Let u e G, 0 ^ u S x, where x e <A, B>. 

We shall express the element x in the form x = a t + ... + a„ as in the precedent. 
Since A, B are directed, we can suppose that a£ (i = 1, . . . , n) are positive elements 
and x precedes their sum. By Lemma 2.4 there exist elements ateG such that 
0 :_ ax ^ a(- (i = 1, ..., n) and u = ax + ... + a„. Since A, B are convex, a, e A 
or ate B(i = 1, . . . , n). Thus ue <A, B>+ and hence <A, B> is convex. Thus F is 
a lattice with a supremum <A, B> and an infimum A n B. 

(3) We shall prove that the lattice F is distributive. According to (1), (2), we have 
to prove C n <A, B> g <C n A, C n B> for each A, B, C e F. Let x e C n <A, B>. 
Then x can be expressed in the form x = cct + ... + an as in (2). Without loss of 
generality we may suppose that 0 < x. (Each element of the directed subgroup 
C n {A, B} can be expressed by a difference of positive elements.) Since A, B are 
directed, there exist O\ e A, O"2 e B such that O\ e C/({aJ n A, 0), <52 e U({a,} n B, 0). 
Thus x ^ <5(1) + <5(2) + ... + d(n), where 6 ( 0 = 5X or S2 (i = 1, ..., n). According to 
Lemma 2.4 there exist elements e(1), . . . ,e ( M )eG such that 0 <: e (0 ^ c3(/) ( /= 1, . . . ,n ) , 
x = e(1) + e(2) + ... + e(n). Since A, B are convex, e (0 e A or B (i = 1, ..., n). And 
since 0 = e (0

 = x, e ( 0 e C (i = 1, ... , n). Therefore x e <C n A, C n B>. And thus 
C n <A, B> g <C n A, C n B>. 

The following theorem is a consequence of Theorems 2.3 and 2.4. 
Theorem 2.5. Let G be a Riesz group. Then A ordered by inclusion is a complete 

distributive lattice (in which the intersection is an infimum) isomorphic to the lattice F. 

Now, let an ordered group G be an /-group. 
Lemma 2.5. IfG is an l-group, then each directed convex subgroup A ofG is a convex 

l-subgroup of G and conversely. 
Proof: Since A is directed, for a, be A there exists c e A such that a ^ c, b ^ c. 

Therefore a v b ^ c. Since A is convex, a v b e A. The converse is evident. 
Consider now the set F' of all convex /-subgroups of an /-group G. By [3], [6] T' 

ordered by inclusion is a complete distributive lattice in which fl At is an infimum of 
iel 

an arbitrary system {A£ : iel} of /-subgroups and <Af : i e /> is a supremum of this 
system. By Lemma 2.5 is now F' = F, thus in the case of an /-group, F is a closed 
distributive sublattice of the lattice of all subgroups of G. 
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3. Now, G be again an arbitrary ordered group. In this section we shall study the 
same types of subgroups and subsemigroups as in Section 2 but they will be invariant 
besides. First prove some lemmata. 

Lemma 3.1. Let G be an ordered group. Then <G+> = G+— G + . 

Proof: Evidently, G+ is a convex subsemigroup of G+ containing 0 and hence 

by Lemma 2.2 the proof is completed. 

Lemma 3.2. If G is an ordered group, then <G+> is a directed convex normal sub
group of G. 

Proof: Let x e G, ce <G + >. By Lemma 3.1 holds c = a — b, where a, b e G+. 
We have 

— x + (a — b) + x = ( —x + a + x) — ( — x + b + x) = p — q, 

where p, qeG+, thus <G + > is normal. By Lemma 3.1 <G+> = G+ — G+ and 
hence <G+> is directed. <G+> = G + cp~l is evidently convex in G. 

Lemma 3.3. Let G be an (abstract) group. Then a non-void intersection of an arbitrary 
system of invariant subsemigroups ofG is an invariant subsemigroup of G. 

Lemma 3.4. Let A be a normal subgroup of an ordered group G. 
Then (1) A+ is an invariant subsemigroup of G; 

(2) A + is the positive cone of an order of G. 

Proof: 0 e A+ . A+ — G+ n A is by Lemma 3.3 an invariant subsemigroup of G. 
Since A+ g G+, A+ n - (A+) = 0. 

Lemma 3.5. Let S be an invariant subsemigroup of an ordered group G, S £ G+, 
OeS . Then 

(1) S is the positive cone of an order ^ofG; 
(2) <S> is normal subgroup of G and <S> is directed in the order ^ . 

Proof: The proposition (1) is evident. According to (I) and Lemma 3.2, <S> is 
normal. Simultaneously, <S> is directed with respect to the order < of G. The order ^ 
is an extension of the order < , therefore <S> is also directed in the order ^ . 

Let us remind that we have denoted by F the set of all directed convex subgroups 
of an ordered group G, by A the set of all convex subsemigroups of G+ that contain 0. 
Now, let F, = {A e F: A is a normal subgroup of G}; Ft is thus the set of all O-ideals 
of G. Similarly, let A, = {S e A: S is an invariant subsemigroup of G}. 

Theorem 3.1. Lel G be an ordered group. Then the mapping q>t: Ae F x -> A+ e A 
is an isomorphism of the set Tx ordered by inclusion onto the set A { ordered by inclusion. 
The inverse mapping <px

 x is the mapping ^ : S € A t -> <S> e Tx. 

Proof: By Theorem 2.1 e a c h A e F ^ F is in a one-one correspondence with A+e A. 
By Lemma 3.4 A+ e A x , thus TYcp e Ax. Conversely, by Theorem 2.1 arbitrary 
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SeAj ~\ A is in a one-one correspondence with the subgroup <S> e F. <S> is by 
Lemma 3.5 a normal subgroup of G, therefore Ax(p~l g\ Fj. An isomorphism of the 
ordered sets Tx and Al is now evident. 

Theorem 3.2. Let G be an ordered group. Then the set A x ordered by inclusion is 
a complete lattice in which the intersection is an infimum. 

Proof: Let {St :iel} be an arbitrary system of elements in zjx . By Theorem 2.2 
it holds f) Sj e A. Since St (i e I) are invariant in G, f| St is also invariant in G. Thus 

iel iel 
f\ SieA1. G+ is the unit in Ax. 
iel 

Corollary 3.1. If G is an ordered group, then Tx ordered by inclusion is a complete 
lattice isomorphic to Ax. 

Now, let us denote by A\ the set {Se A: S is an invariant subsemigroup in G+}. 
The invariancy of S in G+ means that x + s — x e S and — x + s + xeS are valid 
for arbitrary elements xe G+, s e S. Evidently Ax ~\ A\. 

Lemma 3.6. Let G be a directed group. Then Ax — A\. 
Proof: Let S be invariant in G+ and let y e G, s e S. Since G is directed, y may be 

expressed in the form y = xx — x2, where xx, x2 e G+. Therefore 

y + s — y = (xj — x2) + s - (xx — x2) = x! + ( - x 2 + s + x2) — x1? 

and by the assumption it holds — x2 + s + x2 = sx e S. It holds further xt + 
+ sx — xx = s2 e S and hence y + s — y = s2e S. 

Therefore it holds: 

Theorem 3.3. If G is a directed group and if the sets Tx, A\ are ordered by inclusion, 
then the mapping cpx (from Theorem 3.1) of the set Tx is an isomorphism ofTx onto A\. 

Corollary 3.2. If G is a directed group, then the set A\ ordered by inclusion is 
a complete lattice in which the intersection is an infimum. 

Now, let G be a Riesz group. Then Tx forms with respect to inclusion a distributive 
sublattice in the lattice of all subgroups of G ([4], I. V. 13). Clearly, Tx is also a sub-
lattice of the lattice F. By Corollary 3.1 Tx is a complete lattice. 

Therefore it holds: 

Theorem 3.4. Let G be a Riesz group. Then the set Tx ordered by inclusion is 
a complete distributive lattice that is a sublattice of T'. 

Corollary 3.3. IfG is a Riesz group, then the set A\ ordered by inclusion is a complete 
distributive lattice in which the intersection is an infimum. 

Now let us suppose that G is an /-group. By Lemma 2.5 O-ideals and /-ideals in an 
/-group coincide. Therefore the following theorem is an immediate consequence of 
Theorem 3.1. 
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Theorem 3.5. Let G be an l-group. Let us order the set r[ of all l-ideals of G and the 
set A[ by inclusion. Then the mapping v: F[ —> A defined by Av = A + for each A e F[ 
is an isomorphism of T[ onto A[. 

R e m a r k . The proposition "v is a bijection of T[ onto A[" is proved in [4], 
I. V. 5, partially also in [1]. 

As is known, (see e.g. [4], I. V. 5), the set T[ ordered by inclusion is a complete 
infinitely-distributive sublattice of the lattice of all normal subgroups of an l-group G 
and hence by[3], [6] the same is true of the lattice F'. 

Therefore it holds: 
Theorem 3.6. ifG is an l-group, then the set A[ ordered by inclusion is a complete 

infinitely-distributive sublattice of the lattice A. 
Acknowledgement. The author wishes to acknowledge his indebtedness to Pro

fessor F . SIK, for many suggestions that helped improve this presentation. 
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S H R N U T I 

U S M Ě R N Ě N É KONVEXNÍ P O D G R U P Y 
USPOŘÁDANÝCH G R U P 

JIŘÍ RACHŮNEK 

V práci je studována množina F všech konvexních usměrněných podgrup (částečně) 
uspořádané grupy G a množina A všech konvexních podpologrup z G+ obsahujících 0. 
Je ukázán (věta 2.1) izomorfismus cp mezi inkluzí uspořádanými množinami F a A 
((/>: AeF-»A+EA, cp"1: S G A -> <S> e F). F, A jsou pak izomorfními úplnými 
svazy, jejichž vlastnosti závisí na vlastnostech uspořádání G. (Uvažují se Rieszovy 
grupy a /-grupy.) 
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Další část se týká množiny Fj g F všech O-ideálů z uspořádané grupy G a množiny 
A! g A všech konvexních invariantních podpologrup s 0 z G + . Ve větě 3.1 se doka
zuje, že restrikce zobrazení cp z věty 2.1 na F, je izomorfismem mezi rl a Ax. Opět 
platí, že F!, A! tvoří izomorfní úplné svazy. Speciální výsledky se opět dostanou pro 
Rieszovy grupy a /-grupy. Důsledkem je známá korespondence v /-grupě G mezi 
/-ideály a invariantními konvexními podpologrupami s 0 z G+. 

РЕЗЮМЕ 

НАПРАВЛЕННЫЕ В Ы П У К Л Ы Е П О Д Г Р У П П Ы 
УПОРЯДОЧЕННЫХ ГРУПП 

И Р Ж И Р А Х У Н Е К 

В работе рассматривается множество Г всех выпуклых направленных под

групп из (частично) упорядоченной группы О и множество А всех выпуклых 

подполугрупп из 0 +, содержащих 0. Показывается (теорема 2.1) изоморфизм <р 

множеств Г и Л упорядоченных отношением включения (ср : А е Г -> А+ е А, 

ср"1: 8 е А -> <5> б Г). Г, А образуют изоморфные полные структуры, свойства 

которых зависят от свойств порядка на О. (Рассматриваются группы Рисса 

и /-группы.) 

В дальнейшей части изучается множество Гг я Г всех <9-идеалов из упорядо

ченной группы О и множество Лх д Л всех инвариантных выпуклых подполу

групп с 0 из (7+. В теореме 3.1 показывается, что сужение отображения ср из 

теоремы 2.1 на Гх является изоморфизмом Гх на Л х . Гх, Л х образуют изоморф

ные полные структуры. В частности получаем результаты для групп Рисса 

и /-групп. Следствием является известное соответствие в /-группе О между 

/-идеалами и инвариантными выпуклыми подполугруппами с 0 из О+. 
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