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TERNARY RINGS OF PAPPIAN PLANES

LIBUSE MARKOVA
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The piesent article deals with planar ternary rings with a right zero and a left zero
associated to the Pappian planes. After preliminaries containing background notions
and results, there is given a generalization of results from [4], [S] onto planar ternary
rings with a right zero and a left zero together with examples of planar ternary rings
considered.

§ 1 Planar ternary rings with a right zero and a left zero and their properties

Definition 1. An ordered pair (S, T) is called a planar ternary ring (cf. [1]), if S is
a set with at least two elements and T is a ternary operation on S such that

Al.Va,b,ceS3 xeST(a,b, x)=c,

A2.Va,b,c,deS;a+# c3 xeST(x,a,b) =T(x, c, d),

A3.Va,b,¢c,deS;a # c3(x,y)eS?>T(a, x,y) = b, T(c, x, y) = d.
If in addition

A4.30“eSVy,ze ST y,2) = z,

A5 30%eSVYx,zeST(x,0% 2) =z,
then (S, T) is called the planar ternary ring with a right zero and a left zero.

Consequences

(1) The solution (x, y) from A 3. is determined uniquely.

(2) The element 0" from A 4. is determined uniquely.

(3) The element OF from A 5. is determined uniquely.

(4) YaeS;a # 019! xe ST(a, x,b) = c,

(5) VaeS;a # 0f3! xe ST(x, a, b) = c.

In what follows let (S, T) designate always a planar ternary ring with a right zero
and left zero. Further define an induced binary multiplication on S by

a.m: = T(a, m,0"), Va,meS.
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Then
(1) O* .a = O* Vaes,
(2) a.0f = 0L Vaes,
(3) Vme S\{0®} 3l xeSx.m
(4) Vme S\{0*} 3 xeSm.x =

For each a e S\{0"} denote by e, the solution of a.x = a: additionally define
¢or : = 0F. Now we are able to introduce an induced binary addition + on S by

¢,
C.

a+b:="T(a,ec,b) Ya,beS.
Then
(1) Va,be S3!xeSa+ x = b,
Qm.a=n.a, a# 0®<m=n,
BYa.m=a.n g#0-<>m=n,
@WDa+b=a+c=b=c,
B)O0t+a=a+0"=aVaes.

Definition 2. (S, T) is called a generalized Cartesian group if it has {cllowing
properties:

1. (S, +) is a group,

2. T(a,b,¢) =a.b + c Va, b, ceS.

§ 2 Coordinatization of projective planes by planar ternary rings with a right zere
and a left zero

Let (P, L, I) be a projective plane with a prominent line n and a prominent
point NIn. Let o : = P\n,# : L\N. It is known that #% = #SxS = #.4,
where #S is the order of (P, L, I). An ordered quadruple (n, N, «, f3), where o, f
are bijections «: SxS — &, f:SxS — # will be called a frame.

For every couple (n, N), NIn there exists a couple of bijections «, f8 so that (S, T),
where (x, y)* I(u, v)® <> : y = T(x, u, v) is a planar ternary ring with a right zero and
a left zero. This frame (n, N, «, ) will be called cartesian and (S, T) is said to be
corresponding to this frame (cocmpare with terminology in [3]).

Lines / # n through N will be called vertical. Points of n are called improper,
other points are called proper.

In the forthcoming text we shall write (x, 1) instead of (x, y)* and [x, y] instead
of (x, ).

If (S, T) corresponds to a Cartesian frame, then:

(1) [a, b, [@’, b'] carry the same improper point if and only if a = a’.

(2) (x,), (x',y") are on the same vertical line if and only if x = x".

Lines different from n carrying the same improper point are called parallel. The
vertical line carrying points (0%, @) Vae S is said to be a vertical axis. Lines [0, v]
for all ve S are called horizontal. We easily see that:
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(3) [a, b], [@’, b'] carry the same point of the vertical axis if and only if b = b'.
(4) (x, ), (x', ") lic on the same horizontal line if and only if y = y".

§ 3 Pappian planes

Definition 3. A projective plane is called (A, b) — transitive, if for any different
points B, C with B# A, C# A; BXh, CXb, AIBC there is a perspective collineation
with an axis b and a centre A, which maps B into C.

In the sequel we shall investigate a fixed projective planc [ with Cartesian frame
(n, N, a, f); the corresponding planar ternary ring will be designated by (S, T).

Instead of (N, n) — transitive we shall use also the notation vertically transitive.
IT is called a translation plane if it is (A, n)-transitive for all points A on n.

Theorem 1. IT is vertically transitive if and only if (S, T) is a generalized Cartesian
group.

Proof: Denote by Gy the group of all perspective collineations with a centre N
and an axis n. It can be shown, that this group is isomorphic with (S, +) with
a neutral element 0% and so (S, +) is a group. From the condition that G operates
transitively on proper points of one (and consequently cach) vertical line it follows
the lincarity property. For details see [4] p. 621 —622.

Theorem 2. IT is a translation plane if and only if
(A) (S, T) is a generalized Cartesian group,

(B) for arbitrary a, b, cc S the equation ¢.x - b.x = ¢..x has only the trivial
solution OR or it is fulfilled identically.

The proof of this theorem is analogous to the proof of Theorem 2 of [4]. 1t is
only necessary to substitute the two-sided zcro by a right zero.

Let IT be a translation plane and A onc of its proper points. It is known, that IT
is the Desarguesian if and only if it is (A, n) — transitive. So for verification whether IT
is the Desarguesian it suffices to find a proper point (for instance O = (0", 0%))
such that T is (O, n) — transitive. This fact will be used in the proof of the following
theorem. But first some conventions:

Ifz.x=ythenz = :y/x.

If x.z =ythenz = :x\)

Theorem 3. I1 is the Desarguesian if and only if (S, T) satisfies conditions (A), (B)
and moreover
(C) for arbitrary a, b, c € S, the equation x.a -+ x.b = x.c¢ has only the trivial
solution 0% or it is fulfilled identically;
(D) for arbitrary a, b, ¢, de S\{0"}, the equation a\(b.x) = ¢\(¢.x) has only
the trivial solution O or it is fulfilled identically.

The proof is similar to the proof of Thcorem 2 in [5], it is only necessary to put
a left zero instead of the two-sided zero and consider the clements x different from OF.
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Theorem 4. II is the Pappian if and only if (S, T) satisfies the conditions (4)— (D)
and additionally the condition

a.(c\(b.c)=b.(c\(@.c) Va,b,ceS\{0}.

The proof coincides with the proof of Theorem 3 in [5]. Only one adaption is
necessary: instead of the two-sided zero 0 we need to put a left zero O™

§ 4 Examples

I LetS: = {0, 1, 2, 3,4} and let + be addition modulo 5. The multiplication will
be defined by
|01234
00000
20431
|10243
|40312
130124
Now define a ternary operation T on S by T(x, u,v): = x.u + v Vx, u, veS.
It is trivial that 0L = 0, 0P = 1 and that (S, T) is a generalized Cartesian group with
a commutative addition. The multiplication is not associative and the distributive
laws do not hold as the following examples show:

0
1
2
3
4

2.33)=21=0, (23).3=43=2,
BG+1).3=43=2, 33+13=1+3=4,
3.043)=34=2, 31+33=0+1=1.

We can verify that all conditions (A)— (E) are satisfied so that (S, T) corresponds
to a Pappian plane.

II. Let R designate the set of all reals. Define the ternary operation on R as follows:
for a fixed € R we put y = T(x, u,v): <>y + «.x = x.u + v, where +, . means
the addition and the multiplication on R. Then

T(x, u,v) = x.(u — a) + v.

It is trivial to verify the validity of A 1.—A 5. from § 1 with 0 = 0, Of = «. Now
let @, © denote the induced addition and multiplication of (R, T). We know that

a O b: = T(a, b, 0b), a®b: = T(a, e, b) Va,beR,
which means

aOb=a.(b — ), aQOb=a+ b VYa,beR.

So we immediately see that the conditions (4)—(E) of § 3 are valid.
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Souhrn
TERNARN[{ OKRUHY PAPPOVSKYCH ROVIN
LIBUSE MARKOVA
V ¢ldnku se studuji plandrni terndrni okruhy s levou a pravou nulou bez jednotky.

Vyslovuji se nutné a postacujici podminky pro to, aby takovy plandrni ternarni

okruh koordinatizoval vertikalné transitivni, translaéni, desarguesovskou a pappov-
skou rovinu.

Pesiome
TEPHAPBI ITATITIOBCKUX TIJIOCKOCTEH
JIUBYIIE MAPKOBA
B pabote m3ydarorcs TepHaphl C JIEBLIM M TNpPaBbIM HYJICBBIM 3JIEMEHTOM 06e3
CAVHUIIBI. IToxa3siBarorcs H€06XO}IHMBIC H JOCTATOYHBIC YCTIOBUA 04 TOIO, YTOOBI

TaKOW TepHap CIYXWI K BBEJCHUIO KOODAMHAT B BEPTHKAJILHO-TPAHCHTUBHYIO,
TpaHCJaLMOHHYI0, Jle3aprosy u ITammoBy IJIOCKOCTS.
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