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Vedoucí katedry: prof RNDr. Josef Šimek 

TERNARY R I N G S OF PAPPTAN PLANES 

LIBUŠE MARKOVÁ 
(Received 29. 6. 1974) 

The present article deals with planar ternary rings with a right zero and a left zero 
associated to the Pappian planes. After preliminaries containing background notions 
and results, there is given a generalization of results from [4], [5] onto planar ternary 
rings with a right zero and a left zero together with examples of planar ternary rings 
considered. 

§ 1 Planar ternary rings with a right zero and a left zero and their properties 

Definition 1. An ordered pair (S, T) is called a planar ternary ring (cf. [1]), if S is 
a set with at least two elements and T is a ternary operation on S such that 

A 1. Va, b, c e S 3! x e S T(a, b, x) = c, 
A 2. Va, b, c, de S; a # c 3! x e S T(x, a, b) = T(x, c, d), 
A 3. Va, b, c, de S; a ?- c 3 (x, y) e S 2 T(a, x, y) = b, T(c, x, y) = d. 

If in addition 

A 4. 3 0L e S Vy, z e S T(0L, y, z) = z, 
A 5. 3 0* 6 S Vx, z e S T(x, 0R, z) = z, 

then (S, T) is called the planar ternary ring with a right zero and a left zero. 

Consequences 

(1) The solution (x, y) from A 3. is determined uniquely. 
(2) The element 0L from A 4. is determined uniquely. 
(3) The element 0R from A 5. is determined uniquely. 
(4) Va e S; a ?- 0L3! x e S T(a, x, b) = c, 
(5) Va e S; a 7- 0R3! xeS T(x, a, b) = c. 
In what follows let (S, T) designate always a planar ternary ring with a right zero 

and left zero. Further define an induced binary multiplication on S by 

a . m : = T(a, m, 0L), Va, m e S. 
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Then 

(1) 0L .a = 0L VaeS , 
(2) a . 0R = 0L Va e S, 
(3) Vm e S\{0*} 3! x e S x . m = c, 
(4) Vm e S\{0L} 3! x e S m . x = c. 

For each a e S\{0L} denote by ea the solution of a . x = a; additionally define 
eotj : = 0L. Now we are able to introduce an induced binary addition + on S by 

a + b : = T(a, ea,b) Va, b e S. 
Then 

(1) \fa,beS3lxeSa + x = b, 
(2) m . a = n . a, a ^ 0R <=> m = n, 
(3) a . m = a . n, q ^ 0L <=> m = n, 
( 4 ) a + b = tf + c<=>b = c, 
(5) 0L + a = a + 0L = a Va e S. 

Definition 2. (S, T) is called a generalized Cartesian group if it has following 
properties: 

1. (S, + ) is a group, 
2. T(a, b,c) = a.b + cVa,b,ce S. 

§ 2 Coordinatization of projective planes by planar ternary rings with a right zero 
and a left zero 

Let (P, L, I) be a projective plane with a prominent line n and a prominent 
point N/n . Let ^ : = P\h9 & : L \ N . It is known that # ^ = # S x S = # ^ , 
where # S is the order of (P, L, I). An ordered quadruple (n, N, a, P), where a, /? 
are bijections a : S x S - > ^ , / ? : S x S - > ^ will be called a frame. 

For every couple (n, N), N/n there exists a couple of bijections a, /? so that (S, T)5 

where (x, y)* I(u, v)fi o : y = T(x, u, v) is a planar ternary ring with a right zero and 
a left zero. This frame (n, N, a, /?) will be called cartesian and (S, T) is said to be 
corresponding to this frame (compare with terminology in [3]). 

Lines / # n through N will be called vertical. Points of n are called improper, 
other points are called proper. 

In the forthcoming text we shall write (x, y) instead of (x, yf and [x, y] instead 
o f (x ,y f . 

If (S, T) corresponds to a Cartesian frame, then: 
(1) [a, b], [a'9 b'] carry the same improper point if and only if a = a'. 
(2) (x, y)9 (x'9 y') are on the same vertical line if and only if x = x\ 
Lines different from n carrying the same improper point are called parallel. The 

vertical line carrying points (0L, a) Va e S is said to be a vertical axis. Lines [0R, v] 
for all v e S are called horizontal. We easily see that: 
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(3) [a, b], [a\ b'] carry the same point oi^ the vertical axis if and only if b = b'. 
(4) (x,y), (x',y') lie on the same horizontal line if and only if y = y. 

§ 3 Pappian planes 

Definition 3. A projective plane is called (A, b) — transitive, if for any different 
points B, C with B^- A, C ^ A; BXb, CXb, AIBC there is a perspective collineation 
with an axis b and a centre A, which maps B into C 

In the sequel we shall investigate a fixed projective plane II with Cartesian frame 
(n, N, a, /?); the corresponding planar ternary ring will be designated by (S, T). 

Instead of (N, n) — transitive we shall use also the notation vertically transitive. 
17 is called a translation plane if it is (A, n)-transitive for all points A on n. 

Theorem 1. II is vertically transitive if and only if (S, T) is a generalized Cartesian 
group. 

Proof: Denote by GN the group of all perspective collineations with a centre N 
and an axis n. It can be shown, that this group is isomorphic with (S, + ) with 
a neutral element 0^ and so (S, + ) is a group. From the condition that GN operates 
transitively on proper points of one (and consequently each) vertical line it follows 
the linearity property. For details see [4] p. 621—622. 

Theorem 2. U is a translation plane if and only if 
(A) (S, T) is a generalized Cartesian group, 
(B) for arbitrary a, b, c e S the equation a . x -f b . x — c . x has only the trivial 
solution 0R or it is fulfilled identically. 

The proof of this theorem is analogous to the proof of Theorem 2 of [4]. It is 
only necessary to substitute the two-sided zero by a right zero. 

Let II be a translation plane and A one of its proper points. It is known, that 17 
is the Desarguesian if and only if it is (A, n) — transitive. So for verification whether U 
is the Desarguesian it suffices to find a proper point (for instance O — (0L, 0L)) 
such that II is (O, n) — transitive. This fact will be used in the proof of the following 
theorem. But first some conventions: 

If z . x = y then z = : y/x. 
If x . z = y then z = : x\y. 

Theorem 3. IJ is the Desarguesian if and only if (S, T) satisfies conditions (A), (B) 
and moreover 
(C) for arbitrary a, b, c e S, the equation x . a -f- x . b = x . c has only the trivial 
solution 0L or it is fulfilled identically; 
(D) for arbitrary a, b, c, deS\{0L}, the equation a\(b . x) = c\(d. x) has only 
the trivial solution 0R or it is fulfilled identically. 

The proof is similar to the proof of Theorem 2 in [5], it is only necessary to put 
a left zero instead of the two-sided zero and consider the elements x different from 0R. 
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Theorem 4. I7 is the Pappian if and only if (S, T) satisfies the conditions (A)—(D) 
and additionally the condition 

a . (c\(b .c)) = b. (c\(a . c)) Va, b, c e S\{0L}. 

The proof coincides with the proof of Theorem 3 in [5]. Only one adaption is 
necessary: instead of the two-sided zero 0 we need to put a left zero 0L. 

§ 4 Examples 

I. Let S: = {0, 1, 2, 3, 4} and let + be addition modulo 5. The multiplication will 
be defined by 

0 1 2 3 4 

0 0 0 0 0 0 
1 2 0 4 3 1 
2 1 0 2 4 3 
3 4 0 3 1 2 
4 3 0 1 2 4 

Now define a ternary operation T on S by T(x, u, v): = x. u + v Vx, u, v e S. 
It is trivial that 0L = 0, 0P = 1 and that (S, T) is a generalized Cartesian group with 
a commutative addition. The multiplication is not associative and the distributive 
laws do not hold as the following examples show: 

2.(3.3) = 2.1 = 0 , 

(3 + 1). 3 = 4.3 = 2, 

3 . (1 + 3) = 3.4 = 2, 

(2.3) . 3 = 4.3 = 2, 

3.3 + 1.3 = 1 + 3 = 4, 

3.1 + 3.3 = 0 + 1 = 1. 

We can verify that all conditions (A)- (E) are satisfied so that (S, T) corresponds 
to a Pappian plane. 

II. Let R designate the set of all reals. Define the ternary operation on R as follows: 
for a fixed a e R we put y = T(x, u, v): o y + a . x = x . u + v, where + , . means 
the addition and the multiplication on R. Then 

T(x, u, v) = x . (u — a) + v. 

It is trivial to verify the validity of A 1 . - A 5 . from § 1 with 0L = 0, 0R = a. Now 
let ©, O denote the induced addition and multiplication of (R, T). We know that 

a O b: = T(a, b, 0L), a © b: = T(a, ea, b) Va, b e R, 

which means 

a O b = a. (b - a), a Q b = a + b Va, b e R. 

So we immediately see that the conditions (A) — (E) of § 3 are valid. 
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Souhrn 

T E R N Á R N Í OKRUHY PAPPOVSKÝCH ROVIN 

LIBUŠE MARKOVÁ 

V článku se studují planární ternární okruhy s levou a pravou nulou bez jednotky. 
Vyslovují se nutné a postačující podmínky pro to, aby takový planární ternární 
okruh koordinatizoval vertikálně transitivní, translační, desarguesovskou a pappov-
skou rovinu. 

Pedfo.we 

T E P H A P b l n A n n O B C K H X nJ lOCKOCTEÍÍ 

JIMEyiIIE MAPKOBA 

B paGoTe mynaiOTCfl TepHapbi c jieBbíM H npaBbíM HVJTCBMM SJICMCHTOM 6e3 

eAHHHITbl. riOKa3LIBaK>TC5I Heo6xO,ZIIlMbie H AOCTaTOMHbie yCJTOBH^ JXJW TOTO, HTOÓW 
TaKOH TepHap CJiŷ KHJI K BBeAeHHIO KOOp^HHaT B BepTHKaJTbHO-TpaHCHTHBHyK), 
TpaHCjiaiiHOHHyio, fleaaproBy H n a n n o B y njiocKocTb. 
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