Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika

Karel Beneš

Arithmetic unit based on impulse counting

Sbornîk prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika, Vol. 18 (1979), No. 1, 157--176

Persistent URL: http://dml.cz/dmlcz/120077

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1979

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

1979 - ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

 FACULTAS RERUM NATURALIUM - TOM 61
Katedra algebry a geometrie přírodovědecké fakulty Univerzity Palackého v Olomouci

Vedouci katedry: prof. RNDr. Ladislav Sedláček, CSc.

ARITHMETIC UNIT BASED ON IMPULSE COUNTING

KAREL BENES
(Received March 30, 1978)
The arithmetic unit described below deviates from the scope of the classical units of the serial or parallel types and with its function it resembles more the serial working arithmetic unit. The unit is working in the domain of integers and performs arithmetic operations of addition (type B), multiplication and division (type M). For a finer partition see Table 1. The numbers are stored in the memory in a direct code. For instance, the number 30 will be expressed by a bit in the form

$$
00000011110
$$

while -30 will be expressed in the form

$$
10000011110 .
$$

The operations of the type M (multiplication and division) are carried out ina direct code, those of the type B (addition) in an inverse code, whre the number 30 is expressed in the form 00000011110 and -30 in the form 11111100001 . The non-circuits E_{1}

Instruction		
$\langle\mathrm{s}\rangle+\langle\mathrm{a}\rangle$		
$\langle\mathrm{s}\rangle-\langle\mathrm{a}\rangle$		
$\|\langle\mathrm{s}\rangle\|-\|\langle\mathrm{a}\rangle\|$	B_{2}	
$\langle\mathrm{a}\rangle \rightarrow\langle\mathrm{s}\rangle$	B	
$\langle\mathrm{~s}\rangle .\langle\mathrm{a}\rangle$	B_{1}	
$\langle\mathrm{~s}\rangle:\langle\mathrm{a}\rangle$	M_{2}	M

(between the number register and the counter register C_{1}), E_{2} (between the accumultor and the counter register C_{2}), and E_{3} (between the counter C_{3} and the counter register C_{3}) are depicted in figure 1.

The basic units of the arithmetic unit in question are the three counters C_{1}, C_{2}, C_{3}. The counters C_{1} and C_{2} are zeroizing automatically after a number of input impulses fixed in the counter registers. The counter C_{3} is working as an accumulator counter. The block-diagram of the counter C_{1} (or C_{2}) with the register and the zeroizing

———— date carry

Fig. 1.

Register 1 (2)

Fig. 2.
circuit $N_{1(2)}$ of its own is recorded in figure 2 . The counters may be also zeroized by the zeroizing circuit, which is a part of the starting circuit.

The counter C_{3} (the accumulator counter) has one binary order more than the counters C_{1} and C_{2}. The highest binary order of the counter C_{3} is marked p and indicates the overflow at the arithmetic operations (see figure 3).

Fig. 3.
The state of the respective toggle in the counter is indicated, the toggles are switched by the negative input impulses. The coincidence counter is constructed as the circuit for the selection of a smaller tension from the several others. If the relation

$$
\begin{align*}
{\left[\left(a_{0} \wedge \neg b_{0}\right)\right.} & \left.\vee\left(\neg a_{0} \wedge b_{0}\right)\right] \wedge\left[\left(a_{1} \wedge \neg b_{1}\right) \vee\left(\neg a_{1} \wedge b_{1}\right)\right] \wedge \ldots \tag{1}\\
& \ldots \wedge\left[\left(a_{9} \wedge \neg b_{9}\right) \vee\left(\neg a_{9} \wedge b_{9}\right)\right]=1
\end{align*}
$$

is satisfied, there appears a positive tension jump at the output coincidence circuit. The counters C_{1}, C_{2} and C_{3} are aptly interconnected by the electronic switch $E P$.

1. Arithmetic operations of the type B

For the interconnection of the individual counters through the electronic switch $E P$ see figure 4. The registers R_{1} and R_{2} store the augend (from the memory) and the addend (the result of the foregoing operation carried over from the accumulator into R_{2}), respectively. At the beginning of the arithmetic operation the zeroizing circuit N is excited by the starting circuit $S t$ zeroizing the counters C_{1}, C_{2} and C_{3}. Then the electronic switch $E P$ is switched by an impulse from the starting circuit into position 1 and the gate H is opening. The impulses from the gate come to the input of the counters C_{1} and C_{3}. If the number of the input impulses of C_{1} is equal to the number stored in the register R_{1}, the zeroizing circuit N_{1} deviates. The counter C_{1} is zeroized by the zeroizing impulse and the electronic switch $E P$ is switched into position 2, so that the impulses from the gate H come now to the input of C_{2}. If the number of the input impulses of C_{2} is equal to the number stored in the register R_{2},
the zeroizing circuit N_{2} deviates. The counter C_{2} is zeroized by an impulse of N_{2}, the gate H is closing and there is excited a deviating circuit T_{1}. If the round carry is to be performed, then the output impulses of the deviating circuit T_{1} is brought through the electronic switch $R K$ to the input of the counter C_{3}.

counting pulses

control pulses
Fig. 4.
In case of $R K=0$, the contents of C_{3} is given after completing the operation by the relation

$$
\begin{equation*}
\left\langle C_{3}\right\rangle=\left\langle R_{1}\right\rangle+\left\langle R_{2}\right\rangle \tag{2}
\end{equation*}
$$

In case of $R K=1$ the contents of C_{3} is given by the relation

$$
\begin{equation*}
\left\langle C_{3}\right\rangle=\left\langle R_{1}\right\rangle+\left\langle R_{2}\right\rangle+1 . \tag{3}
\end{equation*}
$$

The operations of the type B (additive) are carried out with numbers in the inverse code. The numbers in the memory and in the register are expressed in the direct code. For the action of E_{1}, (which ensures the translation of a number from the direct code to the inverse code), translations a number from the number register to the register R_{1} see table 2 . See also table 1 , where Z_{1} is the sign of the translated number. According to table $2, E_{1}$ is given by the relation

$$
\begin{equation*}
E_{1}=\left[\left(\neg B_{1} \wedge Z_{1}\right) \vee\left(B \wedge \neg Z_{1}\right) \vee B_{2}\right] \wedge B . \tag{4}
\end{equation*}
$$

In adding two binary integer numbers a and b in the inverse code, with $|a, b| \epsilon$ $\in\left\langle 0 ; 2^{n}-1\right\rangle$, where n is the number of binary places, there may occur cases given
in table 3. Number a is stored in the direct code in the memory; number b, as the result of the foregcing operation, is also stored in the direct code in the register R_{3} (accumulator). At the beginning of the arithmetic operation of the type B, number a is transferred from the memory (possibly through E_{1}) to the register R_{1}, number b is transferred from the acumulator to the register R_{2}, the sign Z_{3} of b is transferred to the sign order Z_{2} in the register R_{2}. In case of $Z_{3}^{\prime}=0\left(Z_{2}=0\right)$, number b is transferred from the register R_{3} to the register R_{2} directly, in case of $Z_{3}^{\prime}=1\left(Z_{2}=1\right)$ it is switched to R_{2} with inversion through E_{2}. The above interpretation serves only to clarify table 4 . In actual execution not the content of the register R_{3} but that of

B	B_{2}	B_{1}	Z_{1}	E_{1}
1	0	0	0	0
1	0	0	1	1
1	0	1	0	1
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	1
0	0	0	0	0
\vdots	\vdots	\vdots	\vdots	\vdots
0	1	1	1	0

Table 2

Fig. 5.

1	$a+b \leqq 2^{n}-1$	$a \neq 0$,	$b \neq 0$
2	$a+b$	$a=0$,	$b=0$
3	$a+b$	$a=0$	$b \neq 0$
4	$a+b$	$a \neq 0$,	$b=0$
5	$a+b \neq 2^{n}-1$	$a \neq 0$,	$b \neq 0$
6	$a-b$	$a=0$,	$b=0$
7	$a-b$	$a=0$,	$b \neq 0 ; 2^{n}-1$
8	$a-b$	$a=0$,	$b=2-1$
9	$a-b$	$a \neq 0$,	$b=0$
10	$a-b$	$a \neq 0$,	$b \neq 0 ; 2^{n}-1, a>b$
11	$a-b$	$a \neq 0$,	$b \neq 0 ; 2^{n}-1, a<b$
12	$a-b$	$a \neq 0$,	$b \neq 0 ; 2^{n}-1, a=b$
13	$a-b$	$a \neq 0 ; 2^{n}-1$,	$b=2^{n}-1$
14	$a-b$	$a=2-1$,	$b=2^{n}-1$
15	$-a+b$	$a=0$,	$b=0$
16	$-a+b$	$a \neq 0 ; 2^{n}-1$,	$b=0$
17	$-a+b$	$a=2^{n}-1$,	$b=0$
18	$-a+b$	$a=0$,	$b \neq 0$
19	$-a+b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0, a>b$
20	$-a+b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0, a<b$
21	$-a+b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0, a=b$
22	$-a+b$	$a=2^{n}-1$,	$b \neq 0 ; 2^{n}-1$
23	$-a+b$	$a=2^{n}-1$,	$b=2^{n}-1$
24	$-a+b$	$a=0$,	$b=0$
25	$-a-b$	$a=0$,	$b \neq 0 ; 2^{n}-1$
26	$-a-b$	$a=0$,	$b=2^{n}-1$
27	$-a-b$	$a \neq 0 ; 2^{n}-1$,	$b=0$
28	$-a-b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0 ; 2^{n}-1, a+b<2^{n}-1$
29	$-a-b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0 ; 2^{n}-1, a+b=2^{n}-1$
30	$-a-b$	$a \neq 0 ; 2^{n}-1$,	$b \neq 0 ; 2^{n}-1, a+b>2^{n}-1$
31	$-a-b$	$a \neq 0 ; 2^{n}-1$,	$b=2^{n}-1$
32	$-a-b$	$a=2^{n} \quad 1$,	$b=2^{n}-1$
33	$-a-b$	$a=2^{n} \quad 1$,	$b=0$
34	$-a-b$	$a=2^{n}-1$,	$b \neq 0 ; 2^{n}-1, a>b$

Table 3
the accumulator counter C_{3} is transferred into the register R_{2}. (See figure 5.) The action of E_{2} does not depend only on the sign Z_{3}^{\prime} of the foregoing operation but it is given by relation (12).

All cases given in table 3 are exemplified in table 4 with $n=10$. Then the arithmetic unit works with integer binary numbers from the interval $\left\langle-\left(2^{10}-1\right),\left(2^{10}+1\right)\right\rangle$, i.e. from the interval 〈-1023, 1023〉.
$\left\langle R_{1}\right\rangle$ - the number of impulses on which the zeroizing of the counter C_{1} sets in. $\left\langle R_{2}\right\rangle$ - the number of impulses on which the zeroizing of the counter C_{2} sets in.
$\left\langle R_{3}^{\prime}\right\rangle$ - The contents of the accumulator register R_{3} on completing the foregoing operation.
$\left\langle R_{3}\right\rangle$ - the contents of the middle line register R_{3} on completing the just running operation.
p - the tenth binary order of the accumulator register C_{3} (see figure 3).
$O_{1,2}^{+}$- such cases in which the zeroizing of the counters C_{1} or C_{2} afier the 2^{n} (i.e. $2^{10}=1024$) input impulses (a positive zero) sets in.
$O_{1,2}$ - a positive or negative zero in the registers R_{1} or R_{2}.

$$
\begin{align*}
& O_{1}^{+}=\neg R_{10} \wedge \neg R_{11} \wedge \neg R_{12} \wedge \ldots \wedge \neg R_{19} \tag{5a}\\
& O_{2}^{+}=\neg R_{20} \wedge \neg R_{21} \wedge \neg R_{22} \wedge \ldots \wedge \neg R_{29} . \tag{5b}
\end{align*}
$$

From the above table we may define relations for the round carry $R K$, the $\operatorname{sign} Z_{3 \mathrm{~B}}$ of the result and the overflow of P_{B} in the operations of the type B, i.e. if the result is out of the interval $\langle-1023 ; 1023\rangle$ (line $5,30,31,32,34$). In line 29 we have $p=1$ only after adding the round carry. The round carry $R K$ is given by the relation

$$
\begin{align*}
& R K=B \wedge\left\{\left(p \wedge \neg\left(O_{1}^{+} \vee O_{2}^{+}\right) \wedge\left[E_{1} \wedge\left(O_{1} \vee \neg O_{2}\right) \vee\left(Z_{2} \wedge \neg O_{1}\right)\right]\right) \vee\right. \\
& \left.\vee\left(Z_{2} \wedge O_{2}\right) \vee\left(O_{1}^{3} \wedge Z_{2} \wedge E_{1} \wedge \neg p \wedge \neg O_{2} \wedge \neg O_{1}\right) \vee\left(E_{1} \wedge p \wedge O_{1}\right)\right\}, \tag{6}
\end{align*}
$$

where $O_{1}^{3}=R_{30} \wedge R_{31} \wedge R_{32} \wedge \ldots \wedge R_{39}$,
i.e. the logical product of all numerical binary orders of the register R_{3}.

The sign of result in the operations of the type B is given by the relation

$$
\begin{gather*}
Z_{3 \mathrm{~B}}=B \wedge\left\{\left[Z_{2} \wedge \neg O_{2} \wedge\left(O_{1} \vee \neg p\right)\right] \vee\left[E_{1} \wedge\left(Z_{2} \vee \neg p\right) \vee\left(\neg O_{1} \wedge O_{2}\right)\right] \vee\right. \\
 \tag{7}\\
\left.\vee\left[p \wedge \neg O_{1} \wedge \neg O_{2} \wedge\left(O_{1}^{+} \vee O_{2}^{+}\right)\right] \vee\left(E_{1} \wedge O_{1}^{+}\right)\right\} .
\end{gather*}
$$

Similarly the overflow P_{3} in the operations of the type B is given by the relation

$$
\begin{align*}
P_{\mathrm{B}}=B \wedge & \left\{\left(\neg Z_{2} \wedge \neg E_{1} \wedge p \wedge \neg O_{1} \wedge \neg O_{2}\right) \vee\left(Z_{2} \wedge E_{1} \wedge \neg p\right) \vee\right. \\
& \left.\vee\left[Z_{2} \wedge E_{1} \wedge p \wedge \neg O_{1} \wedge \neg O_{2} \wedge\left(O_{1}^{+} \vee O_{2}^{+}\right)\right]\right\} . \tag{8}
\end{align*}
$$

The block-diagram illustrating the connection of the particular blocks of the arithmetic unit in data transmitting among the individual blocks in the operations of the type B is given in figure 5 .

In the operation $|\langle s\rangle|-|\langle a\rangle|$ (see Table 2) the sign Z_{3}^{\prime} of the foregoing operation is prevented from being transferred into the sign order Z_{2} of the register R_{2}. Regardless of the sign of the operand stored in the memory on the respective address, it holds $Z_{1}=1$ for the sign order Z_{1} in the number register and in the register R_{1}. According to (4) we have $E_{1}=1$ since $B_{2}=1, B=1, Z_{1}=1$ and all the binary numerical orders of the number register transfer into the register R_{1} with an inversion.

Similarly, in the operation $\langle a\rangle \rightarrow\langle s\rangle$ the sign Z_{3}^{\prime} and the result of the foregoing operation are prevented from being transferred into the register R_{2}. The relation of the block $\neg D$ to the operation of division $\left(M_{1}\right)$ is described below.

	$\langle P\rangle$	$\left\langle R_{3}^{\prime}\right\rangle$	$\left\langle R_{1}\right\rangle$	$\left\langle R_{2}\right\rangle$	$\left\langle C_{3}\right\rangle$	$\left\langle R_{3}\right\rangle$	E_{1}	Z_{2}	p	O_{1}	O_{2}	O_{1}^{+}	O_{2}^{+}	$R K$	$Z_{3 \mathrm{~B}}$	$P_{\text {B }}$
1	31	32	31	32	63	+63	0	0	0	0	0	0	0	0	0	0
2	0	0	1024	1024	0	+0	0	0	1	1	1	1	1	0	0	0
3	0	32	1024	32	32	+32	0	0	1	1	0	1	0	0	0	0
4	32	0	32	1024	32	+32	0	0	1	0	1	0	1	0	0	0
5	32	1000	32	1000	8	+8	0	0	1	0	0	0	0	0	0	1
6	0	-0	1024	1023	$1023+1=0$	+1	0	1	1	1	1	1	0	1	0	0
7	0	-991	1024	32	32	-991	0	1	1	1	0	1	0	0	1	0
8	0	-1023	1024	1024	0	-1023	0	1	1	1	0	1	1	0	1	0
9	32	-0	32	1023	$31+1$	+32	0	1	1	0	1	0	0	1	0	0
10	32	-31	32	992	$0+1$	+1	0	1	1	0	0	- 0	0	1	0	0
11	31	-32	31	991	1022	-1	0	1	0	0	0	0	0	0	1	0
12	32	-32	32	991	23	-1	0	1	0	0	0	0	0	0	1	0
13	32	-1023	32	1024	32	-991	0	1	1	0	0	0	1	0	1	0
14	1023	-1023	1023	1024	1023	-0	0	1	1	0	0	0	1	0	1	0
15	-0	0	1023	1024	$1023+1$	+0	1	0	1	1	1	0	1	1	0	0
16	-32	0	991	1024	991	-32	1	0	1	0	1	0	1	0	1	0
17	-1023	0	1024	1024	0	-1023	1	0	1	0	1	1	1	0	1	0
18	-0	32	1023	32	$31+1$	+32	1	0	1	1	0	0	0	1	0	0
19	-32	31	991	31	1022	-1	1	0	0	0	0	0	0	0	1	0
20	-31	32	992	32	$0+1$	+1	1	0	1	0	0	0	0	1	0	0
21	-32	32	991	32	1023	-0	1	0	0	0	0	0	0	0	1	0
22	-1023	32	1024	32	32	-991	1	0	1	0	0	1	0	0	1	0
23	-1023	1023	1024	1023	1023	-0	1	0	1	0	0	1	0	0	1	0
24	-0	-0	1023	1023	$1022+1$	-0	1	1	1	1	1	0	0	1	1	0
25	-0	-31	1023	992	$991+1$	-31	1	1	1	1	0	0	0	1	1	0
26	-0	-1023	1023	1024	$1023+1$	-1023	1	1	1	1	0	0	1	1	1	0
27	-31	-0	992	1023	$991+1$	-31	1	1	1	0	1	0	0	1	1	0
28	-32	-31	991	992	$959+1$	-63	1	1	1	0	0	0	0	1	1	0
29	-31	-992	992	31	$1023+1$	-1023	1	1	$0 \rightarrow 1$	0	0	0	0	1	1	0
30	-32	-992	991	31	1022	-1	1	1	0	0	0	0	0	0	1	1
31	-31	-1023	992	1024	992	-31	1	1	1	0	0	0	1	0	1	1
32	-1023	-1023	1024	1024	0	0	1	1	1	0	0	1	1	0	1	1
33	-1023	-0	1024	1023	$1023+1$	-1023	1	1	1	0	1	1	0	1	1	0
34	-1023	-31	1024	992	992	-31	1	1	1	0	0	1	0	0	1	1

Table 4

The operations of the type B are carried out with the numbers in the inverse code, the result in the accumulator register R_{3} is always in the direct code. The transfer of the contents of the accumulator counter C_{3} in the inverse code into the register R_{3} in the direct code is secured by the non-circuit E_{3}. Its function is given by the relation:

$$
\begin{equation*}
E_{3}=Z_{3} \wedge B \tag{9}
\end{equation*}
$$

i.e. by the sign of the result Z_{3} and by the type of the realized operation. If $E_{3}=0$ the transfer of the contents of C_{3} into R_{3} is carried out without inversing the individual binary number orders.

The transfer is carried out with the inversion if $E_{3}=1$ and sometimes also in arithmetical operations of the types B or M in transferring the contents of the counter C_{3} into the register R_{2} at the beginning of carrying out another instruction (the gate H_{4} is opening when the comparator circuit S_{2} is switching). Such a possible inversion is secured by the non-circuit E_{2}. Its action can generally be written as

$$
\begin{equation*}
E_{2}=f\left(Z_{3}^{\prime},\left(B^{\prime}, M^{\prime}\right),(B, M)\right) \tag{10}
\end{equation*}
$$

i.e. E_{2} represents:

1. the function of the sign of the result Z_{3}^{\prime} relative to the foregoing operation,
2. the type of the foregoing arithmetical operation $\left(B^{\prime}, M^{\prime}\right)$ and
3. the type of the arithmetical operation (B, M) being just carried out. The foregoing arithmetical operation $\left(B^{\prime}, M^{\prime}\right)$ in connection with the sign Z_{3}^{\prime} of the result, may be recognized by the state of the non-circuit E_{3}^{\prime} on completing this operation, so that

$$
\begin{equation*}
E_{2}=f\left(Z_{3}^{\prime}, E_{3}^{\prime},(B, M)\right) \tag{11}
\end{equation*}
$$

and the relation for E_{2} may be derived from Table 4 . In the table the states not occuring in course of the arithmetical operation are described by crosses. This implies

Z_{3}^{\prime}	E_{3}^{\prime}	B	M	$E_{\mathbf{2}}$
0	0	0	0	x
0	0	0	1	0
0	0	1	0	0
0	0	1	1	x
0	1	0	0	x
0	1	0	1	x
0	1	1	0	x
0	1	1	1	x
1	0	0	0	x
1	0	0	1	0
1	0	1	0	1
1	0	1	1	x
1	1	0	0	x
1	1	0	1	1
1	1	1	0	0
1	1	1	1	x

Table 5
that $B \neq M$ is valid in carrying out the mathematical operation or the impossibity of their occurrence is guided by the relation (9). By Table 4 it turns out that

$$
\begin{equation*}
E_{2}=\left(Z_{3}^{\prime} \wedge \neg E_{3}^{\prime} \wedge B \wedge \neg M\right) \vee\left(Z_{3}^{\prime} \wedge E_{3}^{\prime} \wedge \neg B \wedge M\right) \vee\left(E_{3}^{\prime} \wedge B_{2}\right) \tag{12}
\end{equation*}
$$

The expression in the third parenthesis on the right-side of equation (12) follows from the operation $|\langle s\rangle|-|\langle a\rangle|$ (cf. row 3 in Table 1). In case of $E_{2}=0$, the contents of the counter \bar{C}_{3} is transferred into the register R_{2} directly. The transfer is done (with an inversion) in case of $E_{2}=1$.

Remark: The contents of the counter C_{3} is transferred into the register R_{2} even in the operations of the type L. Since the arithmetic unit is out of action in these cases, the contents of the register R_{2} may be anyhow.

In carrying out the arithmetic operations (of the types B and M) it is necessary to check the noughts O_{1}, O_{2} of the operands deposited in the registers R_{1} and R_{2}. In the operations of the type B carried out with the numbers in the inverse code it is necessary to check both positive and negative noughts in the register R_{1} and R_{2}. No discrimination is needed if a positive or a negative zero is involved. (See Tables 3 and 4.)

It is convenient to perform the nought checking of the contents of the register R_{1} directly in the number $R C$, where the numbers are always expressed in the direct code. (The numbers in the memory are expressed in the direct code, they come into $R C$ in the same code as can be seen in figure 5.) For the nought contents O_{1} of the number register $R C$ and thus also of the register R_{1} we get

$$
\begin{gather*}
O_{1}=\neg R C_{0} \wedge \neg R C_{1} \wedge \ldots \wedge \neg R C_{9}=\neg R C_{0} \wedge \neg\left(R C_{1} \vee R C_{2} \vee \ldots \vee R C_{9}\right)= \\
=7 R C_{0} \wedge \neg J \tag{13}
\end{gather*}
$$

where

$$
\begin{equation*}
J=R C_{1} \vee R C_{2} \vee \ldots \vee R C_{9} \tag{14}
\end{equation*}
$$

Expression (13) can be modified even further as follows:
we set

$$
\begin{gathered}
\left.K_{1}=R C_{0} \wedge \neg R C_{1} \wedge \neg R C_{2} \wedge \ldots \wedge \neg R C_{9}=R C_{0} \wedge \neg R C_{1} \vee R C_{2} \vee \ldots \vee R C_{9}\right)= \\
=R C_{0} \wedge \neg J .
\end{gathered}
$$

Then

$$
\begin{gather*}
\neg K_{1}=\neg R C_{0} \vee J \\
\neg K_{1} \wedge \neg J=\left(\neg R C_{0} \vee J\right) \wedge \neg J=\neg R C_{0} \wedge \neg J=O_{1} \tag{15}
\end{gather*}
$$

The diagram carrying out the nought-checking of the number register $R C$ (and thus also of the register R_{1}) is depicted in figure 6 .

The reason of this modification follows from the action of the arithmetic unit in
the operation of division as described below. (K_{1} is the unit contents of the number register.)

The checking of the contents O_{1}^{+}of the register R_{1}, when the counter C_{1} is zeroizing only after arriving of 1024 impulses, must be carried out directly in the register R_{1}, i.e.

$$
\begin{equation*}
O_{1}^{+}=\neg R_{10} \wedge \neg R_{11} \wedge \neg R_{12} \wedge \ldots \wedge \neg R_{19} \tag{16}
\end{equation*}
$$

The nought checking of the contents O_{2} of the register R_{2} is carried out in the register R_{2}. Since in R_{2} the numbers may occur both in the inverse (in operations of the type B) and in the direct code (in operations of the type M), both the positive and the negative nought-checking must be carried out, naturally irrespective of it, whether a positive or negative nought is involved. Then the nought contents of the register R_{2} in the operations of the type B is given by the relation

$$
\begin{align*}
O_{2 \mathrm{~B}}=\left[\left(Z_{2} \wedge R_{20} \wedge\right.\right. & \left.\left.R_{21} \wedge \ldots \wedge R_{29}\right) \vee\left(\neg Z_{2} \wedge \neg R_{20} \wedge \neg R_{21} \wedge \ldots \wedge \neg R_{29}\right)\right] \wedge \\
& \wedge \tag{17}
\end{align*}
$$

Fig. 6.
where

$$
\begin{align*}
& H=R_{20} \wedge R_{21} \wedge \ldots \wedge R_{29}, \tag{18}\\
& G=R_{20} \vee R_{21} \vee \ldots \vee R_{29} . \tag{19}
\end{align*}
$$

The nought contents of $O_{2 \mathrm{M}}$ of R_{2} in the operations of the type M is given by the relation

$$
\begin{gather*}
O_{2 \mathrm{M}}=\left[\left(Z_{2} \wedge \neg R_{20} \wedge \neg R_{21} \wedge \ldots \wedge \neg R_{29}\right) \vee\right. \\
\left.\vee\left(\neg Z_{2} \wedge \neg R_{20} \wedge \neg R_{21} \wedge \ldots \wedge \neg R_{29}\right)\right] \wedge M= \\
=\left(\neg R_{20} \wedge \neg R_{21} \wedge \ldots \wedge \neg R_{29}\right) \wedge M=7 G \wedge M \tag{20}
\end{gather*}
$$

so that the nought contents O_{2} of the register R_{2} in both arithmetic operations is given by the relation

$$
\begin{equation*}
O_{2}=\left[\left(Z_{2} \wedge H\right) \vee\left(\neg Z_{2} \wedge \neg G\right)\right] \wedge B \vee(\neg G \wedge M) \tag{21}
\end{equation*}
$$

Likewise the contents checking O_{2}^{+}in the register R_{2} is given by the relation

$$
\begin{equation*}
O_{2}^{+}=\neg R_{20} \wedge \neg R_{21} \wedge \ldots \wedge \neg R_{29}=\neg G \tag{22}
\end{equation*}
$$

Fig. 7.

Fig. 8.

The nought-checking of R_{2} is visualized in figure 7. The checking is carried out after the switching of the comparator circuit S_{2}.

The full connection of the arithmetic unit in the operations of the types B, M and L is given in the figure 8.

The electronic part of the arithmetic unit, i.e. of the counters C_{1}, C_{2} and C_{3} are in action only in the operations of the types B and M if both operands are nonzero. In other cases the starting impulse from the starting circuit $S t$ is not coming to the input of the gate H (doesnot open the gate), but it comes to the input of the switching circuit T_{1}. The relation for the starting impulse S_{H}, by which the gate is opening, can be read off from Table 6.

L	B	M	$O_{1,2}$	S_{H}
0				
0	0	0	0	\mathbf{x}
0	0	1	1	0
0	0	1	1	1
0	1	0	0	1
0	1	0	1	1
0	1	1	0	\mathbf{x}
0	1	1	1	x
1	0	0	0	0
1	0	0	1	0
1	0	1	0	x
1	0	1	1	x
1	1	0	0	x
1	1	0	1	x
1	1	1	0	x
1	1	1	1	x

Table 6.

Since always only one type of the operation is performed, i.e.

$$
\begin{array}{ll}
B \wedge L=B \wedge M=M \wedge L=\neg L \wedge \neg B \wedge \neg M=0 \tag{23}\\
\neg B=M \vee L, & \neg M=B \vee L,
\end{array} \neg L=B \vee M, ~ l
$$

(L... jump instruction.)
there are used crosses to denote states that can never occur. From Table 6 we get the following relation for S_{H}

$$
\begin{equation*}
S_{H}=\left[\neg L \wedge\left(B \vee \neg O_{1,2}\right)\right] \wedge S t, \tag{24}
\end{equation*}
$$

with

$$
O_{1,2}=O_{1} \vee O_{2}
$$

(the gate is opening after the starting circuits $S t$ switches). The switching circuit T_{1} is excited either from the zeroizing circuit N_{2} or from the starting circuit $S t$ if the gate is not opening. The starting impulse is then given by the relation

$$
\begin{equation*}
S_{T_{1}}=\left\{\neg\left[\neg L \vee\left(B \vee \neg O_{1,2}\right)\right] \wedge S t\right\} \vee N_{2} . \tag{25}
\end{equation*}
$$

The above expression (25) can be further modified successively by means of expressions (23) to the form

$$
\begin{gather*}
S_{T_{1}}=\left\{\left[L \vee\left(\neg B \wedge O_{1,2}\right)\right] \wedge S t\right\} \vee N_{2}= \tag{26}\\
=\left\{\left[L \vee(L \vee M) \wedge O_{1,2}\right] \wedge S t\right\} \vee N_{2}=\left[\left(L \vee M \wedge O_{1,2}\right) \wedge S t\right] \vee N_{2} .
\end{gather*}
$$

The blocks $\neg D_{1}$ and $\neg D_{3}$ are connected with the operation of division $\left(M_{1}\right)$ as described below.

If in the case of (M_{1}) the division is equal to zero (i.e. $O_{1}=1$), the lamp indicates "impossible" and the computation stops.

At the beginning of the arithmetic operations (B and M) the counters C_{1}, C_{2}, C_{3} are zeroized while in those of the type L the counters are not zeroized. (See figure 8.)

Arithmetical operations of the type M.
The operation of the type M_{2}, multiplication.
The connection of the individual units of the arithmetic unit in multiplication is shown in figure 9 . The 1 st factor (from the memory) is deposited in the register R_{1}, the 2 nd factor (the result of the foregoing operation) is deposited in R_{2}. At the beginning of the operation the zeroizing circuit N, zeroizing the counters $C_{1,2,3}$ is excited by the starting circuit St. Provided that both operands are nonzero (i.e. $\neg O_{1} \wedge$ $\wedge \neg O_{2}=1$), the electronic switch $E P$ is switched into position 1 by the impulse from the starting circuit and at the same time the gate H is opening.

The impulses from the gate come to the input of the counters C_{1} and C_{3}. If the number of the input impulses of the counter C_{1} is equal to the number deposited in R_{1}, the zeroizing circuit N_{1} switches, which is zeroizing the counter C_{1}. The zeroizing impulse comes simultaneously to the input of the counter C_{2}. If the number of the zeroizing impulses from the circuit N_{1} is equal to the number deposited in the register R_{2}, the zeroizing circuit N_{2} switches, the contents of the counter C_{2} is cleared by the zeroizing impulse, the gate H is closing and the contents of the counter register $C R$ is increasing by one unit through the switching circuits T_{1} and T_{2}.

The contents of the counter is then given by the relation

$$
\begin{equation*}
\left\langle C_{3}\right\rangle=\left\langle R_{1}\right\rangle .\left\langle R_{2}\right\rangle . \tag{27}
\end{equation*}
$$

The sign of the result in the operations of the type M is given by the relation

$$
\begin{equation*}
Z_{3 \mathrm{M}}=M \wedge\left[\left(Z_{1} \wedge \neg Z_{2}\right) \vee\left(\neg Z_{1} \wedge Z_{2}\right)\right] . \tag{28}
\end{equation*}
$$

The overflow in multiplication is given by the relation

$$
\begin{equation*}
P_{\mathrm{M}_{2}}=p \wedge M, \tag{29}
\end{equation*}
$$

where p is the tenth binary order of the accumulator counter C_{3} (see Table 4 and figure 3). If $O_{1} \vee O_{2}=1$, the raising of the contents of the counter register $C R$ by one unit is derived directly from the starting circuit $S t$.

Fig. 9.

The operation of the type M_{1} division.
The connection of the units in the operation of civision is visualized in figure 10 . The division is deposited in the register R_{1}, the dividend in R_{2}.

The output impulses from the gate pass over the electronic switch at the same time to the input of the counter C_{1} and to the input of the counter C_{2}. The zeroizing impulses from the zeroizing circuit N_{1} pass to the input of the counter C_{3} the gate is closing by the zeroizing impulse from the zeroizing circuit N_{2} and the switching circuit T_{1} is excited. On concluding the operation the contents of the counter C_{3} is given by the relation:

$$
\left\langle C_{3}\right\rangle=\left\langle R_{2}\right\rangle:\left\langle R_{1}\right\rangle .
$$

If the contents of the register R_{1} is equal to zero (i.e. $O_{1}=1$), the state "impossible" takes place and the computation is stopped. For the whole foregoing computation in such a case not to be frustrated, the contact $\urcorner D_{1}$ is released preventing the counters
C_{1} and C_{3} from prezeroizing (see figure 10). The result of the operation preceding the operation of division is then indicated by the bulbes of the counters C_{3}. By the type of the operation and by the sign of its result we can determine whether the indicated result is in the direct or inverse code. The sign of the result of the preceding operation can be detected retrospectively by the sign in the operation of division and by the sign of the operand zero in our case that in the operation of division comes from the memory into the register R_{1}. The motivation of this procedure follows from the description of the control unit.

Fig. 10.
As the computer operates in the domain of integers, we do not obtain any exact result in the quotient of the two relatively prime numbers, because there are not expressed places behind the point in the result. Since such an error involved may be in the result. Since such an error involved may be in some cases relatively large, the operation of division is carried out in two machine cycles and in the second machine cycle the result is rounded off. The quotient of the integers p and q can be written in the form

$$
\begin{equation*}
p: q=V+\frac{z}{q} \tag{31}
\end{equation*}
$$

where V stands for the whole part of the result. Since the computer operates in the domain of integers, the number $\frac{z}{q}$ can be left out (it is a machine zero). If

$$
\begin{equation*}
\frac{z}{q} \geqq 0,5 \tag{32}
\end{equation*}
$$

the value of V in the second machine cycle is increasing by one unit as can be read off from Table 7.

Let us rewrite (31) in the form

$$
\begin{equation*}
q-z \leqq \frac{q}{2} \tag{33}
\end{equation*}
$$

As all numbers in the computer are expressed in the binary number system, we form the expression $\frac{q}{2}$ by merely shifting the number q by one order to the right, whereby leaving the numbers out behing the point (in odd q) doesnot play any role in this case. If (33) is satisfied, where $\frac{q}{2}$ is formed by shifting q by one order to the right with eventual leaving out the number behind the point, so (32) is satisfied as well.)

The check up of (33) is carried out in the second machine cycle of the division in the following way:

After the first machine cycle $\left\langle c_{1}\right\rangle=z,\left\langle c_{2}\right\rangle=0$, and further $\left\langle R_{2}\right\rangle=p,\left\langle R_{1}\right\rangle=q$. The input of the switching circuit T_{2} disconnects from that of $T_{1}\left(\neg D_{3}\right)$, the input zeroizing circuits N_{1} and N_{3} disconnect from the input zeroizing circuit N, so that at the beginning of the second machine cycle the counters C_{1} and C_{3} are not zeroized. The circuit ensuring the action required is depicted in figure 11.

Division in two machine cycles is carried out only when

$$
\begin{equation*}
\left\langle R_{1}\right\rangle \neq 0 ; 1, \quad\left\langle R_{2}\right\rangle \neq 0 \tag{34}
\end{equation*}
$$

i.e. $O_{1}=O_{2}=0,\left\langle R_{1}\right\rangle \neq 1$.

Let us denote $\left\langle R_{1}\right\rangle=1$ by the expression K_{1}. The check up of the zero contents of R_{1} (i.e. the check up of O_{1}) is performed directly in the register of the number, similarly as the check up of the unit contents of R_{1} in the register of the number, so that

$$
\begin{equation*}
\left.K_{1}=R C_{0} \wedge\right\urcorner\left(R C_{1} \vee R C_{2} \vee \ldots \vee R C_{9}\right) \tag{35}
\end{equation*}
$$

K_{1} may be (with respect to equation (14)) expressed in the form

$$
\begin{equation*}
K_{1}=R C_{0} \wedge \neg J \tag{36}
\end{equation*}
$$

(See figure 6).
As mentioned before, the input of the switching circuit T_{1} disconnects from that of T_{2} in the first machine cycle if the conditions of (34) are satisfied. If

$$
\begin{equation*}
O_{1} \vee O_{2} \vee K_{1}=1, \tag{37}
\end{equation*}
$$

the input T_{1} doesnot disconnect from T_{2}. The circuit ensuring the connection or disconnection of the switching circuits T_{1} and T_{2} is shown in figure 11. There is marked the time diagram of the connection of the individual blocks. (The block D_{3}
has a retarded scrap.) The switching circuit T_{2} is initiated by the descending edge (on differentiating by the negative impulse) of the input rectangle impulse of T_{1}. D_{3} is given in the first machine cycle by the relation

$$
D_{3}=M_{1} \wedge \neg K_{1} \wedge \neg O_{1} \wedge \neg O_{2} \wedge \neg D_{2} \wedge T_{1}=D_{1} \wedge \neg O_{1} \wedge \neg D_{2}
$$

Fig. 11.

For the result of the foregoing operation in dividing by zero (i.e. $O_{1}=1$) not to be frustrated, the pre-zeroizing of the counter C_{3} is prevented even in this case. Then the relation for D_{1} has the form

$$
\begin{gather*}
D_{1}=M_{1} \wedge\left(T_{1} \wedge \neg K_{1} \wedge \neg O_{2} \vee O_{1}\right), \tag{39}\\
D_{2}=\neg T_{1} \wedge D_{1} . \tag{40}
\end{gather*}
$$

If the conditions of (34) are satisfied, then, according to (38), in the first machine cycle at switching of the circuit T_{1}, the input of the circuit T_{2} is disconnected from the output T_{1}.

In the second machine cycle

$$
\begin{equation*}
D_{3}=0 \tag{41}
\end{equation*}
$$

because

$$
D_{2}=1 .
$$

At the beginning of the first machine cycle in switching the comparator circuit S_{2}, the contents of the accumulator counter C_{3} is transferred over the non-circuit E_{2}. (See figure 5.) At the end of the first machine cycle, when $D_{1}=1$, the register D_{2} disconnects from the counter C_{3} and the contents of the register R_{1} transfers with shifting by one order into R_{2}. (See figure 12.)

Fig. 12.

The register R_{2} is thus filled up either from the counter C_{3} (over the non-circuit E_{2}) or with shifting from the register R_{1}. The zeroizing of the register is performed at the end of the operation at the switch of T_{3}. (See figure 1.)

In Table 7 below there are collected the contents of the individual registers and counters after the first and second machine cycles in the operation of division, where $\frac{p}{q}=\frac{20}{5} ; \frac{21}{5} ; \frac{22}{5} ; \frac{23}{5} ; \frac{24}{5}$. The whole part of the result is raised by one unit if the condition (32) is satisfied.

1. tact.
2. tact.

$p: q$	$\left\langle R_{1}\right\rangle=q\left\langle R_{2}\right\rangle=p\left\langle C_{1}\right\rangle=z$	$\left\langle C_{2}\right\rangle$	$\left\langle C_{3}\right\rangle=V$	$\left\langle R_{1}\right\rangle$	$\left\langle R_{2}\right\rangle$	$\left\langle C_{3}\right\rangle=V, V+1$		
$20: 5$	5	20	0	0	4	5	2	4
$21: 5$	5	21	1	0	4	5	2	4
$22: 5$	5	22	2	0	4	5	2	4
$23: 5$	5	23	3	0	4	5	2	5
$24: 5$	5	24	4	0	4	5	2	5

Table 7

Evidently, the overflow doesnot occur in the operation of the type M. The overflow in the arithmetical operations (of both types B and M_{2}) is given by the relation

$$
\begin{equation*}
P=P_{\mathrm{B}} \vee P_{\mathrm{M}_{2}} \tag{42}
\end{equation*}
$$

where P_{B} is given by (8) and $P_{\mathrm{M}_{2}}$ by (29).

Souhrn

ARITMETICKÁ JEDNOTKA ZALOŽENÁ NA ČÍTÁNÍ IMPULSU゚

KAREL BENES

V práci je popsána aritmetická jednotka sestávající ze tří čítačů, z nichž jeden je střadačový. Jednotka pracuje s čísly v inversním dvojkovém kódu, jsou odvozeny vztahy pro vytváření kruhového přenosu a znaménka výsledku. Jednotka pracuje s celými čísly a provádí čtyři základní operace, t. j. sčítání, odčítání (i absolutních hodnot), násobení a dělení. Operace dělení je prováděna se zaokrouhlením. Svým principem se blíží sériovému způsobu činnosti.

Реэюме

АРИФМЕТИЧЕСКОЕ УСТРОЙСТВО ОСНОВАНОЕ НА СЧИТЫВАНИЮ ИМПУЛЬСОВ

КАРЕЛ БЕНЕШ

В статье описано арифметическое устройство состоящее из трёх счетчиков, один работает как накапливающий счетчик. Устройство работает с номерами в инверзном двоином коде, описаны отношения для создания циклического переноса и знака результата. Устройство работает с целыми номерами и провестит четыре основные арифметические операции, т. е. сложение, вычитание (тоже абсолютных величин), умножение и деление. Операция деления производится с закруглением. По своей основе оно в близи сериовому способу работы.

