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PLACES OF ALTERNATIVE FIELDS

ALENA VANZUROVA
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In the following text, the connection between places of alternative fields and its
total subrings is studied. The results obtained are similar to those derived for places
and valuation rings of fields.

Definition.

An alternative field is an algebraic structure (A, +,.) with two binary operations
such that (A, +) is a group, (A + {0}, .) is a loop, both distributive and both alter-
native') laws are satisfied.

It can be proved, that the additive group is commutative and the left and right
inverse property is satisfied:

(IP) for a %0, a'.(a.by=(h.a).a ' = b,
a.(at.b)y=0.al).a=b

Moreover, (x . y)"! =y~ 1 x71,
Definition.

A place of alternative fields?) is a mapping @ from an alternative field (A, +,.)
to an alternative field (A’, +,.") satisfying:

(i) For x, ye A, if x® # oo and »® # oo, then (x — »)® = x® —’ )% and (x.y)® =
= x%.y°.

(ii) For x,y e A, if x° # 0’ and »® = oo, then (x.»)° = (y. x)° = o0,
where oo is a symbol not belonging to A’ and the notation a® # oo, b = o0 means
that a belongs and b does not belong to the domain of ©.

It can be verified, that (Im @, +',.") is an alternative field. Therefore it can be
supposed, that @ is surjective:

(iii)) A® = A,

1) A left alternative law: for all a,be A, a.(a.b) = (a.a).b; right alternative law: for all
a,beA (a.b).b=a.(b.b).
2) In [1], this mapping is called pseudohomomorphism.
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It can be easily proved that a place @ of alternative fields satisfies:
0°=0,1°=15

if a® = o0 and % # oo, then (a + b)® = (b + @)° = oo;

if x # 0, then x® = 0’ is equivalent to (x~1)¢ = co.

Definition.

A subring®) O of the alternative field A is said to be total in A, if either x € O or
x"!1e O for every xe A = {0}.

In a total ring, there are no zero divisors and every subring of the alternative
field A, which contains a ring total in A, is also total in A.

If O is a place of alternative fields, let us denote

Op = {x e A/x® # w0}.

If x® # ', then (x™1)® # oo and so x~! € Oy. We shall use the following notation:
Up = {xe A/xe Oy and x~' € O}, so called units;
I = {xeAlxeOgand x ' ¢ O, or x = 0}, so called non-units;
Jo = {xeAlx¢ O} = {xe A/x® = w0}
It can be seen, that O, is a disjoint union of U, and I and for every x € Uy, (x™1)® =
— (XE)—- 1.

Theorem 1.

Let O be a place of an alternative field (A, +, .) onto an alternative field (&', +', .)*).
Then Qg is a total subring in A, Iy being its unique maximal ideal, and the factorring
Oy/1, is isomorphic to A’

Proof. It is clear, that O, is a ring. If x ¢ Oy, then x° = o0 and (x~1)® = 0,
which implies x~' € Q4. Hence O, is total in A. Suppose that x, y € I,. From this
it follows (x — 1) = x® —"3° =0’ —0' = 0', and thus x — yel,. If xe Iy and
ze Oy, then (x.2)° = 0.2 =0 = 2°./0' = (x. 2)°. Hence I is a both-sided
ideal. We shall show now, that I, is maximal. Let x € U,. Then each ideal generated
by x contains a unite 1 and is equal to the whole ring Oy. This implies, that each
ideal different from O, is contained in Iy. The restriction of @ to Oy, is a homo-
morphism of Qg onto A" with a kernel Iy, thus Og/ly =~ A'.

Note that ©: A — A’ U {00} is a place of alternative fields, if and only if it satisfies:

(a) There exists a subring O in A such that the restriction @, = @/O is a homo-
morphism of O onto the ring A’;

(b) If xe A= O, then x° = o0, x € O and (x™1)° = 0]

(c) There exists x € O such that x° # 0.

Theorem 2.
Let O be a total subring in the alternative field A. A set I = {xe Alxe O and

3) Not necessary associative.
4) In short, A - A’ U {co}.
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x~1¢ O, or x = 0} forms a unique maximal ideal in O. Moreover, a factorring O/I
is an alternative field.
We shall call I a set of non-units again. Note that each total ring is local.
Before proving our theorem, we shall establish several lemmas.

Lemma 1.

Let O be a total subring in an alternative field A and denote by I a set of non-units
in O.If xeland ye O, then x .y and y . x are in I for all x,y from A. Especially,
I. 1<l

Let us denote U = {xe A/x € O and x~' € O}. Obviously, U=0 ~ L If x =0
ory = 0, the proof is trivial. Thus suppose x . y 5 0. In the first step, let x e I — {0},
y € U. Thus x,y€ O, x !¢ Oand y~* € O. Suppose that z = x . y ¢ I. This implies
ze O and z7'¢O. Further, x™! = (z.y 1) ' =y.z"1, We obtain x" 1O,
a contradiction. Hence x.ye I. Similarly for y.x. In the second step, let x,y €
el =~ {0}. Suppose z=x.y¢l Then z7'=p~'.x"' and y"' =z"'.xeO,
which is a contradiction. Thus x.ye[l.

Lemma 2.

Under the same assumptions as above, let J = A =~ O. Then

() a ' el<aeJfor every ac A = {0},

(i) J.J & J,

(ii) if xeJandye U, then x .ye Jandy . x € J,

(iv) U.U < U.
The proof is easy.

Now let us return to the proof of Theorem 2. We shall show first that (I, +)
is a subgroup of (O, +). For every a, be I we have a — b e O. Suppose (@ — b)) ' e
€ O. Since O is total in A, it must be eithera™! . b€ O,0or (a™'.b) ' =b~'.aec ©.
If a'.be O, we shall use the relation

al=@'. @=b).a-bt=0-a"'.b).a—-b""L

Obviously, 1€ © and 1 — a™*.be O. Further (@ — b)~! € O, thus the right side
belongs to O, in contrary to the assumption @~ ¢ O. The case b~1 . a is symmetric.
Therefore (a. — b)"1 ¢ O and a — be I. By Lemma 1., I is an ideal. The same argu-
ments as in the proof of Theorem 1. shows that I is maximal. We observe that a de-
composition of O modulo 7 is compatible with addition and multiplication.

It remains to prove that (O/I = {0}, .) is a loop. The coset [1] is obviously a unit
element. Suppose [a], [b] # [0]. Thus @, be U and further a™'e U, b.a ' e U.
Since [b] = [(b.a™").a] = [b.a '] . [a], the coset [6.a"'] is a solution of the
equation [b] = [a] . [x] in O/I = {0}. It can be checked that the solution is unique
and that both distributive and alternative laws holds.
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Theorem 3.

Let O be a total subring in the alternative field A. Then there exists a place @ of A
such that O = 0.%)

Proof. Let x : O — O/I denotes a canonical homomorphism, I being a maximal
ideal. Define x® := x* for x€ O, x° := o0 for xe A =~ O, A" := O/L.

It can be verified that @ has the properties (i) — (iii) from the definition of a place.

The following theorem shows that a place has no proper extension.

Theorem 4.

Let © : A A" L {0} be a place and ¢ a homomorphism of the subring R < A
to an alternative field. Let Oy < R and suppose that the equality ¢ = O is true on Og.
Then Oy = R.

Proof. Let xe R. Suppose x¢ Oy. Then x™ '€ Og and (x™1)? = (x™1)° =0,
Since 1 € Og and 1° = 1’ € A’, we have

U'sl=@x.x)=x.x"1)=x.0=0,

which is impossible, since we suppose that A’ contains at least two different elements.
Thus x-€ Oy and therefore R < Og.

A place is said to be trivial, if it is an isomorphism, i.e. A = Oy and I = {0}.

Every place of the alternative field A induces a place of each alternative field A,
contained in A. If A; £ O, the place is trivial.

The set of all places of the given alternative field A can be decomposed into equi-
valence classes as so: two places @ : A— A, U {0}, ¢ : A> A, U {0} are said
to be equivalent (O ~ @), if there exists an isomorphism A : A; — A, of alternative
fields such that ¢ = © , . As in the associative commutative case, @ ~ ¢ if and
only if Og = O,,.

Also a notion of specialisation can be introduced as in the classical case.

Definition.
Let @, O’ be places of an alternative field A. We say that @’ is a specialisation of @
(and we write @ — ©'), if 0, < Oq.

It can be verified, that ® — @' if and only if one of the following equivalent condi-
tions holds:
(i) x® # o0 = x® # w0
(i) x® = 0" = x® =0".
In the other words, @ — @' if and only if
Igcs 1y, and  Og g Og...(B).

Note that each place is a specialisation of a trivial place. Further, ¢ and @ are equi-
valent, if and only if ¢ — © and ® — ¢. This assertion is generalized in the following:

%) Such place is unique up to an equivalence relation, defined later on.
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Theorem 5.

Let @, : A— A U {0}, @, : A - A, U {0} are places of the alternative field A.
Then ©, — @, if and only if there exists a place ¢ : A; — A, U {0} such that @, =
= 0, 0 ¢ is true on O,.

Proof. Let @, » 0,. Then R = (0,,)°" is.a subring in A, . Let us define a map-
ping ¢ : A; —» A, U {o0} in this way:

X7 1= for xe A, ~ R,

x? 1= £92 where te Oy, and E9 = y, for x e R.

We must show that this definition is correct. Suppose that ¢ = 4°' = x for some
&ne0g,. Thus (n — &)° = y® —"E° = 0. This implies n — ¢ely,. Since
Ig, € Ip,, we have 0" = (y — )% = ° — "¢%2 Therefore #°* = ¢92. It can be
verified that ¢ is a demanded place. Moreover, ¢ is uniquely determined by &, ©,.

Conversely, let @, = @, o ¢ is true on Og,, ¢ : A} = A, U {0} being a place.
If x € Og,, i.e. X% # oo, then (x°')? # oo and therefore x° € O, < A,. This implies
that x®' # oo and x € Op,. Thus Og, = Oy, hence O; » 6,.

The mappings ©, and @, o ¢ are identical on the whole Oy, in the following
sence: if x € Oy, = Oy, then x%2 = (x°')? = o0. Really, if x ¢ Oy, then (x~ )% =
=0, thus x '€ Oy, and (x™")®°? = ((x~1)®")? = 0, which yealds the previous
result.

If ©, @’ are equivalent, then ¢ is trivial. The following theorem solves a problem
of finding all places ¢ such that the given place © is a specialisation of ¢ (¢ — ©).

Theorem 6.
Let A be an aliernative field containing a total subring O. Each subring R in A such
that © < R, can be expressed in the form

R={xeAlxea.b " for some a,be O, b¢M},

where WM is a prime-ideal in Q.

Proof. R is total in A, for it contains a total ring O. By Theorem 3, there exist
places © and ¢ of A such that O, = O, O, = R and ¢ — 0. Since I,, € Iy, I, is
a prime-ideal in Op. Let Z = {xe A/x = a.b"';a,b€ Oy, b ¢ 1,}. Since ac O,,
beOy < O, and b¢1,, we have be U, and b~ ' e U, < O,. Thus the product
a.b™' €0, and Z < O,. Now we shall prove, that the converse inclusion is also
true. Suppose x€ O,. If xe O, then x€Z, since x = x.17 " and 17! = 1¢1,.
Let x¢ Og; then x™ '€ Oy and x¢1,. Thus x,x~ ' e U,. The element y = x~*
satisfies y™' e U,and y™' ¢ I,. Now wecan writex = 1.y ' e Z. Hence Z = O, =
= R.

Similarly, it can be proved that

R={xeAlx=0b""'.aac0,bcO =M}

for a certain ideal 9 in O.

45



Theorem 8.

Let M, and M, be left ideals in a total ring O of the alternative field A. Then either
M, Wy, or M, = M.

Proof. Suppose M, & M,. Then there exists x e M, = M,. Let yeM,, y # 0.
Then x .y~ ¢ O. In fact, the assumption x . ™! € O would imply x = (x.y" ).y e
€ M,, a contradiction. From this follows y.x™! = (x.y !)"! € O. Further, y =
=(y.x" 1. xeM, and thus M, < M, .

Remark.
An analogous theorem holds for right and for both-sided ideals, too.

Corollary.
A set of all subrings in an alternative field, containing the given total ring, is fully
ordered by the set inclusion.
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SOUHRN
UMISTENI ALTERNATIVNICH TELES
ALENA VANZUROVA
V ¢&lanku se studuje vztah mezi umisténimi a totilnimi okruhy alternativnich
téles. Dokazané vysledky jsou obdobné vétam platnym pro umisténi a valua&ni
okruhy komutativnich téles.
PE3IOME
TOYKU AJIBTEPHATUBHBIX TEJI
AJIEHA BAHXVYPOBA
B craThe M3y4aeTCsi CBS3b MEX[y TOYKAMM ¥ TOTAJbHBIMH KOJbIAMHU ajbTep-

HATHUBHBIX TEJI. HOCTHF HYTBIC PE3yJIbTAaThl aHAJIOTHYHBI T€OpEMAM U3BECTHBLIM IJIA
TOYCK M KOJIE HOPMHUPOBAHMSA noJiei.
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