Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Miroslav Laitoch

To the theory of linear difference equations

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 23 (1984), No. 1, 11--24

Persistent URL: http://dml.cz/dmlcz/120146

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1984
Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
 FACULTAS RERUM NATURALIUM

1984
Katedra matematické analýzy a numerické matematiky přirodovědecké fakulty University Palackého v Olomouci
Vedoucí katedry: Miroslav Laitoch, Prof., RNDr., CSc.

TO THE THEORY OF LINEAR DIFFERENCE EQUATIONS

MIROSLAV LAITOCH

(Received February 22nd, 1983)

This paper is devoted to the theory of linear difference equations with constant coefficients from the viewpoint of Borůvka's theory of the 1st kind central dispersions of the 2 nd order linear differential equations of Jacobi's type. There is shown a natural generalization of a linear difference equation to a certain functional equation considered on an infinite or finite cyclic group of functions, which are the 1st kind central dispersions of the above mentioned differential equation either bothside oscillatory or special of a finite type on the interval $(-\infty, \infty)$.

1. Consider a bothside oscillatory 2 nd order linear differential equation of Jacobi's type

$$
\begin{equation*}
y^{\prime \prime}=q(t) y \tag{q}
\end{equation*}
$$

where $q \in C^{0}(-\infty, \infty)$.
The symbol $C^{0}(-\infty, \infty)$ denotes a set of real continuous functions on the interval $(-\infty, \infty)$.

Let $\varphi=\varphi(t)$ be the basic 1st kind central dispersion of (q). Let $n=1,2, \ldots$ Let $\varphi_{n}=\varphi_{n}(t)$ denote the n-th 1 st kind central dispersion, which is the n-times composite basic central dispersion of the 1st kind, whereby $\varphi_{1}(t)=\varphi(t)$. We set $\varphi_{0}(t)=t$. With this notation $\varphi_{-n}=\varphi_{-n}(t)$ is an inverse function to the function φ_{n}.

Under the given assumption, the 1st kind central dispersions are known to form an infinite cyclic group $\left\{\varphi_{n}\right\}_{n=-\infty}^{\infty}$ of increasing functions of class C^{3} mapping the interval $(-\infty, \infty)$ onto the interval $(-\infty, \infty)$; thereby the function φ_{1} is a generating function, the group operation is the composition of functions.
2. Let the differential equations

$$
\begin{align*}
y^{\prime \prime} & =q(t) y \tag{q}\\
Y^{\prime \prime} & =Q(t) Y \tag{Q}
\end{align*}
$$

be bothside oscillatory on the interval $(-\infty, \infty)$ and the coefficients q, Q be from class $C^{\infty}(-\infty, \infty)$. For $j=0, \pm 1, \pm 2, \ldots$ let $\varphi_{j}=\varphi_{j}(t)$ and $\Phi_{j}=\Phi_{j}(t)$
be the j-th central dispersions of the 1st kind of the differential equation (q) and (Q), respectively.

The 1 st kind central dispersions of (q) and (Q) are known to satisfy Kummer's nonlinear differential equation of the 3 rd order

$$
\begin{equation*}
-\{\varphi, t\}+q(\varphi) \varphi^{\prime 2}(t)=q(t) \tag{q,q}
\end{equation*}
$$

and

$$
\begin{equation*}
-\{\Phi, t\}+Q(\Phi) \Phi^{\prime 2}(t)=Q(t) \tag{Q,Q}
\end{equation*}
$$

respectively. Whereby

$$
\begin{aligned}
& \{\varphi, t\}=\frac{1}{2} \frac{\varphi^{\prime \prime \prime}(t)}{\varphi^{\prime}(t)}-\frac{3}{4} \frac{\varphi^{\prime \prime 2}(t)}{\varphi^{\prime 2}(t)} \\
& \{\Phi, t\}=\frac{1}{2} \frac{\Phi^{\prime \prime \prime}(t)}{\Phi^{\prime}(t)}-\frac{3}{4} \frac{\Phi^{\prime \prime 2}(t)}{\Phi^{\prime 2}(t)}
\end{aligned}
$$

E. Barvínek in [2] proved a Theorem which we will use in our considerations below. The Theorem reads: Let X, Z, ζ be solutions of Kummer's differential equations

$$
\begin{equation*}
-\{X, t\}+q(X) X^{\prime 2}(t)=Q(t) \tag{q,Q}
\end{equation*}
$$

and

$$
\begin{equation*}
-\{Z, t\}+Q(Z) Z^{\prime 2}(t)=Q(t) \tag{Q,Q}
\end{equation*}
$$

and

$$
\begin{equation*}
-\{\zeta, t\}+q(\zeta) \zeta^{\prime 2}(t)=q(t) \tag{q,q}
\end{equation*}
$$

respectively.
Then the equality

$$
\begin{equation*}
X[Z(t)]=\zeta[X(t)] \tag{1}
\end{equation*}
$$

holds: for all $X \in(\mathrm{q}, \mathrm{Q})$ exactly if $Z(t)=\zeta(t)=t$, for all increasing solutions $X \in(\mathrm{q}, \mathrm{Q})$ exactly if $Z=\Phi_{n}, \zeta=\varphi_{n}$, for all decreasing solutions $X \in(\mathrm{q}, \mathrm{Q})$ exactly if $Z=\Phi_{n}, \zeta=\varphi_{-n}$.
An immediate consequence of this Theorem is:
If we set $q(t)=-\pi^{2}$, we may use the foregoing Theorem to the basic 1st kind central dispersion φ of the differential equation $\left(-\pi^{2}\right)$, which is the function $\varphi=t+1$, and to the basic 1st kind central dispersion Φ of the differential equation (Q). Then for any increasing solution $X \in\left(-\pi^{2}, \mathrm{Q}\right)$ we have the equality

$$
X[\Phi(t)]=X(t)+1
$$

and for any decreasing solution we have the equality

$$
X[\Phi(t)]=X(t)-1
$$

because $\Phi_{-1}=t-1$.
If φ_{n} denotes the n-th central dispersion of the 1 st kind of $\left(-\pi^{2}\right)$, which, as we know, is the function $\varphi_{n}=t+n$ and Φ_{n} denotes the n-th central dispersion of the 1 st kind of (Q) for $n=1,2,3, \ldots$, then for any increasing solution $X \in$ $\epsilon\left(-\pi^{2}, Q\right)$ we have the equality

$$
\begin{equation*}
X\left[\Phi_{n}(t)\right]=X(t)+n \tag{2}
\end{equation*}
$$

and for any decreasing solution $X \in\left(-\pi^{2}, \mathrm{Q}\right)$ we have the equality

$$
X\left[\Phi_{n}(t)\right]=X(t)-n
$$

because $\Phi_{-n}(t)=t-n$.
3. Consider a functional equation

$$
\begin{equation*}
a_{0} f\left[\Phi_{n}(t)\right]+a_{1} f\left[\Phi_{n-1}(t)\right]+\ldots+a_{n} f\left[\Phi_{0}(t)\right]=0 \tag{3}
\end{equation*}
$$

where a_{j} denotes real constants for $j=0,1, \ldots, n$ in assuming $a_{0} \neq 0, a_{n} \neq 0$, and Φ_{j} denotes the j-th central dispersion of the 1 st kind of (Q).

Definition. Equation (3) will be called the homogeneous linear difference equation of the n-th order with constant coefficients on the cyclic group $\left\{\Phi_{n}\right\}_{n=-\infty}^{\infty}$ of the 1st kind central dispersions of the differential equation (\mathbb{Q}).

Theorem. Let $\Phi=\Phi_{1}$ be the basic 1st kind central dispersion of the differential equation (Q). Let X be an increasing solution of the functional equation

$$
\begin{equation*}
X[\Phi(t)]=X(t)+1 \tag{A}
\end{equation*}
$$

Let λ_{0} be the root of the so-called characterist equation

$$
\begin{equation*}
a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0 \tag{4}
\end{equation*}
$$

for the functional equation (3), where $a_{j}, j=0,1, \ldots, n$, are the coefficients of equation (3). Then the function

$$
\begin{equation*}
f=\lambda_{0}^{X(t)} \tag{5}
\end{equation*}
$$

is a solution of the functional equation (3).
Proof. Let us now try to find a solution of equation (3) in the form $f=\lambda^{X(t)}$. Inserting this into (3), we get

$$
a_{0} \lambda^{X\left[\Phi_{n}(t)\right]}+a_{1} \lambda^{X\left[\Phi_{n-1}(t)\right]}+\ldots+a_{n} \lambda^{X\left[\Phi_{0}(t)\right]}=0
$$

Since by (2) $X\left[\Phi_{j}(t)\right]=X(t)+j$ for $j=0,1, \ldots, n$, we get after substituting

$$
\lambda^{X(t)}\left[a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}\right]=0
$$

From this it follows that λ is the root of the characteristic equation (4).
Analogous we may prove the following Theorem.
Theorem. Let $\Phi=\Phi_{1}$ be the basic lst kind central dispersion of (Q). Let X be the decreasing solution of the functional equation

$$
\begin{equation*}
X[\Phi(t)]=X(t)-1 \tag{*}
\end{equation*}
$$

Let μ_{0} be the root of the reciprocal characteristic equation

$$
\begin{equation*}
a_{n} \lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{0}=0 \tag{*}
\end{equation*}
$$

for the functional equation (3), where $a_{j}, j=0,1, \ldots, n$, are the coefficients of equation (3). Then the function

$$
\begin{equation*}
f=\mu_{0}^{X(t)} \tag{*}
\end{equation*}
$$

is a solution of the functional equation (3).
Example. Consider instead of the differential equation (Q) the differential equation $\left(-\pi^{2}\right)$, i.e. the differential equation

$$
Y^{\prime \prime}=\left(-\pi^{2}\right) Y
$$

$$
\left(-\pi^{2}\right)
$$

As we know, the basic 1st kind central dispersion of equation $\left(-\pi^{2}\right)$ is the function $\Phi(t)=t+1$. The j-th central dispersion of the 1st kind is the function $\Phi_{j}=t+j$ for $j=0,1, \ldots, n$. The increasing solution of the functional equation

$$
X(t+1)=X(t)+1
$$

is the function $X(t)=t$, which can be verified by substitution. It follows that the homogeneous linear difference equation of the n-th order with constant coefficients

$$
\begin{equation*}
a_{0} f(t+n)+a_{1} f(t+n-1)+\ldots+a_{n} f(t)=0 \tag{6}
\end{equation*}
$$

is a special case of the functional equation (3) and its solution with respect to formula (5) has the form

$$
f(t)=\lambda_{0}^{t}
$$

where λ_{0} is the root of the characteristic equation (4).
If μ_{0} is the root of the reciprocal characteristic equation (4*), then the solution of the difference equation (6) may be expressed with respect to formula (5*) in the form

$$
f(t)=\mu_{0}^{-t}
$$

because the function $X(t)=-t$ is a decreasing solution of the functional equation

$$
X(t+1)=X(t)-1
$$

It can be easily seen that the following Theorems are true.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be real different (simple) roots of the characteristic equation (4). Let X be an increasing solution of the functional equation (A). Then the function

$$
f(t)=c_{1} \lambda_{1}^{X(t)}+c_{2} \lambda_{2}^{X(t)}+\ldots+c_{n} \lambda_{n}^{X(t)}
$$

is a solution of the functional equation (3), where $c_{j}, j=1,2, \ldots, n$, are real constants.
If the characteristic equation (4) has a simple complex root λ_{0}, then the two linearly independent solutions of the functional equation (3) have the form

$$
\begin{aligned}
& f_{1}(t)=\left|\lambda_{0}\right|^{X(t)} \sin \left[\arg \lambda_{0} X(t)\right], \\
& f_{2}(t)=\left|\lambda_{0}\right|^{X(t)} \cos \left[\arg \lambda_{0} X(t)\right] .
\end{aligned}
$$

Let the characteristic equation (4) have an s-fold root λ_{0}, where $1 \leqq s \leqq n$. Then the functional equation (3) has s linearly independent solutions in the form

$$
\lambda_{0}^{X(t)}, X(t) \lambda_{0}^{X(t)}, \ldots, X^{s-1}(t) \lambda_{0}^{X(t)} .
$$

5. Let the differential equations

$$
\begin{align*}
y^{\prime \prime} & =q(t) y \tag{q}\\
Y^{\prime \prime} & =\mathrm{Q}(t) Y \tag{Q}
\end{align*}
$$

be bothside oscillatory on the interval $(-\infty, \infty)$. Let the coefficients q, Q be from class $C^{0}(-\infty, \infty)$.

Consider two linear difference equations of the n-th order with the same coefficients $a_{0}, a_{1}, \ldots, a_{n}$, the former on the group $\left\{\varphi_{n}\right\}_{n=-\infty}^{\infty}$ of the 1st kind central dispersions of (q), the latter on the group $\left\{\Phi_{n}\right\}_{n=-\infty}^{\infty}$ of the 1 st kind central dispersions of (Q) :

$$
\begin{gather*}
a_{0} g\left[\varphi_{n}(t)\right]+a_{1} g\left[\varphi_{n-1}(t)\right]+\ldots+a_{n} g\left[\varphi_{0}(t)\right]=0, \tag{7}\\
a_{0} f\left[\Phi_{n}(t)\right]+a_{1} f\left[\Phi_{n-1}(t)\right]+\ldots+a_{n} f\left[\Phi_{0}(t)\right]=0, \tag{8}
\end{gather*}
$$

where $a_{0} \neq 0, a_{n} \neq 0$ and for $j=0,1, \ldots, n, \varphi_{j} \in(\mathrm{q}, \mathrm{q}), \Phi_{j} \in(\mathrm{Q}, \mathrm{Q})$ are the j-th central dispersions of the 1 st kind of (q) or (Q).

Theorem. Let $X=X(t)$ be an increasing solution of the differential equation (q, Q). Let $g=g(t)$ be a solution of the linear difference equation (7). Then the function $f=g[X(t)]$ is a solution of the linear difference equation (8).

Proof. Equation (7) may be written in the form

$$
\begin{equation*}
a_{0} g\left[\varphi_{n} X(t)\right]+a_{1} g\left[\varphi_{n-1} X(t)\right]+\ldots+a_{n} g\left[\varphi_{0} X(t)\right]=0 \tag{*}
\end{equation*}
$$

Since the functions φ_{j}, Φ_{j}, X satisfy the assumptions of Barvinek's theorem, the equalities

$$
X\left[\Phi_{j}(t)\right]=\varphi_{j}[X(t)]
$$

hold for $j=0,1, \ldots, n$ on the interval ($-\infty, \infty$). Thus, equation (7^{*}) may be written in the form

$$
\begin{equation*}
a_{0} g\left[X \Phi_{n}(t)\right]+a_{1} g\left[X \Phi_{n-1}(t)\right]+\ldots+a_{n} g\left[X \Phi_{0}(t)\right]=0 \tag{8*}
\end{equation*}
$$

Equations (8) and $\left(8^{*}\right)$ are identical exactly if $f=g X$. Therefore, if g is a solution of (7), then the function $f=g X$ is a solution of equation (8).

Theorem. Let $X=X(t)$ be a decreasing solution of the differential equation (q, Q). Let $g=g(t)$ be a solution of the linear difference equation

$$
\begin{equation*}
a_{n} g\left[\varphi_{n}(t)\right]+a_{n-1} g\left[\varphi_{n-1}(t)\right]+\ldots+a_{0} g\left[\varphi_{0}(t)\right]=0 \tag{1}
\end{equation*}
$$

Then the function $f=g[X(t)]$ is a solution of the linear difference equation (8).
Proof. Equation (7_{1}) may be written in the form

$$
a_{0} g\left[\varphi_{-n}(t)\right]+a_{1} g\left[\varphi_{-n+1}(t)\right]+\ldots+a_{n} g\left[\varphi_{0}(t)\right]=0
$$

and also

$$
\begin{equation*}
a_{0} g\left[\varphi_{-n} X(t)\right]+a_{1} g\left[\varphi_{-n+1} X(t)\right]+\ldots+a_{n} g\left[\varphi_{0} X(t)\right]=0 . \tag{1}
\end{equation*}
$$

Since the functions φ_{j}, Φ_{j}, X satisfy the assumptions of Barvínek's theorem, the equalities

$$
X\left[\Phi_{j}(t)\right]=\varphi_{-j}[X(t)]
$$

hold for $j=0,1, \ldots, n$ on the interval $(-\infty, \infty)$. Thus, equation (7_{1}^{*}) may be written in the form

$$
a_{0} g\left[X \Phi_{n}(t)\right]+a_{1} g\left[X \Phi_{n-1}(t)\right]+\ldots+a_{n} g\left[X \Phi_{0}(t)\right]=0
$$

The last equation and equation (8) are identical exactly if $f=g X$. Thus, if g is a solution of (7_{1}), then the function $f=g X$ is a solution of equation (8).
6. We now show a certain generalization of the classical difference equation with constant coefficients. To do this requires the following consideration:

Consider a linear differential equation of the 2 nd order of Jacobi's type

$$
\begin{equation*}
Y^{\prime \prime}=\frac{1-m^{2}}{\left(1+t^{2}\right)^{2}} Y \tag{9}
\end{equation*}
$$

for $t \in(-\infty, \infty)$, where $m \geqq 2$ is a natural number.
Setting

$$
\begin{equation*}
Y_{1}=\left(t^{2}+1\right)^{1 / 2} \sin (m \operatorname{arctg} t), \quad Y_{2}=\left(t^{2}+1\right)^{1 / 2} \cos (m \operatorname{arctg} t) \tag{10}
\end{equation*}
$$

$t \in(-\infty, \infty)$, then Y_{1} and Y_{2} are two independent solutions of (9).
Theorem. Let c_{1}, c_{2} be nonzero real numbers. Let

$$
\begin{equation*}
Y=c_{1} Y_{1}+c_{2} Y_{2} \tag{11}
\end{equation*}
$$

be a particular solution of (9), where Y_{1} and Y_{2} are given by formulas of (10). Let t_{0} be the zero of (11), i.e. $Y\left(t_{0}\right)=0$. Then exactly the points

$$
\begin{equation*}
\Phi_{j}\left(t_{0}\right)=\operatorname{tg}\left(\operatorname{arctg} t_{0}+\frac{j \pi}{m}\right), \quad j=0,1, \ldots, m-1 \tag{12}
\end{equation*}
$$

are all zeros of (11) on the interval $(-\infty, \infty)$.
Proof. Since the function $m \operatorname{arctg} t$ is strictly monotone on the interval $(-\infty, \infty)$ and $m \operatorname{arctg} t \in\left(-\frac{\pi}{2} m, \frac{\pi}{2} m\right)$ for $t \in(-\infty, \infty)$, we see that every solution of (11) of the differential equation (9) has exactly m zeros on $(-\infty, \infty)$ if $c_{1} \neq 0, c_{2} \neq 0$.

Remark 1. Solutions Y_{1} and Y_{2} in case of m being even and odd, respectively, and the solutions linearly dependent on them, have only $(m-1)$ zeros on $(-\infty, \infty)$. In such cases we complete the set of $(m-1)$ zeros in the mentioned solutions by
one improper point. Thus in (12) we define the value $\operatorname{tg}\left(\frac{\pi}{2}+\varkappa \pi\right), x$ an integer, being equal to the point at infinity.

It can be easily seen that the points $\Phi_{j}\left(t_{0}\right), j=0,1, \ldots, m-1$, are mutually different.
Theorem. Let $m \geqq 2$ be a natural number. Let v be an integer. Let

$$
\begin{equation*}
\Phi_{v}(t)=\operatorname{tg}\left(\operatorname{arctg} t+\frac{v \pi}{m}\right), \tag{13}
\end{equation*}
$$

$t \in(-\infty, \infty)$. Then

$$
\Phi_{v}(t)=\Phi_{j}(t) \quad \text { holds, where } \quad j=v(\bmod m), 0 \leqq j \leqq m-1
$$

and the functions $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{m-1}$ form a cyclic group of the order m. The group operation is the composition of functions; Φ_{1} is a generating element of the group, $\Phi_{m}(t)=\Phi_{0}(t)=t$ is the neutral element of the group.

Proof. Let μ, v be integers. It holds $\Phi_{\mu}\left[\Phi_{v}(t)\right]=\Phi_{\mu+v}(t)$, because $\Phi_{\mu}\left[\Phi_{v}(t)\right]=$ $=\operatorname{tg}\left[\operatorname{arctg} \Phi_{v}(t)+\frac{\mu \pi}{m}\right]=\operatorname{tg}\left[\operatorname{arctg}\left[\operatorname{tg}\left(\operatorname{arctg} t+\frac{v \pi}{m}\right)\right]+\frac{\mu \pi}{m}\right]=$ $=\operatorname{tg}\left[\left(\operatorname{arctg} t+\frac{v \pi}{m}\right)+\frac{\mu \pi}{m}\right]=\operatorname{tg}\left(\operatorname{arctg} t+\frac{(\mu+v)}{m}\right)=\Phi_{\mu+v}(t)$.
Thereby $\Phi_{0}(t)=t$, the inverse element to the function $\Phi_{v}(t)$ is the function $\Phi_{v}(t)$, because $\Phi_{v}\left[\Phi_{-v}(t)\right]=\Phi_{0}(t)=t$. Next $\Phi_{m}(t)=\operatorname{tg}\left(\operatorname{arctg} t+\frac{m \pi}{m}\right)=\operatorname{tg}(\operatorname{arctg} t+\pi)=$ $=\operatorname{tg}(\operatorname{arctg} t)=t$.
Thus the functions $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{m-1}$ form a cyclic group of the order m, because there exists an integer j for every integer v such that $j=v(\bmod m)$ and $0 \leqq j \leqq m-1$.

Definition. The function $\Phi_{j}=\Phi_{j}(t)$ for $j=0,1, \ldots, m-1$ will be called the j-th central dispersion of the 1 st kind of the differential equation (9).

Remark 2. Let us note that the functions $\Phi_{v}=\Phi_{v}(t)$ may be written in the form of linear broken functions, namely

$$
\Phi_{v}(t)=\frac{t+\operatorname{tg} \frac{v \pi}{m}}{\left(-\operatorname{tg} \frac{v \pi}{m}\right) t+1}
$$

In case of $\frac{v \pi}{m}=\frac{\pi}{2}+\varkappa \pi, x$ an integer, we set $\Phi_{v}=-\frac{1}{t}$.
Remark 3. Let us denote by $J_{1}, J_{2}, \ldots, J_{m}$ the following m intervals:

$$
J_{1}=\left(-\infty,-\operatorname{cotg} \frac{\pi}{m}\right)
$$

$$
\begin{array}{ll}
J_{2} & =\left(-\operatorname{cotg} \frac{\pi}{m},-\operatorname{cotg} \frac{2 \pi}{m}\right) \\
\vdots \\
J_{j} & =\left(-\operatorname{cotg} \frac{(j-1) \pi}{m},-\operatorname{cotg} \frac{j \pi}{m}\right) \\
\vdots \\
J_{m-1} & =\left(-\operatorname{cotg} \frac{(m-2) \pi}{m},-\operatorname{cotg} \frac{(m-1)}{m}\right)=\left(\operatorname{cotg} \frac{2 \pi}{m}, \operatorname{cotg} \frac{\pi}{m}\right) \\
J_{m} & =\left(\operatorname{cotg} \frac{\pi}{m}, \infty\right)
\end{array}
$$

Let now

$$
\Phi_{1}=\frac{t+\operatorname{tg} \frac{\pi}{m}}{\left(-\operatorname{tg} \frac{\pi}{m}\right) t+1}
$$

be a generating element of a cyclic group. Let us recall that

$$
\begin{gathered}
\lim _{|t| \rightarrow \infty} \Phi_{1}=\operatorname{cotg} \frac{\pi}{m} \\
\Phi_{1}^{\prime}=\frac{1}{t^{2}}, \quad \text { or } \quad \Phi_{1}^{\prime}=\frac{1+\operatorname{tg}^{2} \frac{\pi}{m}}{\left[\left(-\operatorname{tg} \frac{\pi}{m}\right) t+1\right]^{2}} \quad \text { for } m=2 \text {, or } m>2 .
\end{gathered}
$$

It is easily seen that the image of the j-th interval $J_{j}, j=1,2, \ldots, m-1$ in the mapping Φ_{1} is the interval J_{j+1} and the image of the m-th interval J_{m} is the interval J_{1}, which can be indicated by writing: For $j=1,2, \ldots, m-1$ we have

$$
\begin{aligned}
& \Phi_{1}\left(J_{j}\right)=\Phi_{1}\left(-\operatorname{cotg} \frac{(j-1) \pi}{m},-\operatorname{cotg} \frac{j \pi}{m}\right)= \\
& =\left(-\operatorname{cotg} \frac{j \pi}{m},-\operatorname{cotg} \frac{(j+1) \pi}{m}\right)=J_{j+1}
\end{aligned}
$$

For $j=m$ we have

$$
\Phi_{1}\left(J_{m}\right)=\Phi_{1}\left(\operatorname{cotg} \frac{\pi}{m}, \infty\right)=\left(-\infty,-\operatorname{cotg} \frac{\pi}{m}\right)=J_{1}
$$

The 1 st kind central dispersions $\Phi_{j}, j=0,1, \ldots, m-1$ of (9) have the following. properties:

$$
\begin{gathered}
\Phi_{j}(t)-\Phi_{j-1}(t)>0 \text { in }\left(J_{1} \cup \ldots \cup J_{m-j}\right) \cup\left(J_{m-j+2} \cup \ldots \cup J_{m}\right)= \\
=\left(-\infty, \operatorname{cotg} \frac{j \pi}{m}\right) \cup\left(\operatorname{cotg} \frac{(j-1) \pi}{m}, \infty\right),
\end{gathered}
$$

$$
\Phi_{j}(t)-\Phi_{j-1}(t)<0 \quad \text { in } \quad J_{m-j+1}=\left(\operatorname{cotg} \frac{j \pi}{m}, \operatorname{cotg} \frac{(j-1) \pi}{m}\right)
$$

for $j=1,2, \ldots, m-1$;

$$
\begin{gathered}
\Phi_{m}(t)-\Phi_{m-1}(t)>0 \quad \text { in } \quad\left(J_{2} \cup \ldots \cup J_{m}\right)=\left(-\operatorname{cotg} \frac{\pi}{m}, \infty\right), \\
\Phi_{m}(t)-\Phi_{m-1}(t)<0 \quad \text { in } \quad J_{1}=\left(-\infty,-\operatorname{cotg} \frac{\pi}{m}\right),
\end{gathered}
$$

where $\Phi_{m}(t)=\Phi_{0}(t)$, for $j=m$.
Let $m \geqq 2$ be a natural number. Let k be a natural number, for which $1 \leqq k \leqq$ $\leqq m-1$. Let us consider the functional equation

$$
\begin{equation*}
a_{0} f\left[\Phi_{k}(t)\right]+a_{1} f\left[\Phi_{k-1}(t)\right]+\ldots+a_{k} f\left[\Phi_{0}(t)\right]=0 \tag{14}
\end{equation*}
$$

where a_{j} are real constants, $j=0,1, \ldots, k, a_{0} \neq 0, a_{k} \neq 0$, and $\Phi_{j}=\operatorname{tg}\left(\operatorname{arctg} t+\frac{j \pi}{m}\right)$ denotes the 1 st kind central dispersion of (9).

Definition. The functional equation (14) will be called a homogeneous linear difference equation of the k-th order with constant coefficients on the finite cyclic group $\left\{\Phi_{j}\right\}_{j=0}^{m-1}$ of the 1st kind central dispersions of (9).

Theorem. Let $\Phi=\operatorname{tg}\left(\operatorname{arctg} t+\frac{\pi}{m}\right)$ be the 1st kind central dispersion of (9). Let λ_{0} be a root of the characteristic equation

$$
\begin{equation*}
a_{0} \lambda^{k}+a_{1} \lambda^{k-1}+\ldots+a_{k}=0 \tag{15}
\end{equation*}
$$

where $a_{j}, j=0,1, \ldots, k$ are the coefficients of $(14), a_{0} \neq 0, a_{k} \neq 0$. Then the function

$$
\begin{equation*}
X=\frac{m}{\pi} \operatorname{arctg} t \tag{16}
\end{equation*}
$$

is an increasing solution of the functional equation

$$
\begin{equation*}
X\left[\operatorname{tg}\left(\operatorname{arctg} t+\frac{\pi}{m}\right)\right]=X(t)+1 \tag{17}
\end{equation*}
$$

and the function

$$
\begin{equation*}
f=\lambda_{0}^{m} \operatorname{arctgt} \tag{18}
\end{equation*}
$$

is a solution of the functional equation (14).
Proof. The fact that function (16) is the solution of equation (17) may be verified by ditect substitution.

To prove the second assertion we first mention that $X\left[\Phi_{j}(t)\right]=X(t)+j$, where $X=\frac{m}{\pi} \operatorname{arctg} t, \quad \Phi_{j}=\operatorname{tg}\left(\operatorname{arctg} t+\frac{j \pi}{m}\right)$ holds for $j=0,1, \ldots, k$, because
$X\left[\Phi_{j}(t)\right]=\frac{m}{\pi} \operatorname{arctg}\left[\operatorname{tg}\left(\operatorname{arctg} t+\frac{j \pi}{m}\right)\right]=\frac{m}{\pi} \operatorname{arctg} t+j=X(t)+j$. Searching for a solution of the functional equation (14) in the form $f=\lambda^{\frac{m}{\pi} \text { arctgt }}$, we get after substitution

$$
\lambda^{\frac{m}{\pi} \operatorname{arctg} t}\left(a_{0} \lambda^{k}+a_{1} \lambda^{k-1}+\ldots+a_{k}\right)=0
$$

It then follows that λ is a root of the characteristic equation (15).
It is fairly easy to show that the following Theorems hold:
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be different real (simple) roots of the characteristic equation (15). Let $X=\frac{n}{\pi} \operatorname{arctg} t$ be an increasing solution of the functional equation (17). Then the function

$$
f(t)=c_{1} \lambda_{1}^{\frac{m}{\pi} \operatorname{arctg} t}+\ldots+c_{k} \lambda_{k}^{\frac{m}{\pi^{\pi}} \operatorname{arctgt}}
$$

where $c_{j}, j=1,2, \ldots, k$, are real constants, is a solution of the functional equation (14).

If the characteristic equation (15) has a simple complex root λ_{0}, then

$$
\begin{aligned}
& f_{1}(t)=\left|\lambda_{0}\right|^{\frac{m}{\pi} \cdot \operatorname{arctg} t} \sin \left(\arg \lambda_{0} \frac{m}{\pi} \operatorname{arctg} t\right), \\
& f_{2}(t)=\left|\lambda_{0}\right|^{\frac{m}{\pi} \operatorname{arctg} t} \cos \left(\arg \lambda_{0} \frac{m}{\pi} \operatorname{arctg} t\right)
\end{aligned}
$$

are two linearly independent solutions of (14).
Let the characteristic equation (15) have an s-fold root $\lambda_{0}, 1 \leqq s \leqq k$. Then

$$
\lambda_{0}^{\frac{m}{\pi} \operatorname{arctg} t}, \frac{m}{\pi} \operatorname{arctg} t \lambda_{0}^{\frac{m}{\pi}} \operatorname{arctg} t, \ldots,\left(\frac{m}{\pi} \operatorname{arctg} t\right)^{s-1} \lambda_{0}^{\frac{m}{\pi} \operatorname{arctg} t}
$$

are s linearly independent solutions of the functional equation (14).
Remark 4. The differential equation (9) is a special equation of the finite type m [1], p. 63.
7. Consider a 2 nd order linear differential equation of Jacobi's type

$$
\begin{equation*}
Y^{\prime \prime}=Q(t) \cdot Y \tag{Q}
\end{equation*}
$$

where $Q \in C^{0}(-\infty, \infty)$, being a special equation of the finite type m.
Let $r_{1}\left(s_{1}\right)$ be the left (right) basic number of the 1st kind, of the differential equation (Q).

Recall that $r_{1}=\inf R_{1}$ and $s_{1}=\sup S_{1}$, where $R_{1}\left(S_{1}\right)$ denote the set of numbers in $(-\infty, \infty)$ admitting conjugate numbers of the 1 st kind from the left (right). with respect to (Q).

Definition. The function $\Phi=\Phi(t)$ will be called the 1 st kind basic central dispersion of the special differential equation (Q) of the finite type m, if it immediately at the right associates to every point $t_{0} \in\left(-\infty, s_{1}\right)$ the following zero of a solution $Y \in(\mathrm{Q})$, for which $Y\left(t_{0}\right)=0$.

Let us remark that the linearly dependent solutions have the same zeros and vice versa, solutions having the same zeros are linearly dependent, so that the function Φ is uniquely defined.

As can be easily seen, the function Φ increases in the interval $\left(-\infty, s_{1}\right)$ from the value r_{1} to ∞ and in the interval $\left(s_{1}, \infty\right)$ from the value $-\infty$ to r_{1}. It holds

$$
\begin{array}{llll}
\lim \Phi(t)=\infty & \text { for } t \rightarrow s_{1-}, & \lim \Phi(t)=-\infty & \text { for } t \rightarrow s_{1^{+}} \\
\lim \Phi(t)=r_{1} & \text { for } t \rightarrow \infty, & \lim \Phi(t)=r_{1} & \text { for } t \rightarrow-\infty
\end{array}
$$

The function Φ is of class C^{3} on the set $\left(-\infty, s_{1}\right) \cup\left(s_{1}, \infty\right)$.
Remark 1. If $Y \in(Q)$ has only $(m-1)$ zeros in the interval $(-\infty, \infty)$ (i.e. in case of $Y\left(r_{1}\right)=Y\left(s_{1}\right)=0$), then the set of $(m-1)$ zeros of the solution Y will be completed by one improper point at infinity.

Remark 2. It is easily seen that the function Φ cyclically orders the m-tuple of zeros of any solution $Y \in(\mathrm{Q})$ or the ($m-1$)-tuple of zeros and the improper point at infinity.

Let j be a natural number. We denote by $\Phi_{j}=\Phi_{j}(t)$ the j-times composite function $\Phi \ldots \Phi(t)$. The function Φ_{j} then associates to every point from the cyclic j-times
ordered m-tuples considered the following j-th element of the m-tuple in that cyclic ordering.

Convention. We have defined the functions Φ_{j} for $j=1,2, \ldots$ Thereby $\Phi_{1}(t)=$ $=\Phi(t)$ denotes the basic central dispersion of the 1 st kind. We set $\Phi_{0}(t)=t$. The symbol Φ_{-j} stands for the inverse function to Φ_{j}. Thus the function $\Phi_{v}=\Phi_{v}(t)$ is defined for any integer v.

Theorem. Let v be an integer. Let the function $\Phi_{v}=\Phi_{v}(t)$ have the stated meaning. Then $\Phi_{v}(t)=\Phi_{j}(t)$, where $j=v(\bmod m), \quad 0 \leqq j \leqq m-1$ and the functions $\Phi_{0}, \Phi_{1}, \ldots, \Phi_{m-1}$ form a cyclic group of the order m.

The group operation is the composition of functions, the function Φ_{1} is a generating element of the group, $\Phi_{n}(t)=\Phi_{0}(t)=t$ is the neutral element of the group.

For $j=1,2, \ldots, m-1$ the function $\Phi_{j}=\Phi_{j}(t)$ increases in the interval $\left(-\infty, \Phi_{-j}\left(s_{1}\right)\right)$ from the value $\Phi_{j}\left(r_{1}\right)$ to ∞ and in the interval $\left(\Phi_{-j}\left(s_{1}\right), \infty\right)$ from $-\infty$ to the value $\Phi_{j}\left(r_{1}\right)$. Here $\Phi_{j} \in C^{(\infty)}$.

The proof of this Theorem is analogous to that of the Theorem considered in the foregoing paragraph.

Let $m \geqq 2$ be a natural number. Be k a natural number for which $1 \leqq k \leqq$ $\leqq m-1$. Consider the functional equation

$$
\begin{equation*}
a_{0} f\left[\Phi_{k}(t)\right]+a_{1} f\left[\Phi_{k-1}(t)\right]+\ldots+a_{k} f\left[\Phi_{0}(t)\right]=0 \tag{19}
\end{equation*}
$$

where a_{j} denotes real constants, $a_{0} \neq 0, a_{k} \neq 0$, and Φ_{j} stands for the j-th central dispersion of the 1st kind of the differential equation (Q), for $j=0,1, \ldots, k$.

Definition. The functional equation (19) will be called a homogeneous linear difference equation of the k-th order with constant coefficients on the finite cyclic group $\left\{\Phi_{j}\right\}_{j=0}^{m-1}$ of the 1st kind central dispersions of the special differential equation (Q) being of the finite type m.

Theorem. Let $\Phi=\Phi(t)$ be the basic 1st kind central dispersion of the special differential equation (Q) of the finite type. Let $X=X(t)$ be an increasing solution of the functional equation

$$
\begin{equation*}
X[\Phi(t)]=X(t)+1 \tag{20}
\end{equation*}
$$

Be λ_{0} a root of the characteristic equation

$$
\begin{equation*}
a_{0} \lambda^{k}+a_{1} \lambda^{k-1}+\ldots+a_{k}=0 \tag{21}
\end{equation*}
$$

relative to the functional equation (19). Then the function

$$
\begin{equation*}
f=\lambda_{0}^{X(t)} \tag{22}
\end{equation*}
$$

is a solution of the functional equation (19).
The proof is analogous to that of the Theorem in paragraph 3.
It is easy to show that the following Theorems hold:
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$ be the different real (simple) roots of the characteristic equation (21). Let $X=X(t)$ be an increasing solution of the functional equation (20). Then the function

$$
f(t)=c_{1} \lambda_{1}^{X(t)}+c_{2} \lambda_{2}^{X(t)}+\ldots+c_{k} \lambda_{k}^{X(t)},
$$

where $c_{j}, j=1,2, \ldots, k$ are real constants, is a solution of the functional equation (19).
If the characteristic equation (21) has a simple complex root λ_{0}, then two linearly independent solutions of (19) are of the form

$$
\begin{aligned}
& f_{1}(t)=\left|\lambda_{0}\right|^{X(t)} \sin \left[\arg \lambda_{0} X(t)\right], \\
& f_{2}(t)=\left|\lambda_{0}\right|^{X(t)} \cos \left[\arg \lambda_{0} X(t)\right] .
\end{aligned}
$$

Let the characteristic equation (21) have an s-fold root λ_{0}, where $1 \leqq s \leqq k$. Then the functional equation (19) has slinearly independent solutions of the form

$$
\lambda_{0}^{X(t)}, X(t) \lambda_{0}^{X(t)}, \ldots, X^{s-1}(t) \lambda_{0}^{X(t)} .
$$

REFERENCES

[1] Borůvka, O.: Lineare Differentialtransformationen 2. Ordnung VEB OVW, Berlin 1967
[2] Barvínek, E.: О свойстве заменительности дисперсий в решении дифференциального уравнения $\sqrt{\left|x^{\prime}\right|} \cdot\left(1 / \sqrt{\left|x^{\prime}\right|}\right)^{\prime \prime}+q(x) \cdot x^{\prime 2}=Q(t)$. Publ. Fac. Sci. Univ. Masaryk, Brno, № 393 (1958), 141—155.

Souhrn

PŘíSPĚVEK K TEORII LINEÁRNÍCH DIFERENČNÍCH ROVNIC

MIROSLAV LAITOCH

Uvažuje se funkční rovnice tvaru

$$
\begin{equation*}
a_{0} f\left[\varphi_{n}(t)\right]+a_{1} f\left[\varphi_{n-1}(t)\right]+\ldots+a_{n} f\left[\varphi_{0}(t)\right]=0, \tag{3}
\end{equation*}
$$

kde $a_{0} \neq 0, a_{n} \neq 0$. Přitom $\varphi_{0}(t)=t$ a funkce $\varphi_{j}(t), j=1,2, \ldots, n$ značí j-tou centrální dispersi 1. druhu příslušnou k lineární diterenciální rovnici 2. řádu Jacobiho typu

$$
y^{\prime \prime}=q(t) \cdot y
$$

kde $q \in C^{0}(-\infty, \infty)$, a diferenciální rovnice je bud oboustranně oscilatorická nebo speciální typu m.

Ukazuje se zvláště, že řešení $f(t)$ rovnice (3) lze vyjádřit ve tvaru

$$
f(t)=\lambda_{0}^{X(t)},
$$

kde λ_{0} je kořen charakteristické rovnice

$$
a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0
$$

a $X(t)$ je rostoucí řešení Abelovy funkční rovnice

$$
X[\varphi(t)]-X(t)=1,
$$

kde $\varphi=\varphi(t)$ je základní centrální disperse 1 . druhu příslušná k diferenciální rovnici $(\mathrm{q}), \mathrm{tj} . \varphi(t)=\varphi_{1}(t)$.

V článku se definuje centrální disperse 1 . druhu příslušná k diferenciální rovnici (q), která je speciální konečného typu m a odvozují se explicitní vyjádření řešení funkční rovnice (3) v závislosti na kvalitě kořenů charakteristické rovnice.

Резюме

ЗАМЕТКА К ТЕОРИИ ЛИНЕЙНЫХ КОНЕЧНО-РАЗНОСТНЫХ УРАВНЕНИЙ

МИРОСЛАВ ЛАЙТОХ

Рассматривается функциональное уравнение

$$
\begin{equation*}
a_{0} f\left[\varphi_{n}(t)\right]+a_{1} f\left[\varphi_{n-1}(t)\right]+\ldots+a_{n} f\left[\varphi_{0}(t)\right]=0, \tag{3}
\end{equation*}
$$

где $a_{0} \neq 0, a_{n} \neq 0$. Далее $\varphi_{0}(t)=t$ и функции $\varphi_{j}(t), j=1,2, \ldots, n$ обозначают j-тую центральную дисперсию 1 -го рода, соответствующую линейному дифференциальному уравнению 2 -го рода типа Якоби
(q)

$$
y^{\prime \prime}=q(t) \cdot y
$$

где $q \in C^{(0)}(-\infty, \infty)$, которое или осцилирует в обе стороны или специальное конечного типа m.

Показывается особенно, что решение $f(t)$ уравнения (3) можно выразить в виде

$$
f(t)=\lambda_{0}^{X(t)}
$$

где λ_{0} корень характеристического уравнения

$$
a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots+a_{n}=0
$$

и $X(t)$ возрастающее решение функционального уравнения Абеля

$$
X[\varphi(t)]-X(t)=1
$$

где $\varphi=\varphi(t)$ основная центральная дисперсия 1-го рода, соответствующая дифференциальному уравнению (q), т, е. $\varphi(t)=\varphi_{1}(t)$.

В работе определяется центральная дисперсия 1-го рода, соответствующая дифференциальному уравнению (q), которое является специальным конечного типа m и выводятся явные виды решений функционального уравнения (3) в зависимости от качества корней характеристического уравнения.

Adresa autora: Prof. RNDr. Miroslav Laitoch, CSc.
katedra matematické analýzy
a numerické matematiky přírodovědecké fakulty University Palackého Gottwaldova 15 77146 Olomouc, ČSSR

