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TO THE THEORY OF LINEAR DIFFERENCE
EQUATIONS

MIROSLAV LAITOCH
(Received February 22nd, 1983)

This paper is devoted to the theory of linear difference equations with constant
coefficients from the viewpoint of Bortivka’s theory of the Ist kind central disper-
sions of the 2nd order linear differential equations of Jacobi’s type. There is
shown a natural generalization of a linear difference equation to a certain functional
equation considered on an infinite or finite cyclic group of functions, which are
the Ist kind central dispersions ot the above mentioned differential equation either
bothside oscillatory or special of a finite type on the interval (— o0, o).

1. Consider a bothside oscillatory 2nd order linear differential equation of
Jacobi’s type

¥ =q()y, (@)
where g € C°(— o0, ).

The symbol C°(— o0, o) denotes a set of real continuous functions on the
interval (— o0, 00).

Let @ = ¢(t) be the basic Ist kind central dispersion of (q). Letn = 1,2, ....
Let ¢, = @,(t) denote the n-th 1st kind central dispersion, which is the n-times
composite basic central dispersion of the Ist kind, whereby ¢,(t) = ¢(t). We set
@o(t) = t. With this notation ¢ _, = ¢_,(¢)is an inverse function to the function ¢,.

Under the given assumption, the Ist kind central dispersions are known to
form an infinite cyclic group {¢,}= _, of increasing functions of class C® mapping
the interval (— o0, o0) onto the interval (— oo, 00); thereby the function ¢, is
a generating function, the group operation is the composition of functions.

2. Let the differential equations

¥ o=q)y, (@

Y'=00Y Q
be bothside oscillatory on the interval (— o0, 00) and the coefficients ¢, Q be
from class C®(—o0, 0). For j =0, +1, +2,... let ¢; < @;(t) and @; = B,(1)
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be the j-th central dispersions of the Ist kind of the differential equation (q)
and (Q), respectively.

The 1st kind central dispersions of (q) and (Q) are known to satisfy Kummer’s
nonlinear differential equation of the 3rd order

—{o, 1} + 4(@) (1) = q() (4, 9)
and
—{@, 1} + O(®) ¥ %(1) = Q1), QQ
respectively. Whereby
o' _ 3 ¢

Oty = — =
=750 T e

E. Barvinek in [2] proved a Theorem which we will use in our considera-
tions below. The Theorem reads: Let X, Z, { be solutions of Kummer's differen-
tial equations

—{X, 1} + q(X) X%(t) = Q) 4, Q)

and
—{Z,t} + Q2) Z%(1) = Q1) QQ

and
—{0 1} + 9O %) = q(1), (CHCY)

respectively.
Then the equality

X[z(1)] = {[x(1)] (n

holds: for all X € (q, Q) exactly if Z(t) = {(t) = 1,
for all increasing solutions X € (q, Q) exactly if Z = ®,, { = ¢,,
for all decreasing solutions X € (q, Q) exactly if Z = &,,{ = ¢_,,.

An immediate consequence of this Theorem is:

It we set gq(t) = —n?, we may use the foregoing Theorem to the basic 1st kind
central dispersion ¢ of the differential equation (—=n?), which is the function
@ =t + 1, and to the basic Ist kind central dispersion @ of the differential equa-
tion (Q). Then for any increasing solution X e (—n?, Q) we have the equality

X[e()] = Xu) + 1,
and for any decreasing solution we have the equality

X[o(@)] = xX(0) — 1,
because &_, =t — 1.

If @, denotes the n-th central dispersion of the 1st kind of (—n?), which, as
we know, is the function ¢, = t 4+ n and @, denotes the n-th central dispersion
of the Ist kind of (Q) for n = 1, 2, 3, ..., then for any increasing solution X e
€ (—n?, Q) we have the equality
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X[8,()] = X(1) + n ®
and for any decreasing solution X e ( —n?, Q) we have the equality

because @ _,(t) =1t — n.
3. Consider a functional equation

aof[®,(D] + a f[P-1 ()] + ... + a,f[Po()] =0, 3)

where a; denotes real constants for j =0, 1, ..., n in assuming a, # 0, a, # 0,
and &; denotes the j-th central dispersion of the 1st kind of (Q).

Definition. Equation (3) will be called the homogeneous linear difference equation
of the n-th order with constant coefficients on the cyclic group {®,}7°. _ of the
Ist kind central dispersions of the differential equation (Q).

Theorem. Let & = &, be the basic Ist kind central dispersion of the differential
equation (Q). Let X be an increasing solution of the functional equation

X[e(H)] = X(t) + 1. (A)
Let 1y be the root of the so-called characterist equation
ag"+ a '+ ... +a,=0 )

Jor the functional equation (3), where a;, j =0, 1, ...,n, are the coefficients of
equation (3). Then the function
f =3 (5)

is a solution of the functional equation (3).
Proof. Let us now try to find a solution of equation (3) in the form f = AX(®,
Inserting this into (3), we get

AT 4 g JXTO O] 4y XI90] _
Since by (2) X[®;(1)] = X(t) +j for j=0,1,...,n, we get after substituting
Ax(t)[aoln + allln_—x + ... + a,,] = 0.

From this it follows that A is the root of the characteristic equation (4),
Analogous we may prove the following Theorem.

Theorem. Let & = ®, be the basic Ist kind central dispersion of (Q). Let X be
the decreasing solution of the functional equation

X[o@)] = X¢) - 1. (A¥)
Let po be the root of the reciprocal characteristic equation

@l + @y A"+ .4+ a, =0 4%
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for the functional equation (3), where a;, j =0,1,...,n, are the coefficients of
equation (3). Then the function

f = (5"
is a solution of the functional equation (3).
Example. Consider instead of the differential equation (Q) the differential
equation (—mn?), i.e. the differential equation
Y' = (-n?)Y. (=n?)
As we know, the basic 1st kind central dispersion of equation (—n?) is the

function @(t) = ¢ + 1. The j-th central dispersion of the Ist kind is the function
@, =1t +jforj=0,1,..,n The increasing solution of the functional equation

X+ 1D)=X@1)+1
is the function X(z) = ¢, which can be verified by substitution. It follows that the
homogeneous linear difference equation of the n-th order with constant coefficients

aft+n) +aft+n—-—1+..+aft)y=0 (6)

is a special case of the functional equation (3) and its solution with respect to
formula (5) has the form

f(0) = 4,

where 4, is the root of the characteristic equation (4).

If uo is the root of the reciprocal characteristic equation (4¥), then the solution
of the difference equation (6) may be expressed with respect to formula (5%)
in the form

() = no',
because the function X(t) = —7is a decreasing solution of the functional equation
X+ 1)=Xu) - 1.

It can be easily seen that the following Theorems are true.
Let Ay, Ay, ..., A, be real different (simple) roots of the characteristic equation (4).
Let X be an increasing solution of the functional equation (A). Then the function

f() = ¢, AXO 4,250 + .+ M5O

is a solution of the functional equation (3), where c;, j = 1, 2, ..., n, are real constants.
If the characteristic equation (4) has a simple complex root 1., then the two linearly
independent solutions of the functional equation (3) have the form

f1t) = | Ao |¥¥ sin [arg Ao X(1)],
f2(t) = | g |¥® cos [arg 4, X(1)].

14



Let the characteristic equation (4) have an s-fold root Ay, where 1 <5 < n.
Then the functional equation (3) has s linearly independent solutions in the form

O, X(1) 45O, L X071 AR,

5. Let the differential equations

"

y'o=q@)y, @

Y'=QnY Q
be bothside oscillatory on the interval (— oo, 00). Let the coefficients g, Q be from
class C°(— o0, o).

Consider two linear difference equations of the n-th order with the same coeffi-
cients aq, ay, ..., a,, the former on the group {@,},= -, of the 1st kind central
dispersions of (q), the latter on the group {®,},= - of the Ist kind central disper-
sions of (Q):

aog[@u()] + a18[@n-1(1)] + -+ + agloo()] =0, Q)

aof[@,()] + a f[P-1 (D] + - + @ f[Pel1)] = O, ®
where ay, # 0, a, # 0 and for j=0,1,...,n, ¢;€(q,q), P;€(Q, Q) are the
Jj-th central dispersions of the 1st kind of (q) or (Q).

Theorem. Let X = X(t) be an increasing solution of the differential equation (q, Q).
Let g = g(t) be a solution of the linear difference equation (7). Then the function
f = g[X()] is a solution of the linear difference equation (8).

Proof. Equation (7) may be written in the form

aggle. X(0] + aigle,- X(O)] + ... + agleoX(1)] = 0. (™)

Since the functions ¢;, @;, X satisfy the assumptions of Barvinek’s theorem, the
equalities

X[®,0)] = o;[X(1)]

hold for j = 0,1, ...,n on the interval (— oo, 00). Thus, equation (7*) may be
written in the form

aog[X®,(1)] + a;g[XP,_ ()] + ... + a,g[XP(1)] = 0. (8%

Equations (8) and (8*) are identical exactly if f = gX. Therefore, if g is a solu-
tion of (7), then the function f = gX is a solution of equation (8).

Theorem. Let X = X(t) be a decreasing solution of the differential equation (q, Q)-
Let g == g(t) be a solution of the linear difference equation

ang[(Pn(Z)] + an—lg[(pn—l(t)] + ... + aog[(PO(t)] = 0 (71)

Then the function f = g[ X(t)] is a solution of the linear difference equation (8).
Proof. Equation (7,) may be written in the form
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aogle ()] + a1g[@_ni1 (D] + ... + a,g[@o(1)] =0
and also

aoglo X)) + a;g[@_, \ X(1)] + ... + a,g[eX(1)] = 0. )

Since the functions ¢;, ¢;, X satisfy the assumptions of Barvinek’s theorem, the
equalities

X[e,0] = o-;[X(0)]

hold for j =0, 1, ...,n on the interval (— o0, o). Thus, equation (7}) may be
written in the form

aog[XP,(1)] + a,g[X®,_()] + ... + a,g[XDy(1)] = O.

The last equation and equation (8) are identical exactly if f = gX. Thus, if g is
a solution of (7,), then the function f = gX is a solution of equation (8).
6. We now show a certain generalization of the classical difference equation
with constant coefficients. To do this requires the following consideration:
Consider a linear differential equation of the 2nd order of Jacobi’s type

2
_ 1=m

L 9
A +t3)? )

for t € (— o0, 0), where m = 2 is a natural number.
Setting
L = (t2 + DY2sin (m arctg 1), Y, = (t2 + D)2 cos (marctgt), (10)
t € (— o0, 0), then Y, and Y, are two independent solutions of (9).
Theorem. Let c, ¢, be nonzero real numbers. Let
Y=ClY1+CZY2 (11)
be a particular solution of (9), where Y, and Y, are given by formulas of (10). Let t,
be the zero of (11), i.e. Y(t,) = 0. Then exactly the points
jn .
Di(ty) = tg (arctg to + —;;), j=0,1..,m-1 (12)
are all zeros of (11) on the interval (— o0, ).
Proof. Since the function m arctg ¢ is strictly monotone on the interval (— oo, o0)
and m arctg ¢ e(-——n— m, r m | for t € (— 00, o), we see that every solution of (11)

2 2
of the differential equation (9) has exactly m zeros on (— o0, ) if ¢; # 0, ¢, # 0.

Remark 1. Solutions Y, and Y, in case of m being even and odd, respectively,
and the solutions linearly dependent on them, have only (m — 1) zeros on ( — co, ).
In such cases we complete the set of (m — 1) zeros in the mentioned solutions by
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one improper point. Thus in (12) we define the value tg (% + xn), » an integer,

being equal to the point at infinity.
It can be easily seen that the points @(¢y), j = 0,1, ..., m — 1, are mutually
different.

Theorem. Let m = 2 be a natural number. Let v be an integer. Let

D(1) = tg (arctgt + %) , (13)
te(—o0, c0). Then
D.(t) = Pi(2) holds, where j=vimodm),0 £j<m-—1
and the functions @y, ®,, ..., D,,—, form a cyclic group of the order m. The group
operation is the composition of functions; ®y is a generating element of the group,

®,,(t) = Dy(t) = t is the neutral element of the group.
Proof. Let yu, v be integers. It holds ®,[®.(t)] = &, (1), because &,[P.(1)]

’ um ’ %4 un
= tg @, =1 = t tg ¢ = Lol
tg [arcg d.(8) + m] tg [arctg[g(arcg + - )] + m]

_ ) e um | (u+v) _
= tg [(arctgt + - ) + Tn_] =g (arctgt + — ) D4 l0).

Thereby ®(t) = t, the inverse element to the function @.(¢) is the function @.(z),

i

u

because [P _(1)]= D(t) = t. Next @,,(¢) = tg(arctg t+ -Ln’%) =tg(arctg t + n) =

= tg (arctgt) = ¢.

Thus the functions &,, &, ..., ¢,_, form a cyclic group of the order m,
because there exists an integer j for every integer v such that j = v(mod m) and
0sj<sm-1

Definition. The function ®; = ®t) for j = 0, 1, ..., m — 1 will be called the j-th
central dispersion of the 1st kind of the differential equation (9).

Remark 2. Let us note that the functions &, = &.(¢f) may be written in the form
of linear broken functions, namely

t+tg 2
() P L —
tg 2 )¢+ 1
g m
%7 T . 1
In case of o =5 + %7, » an integer, we set @, = -4

Remark 3. Let us denote by J,, J,, ..., J,, the following m intervals:

Jy = (—oo, —cotg—:l-),
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(oo
_— G-Dr jn
JJ = (-—-Cotg m N Cotg—;{' ,

t+ tg —
m
S L —

(- )es

be a generating element of a cyclic group. Let us recall that

. n
lim ¢, = cotg —
If]= 0 m

2 T
D=, or @ = for m=2,orm> 2.

()]

It is easily seen that the image of the j-th interval J;,j = 1,2, ..., m — 1 in the
mapping @, is the interval J;,, and the image of the m-th interval J,, is the
interval J,, which can be indicated by writing: For j = 1,2, ..., m — 1 we have

U-Dm= jn
@,(J;) =P, (—cotg——’—n——~, —cotg—; =
g+Dhm
m

jn
=(—cotg—m—, —cotg =Jjs1;

For j = m we have

D(J,) = P4 (cotg 77:1—, oo) = (—oo, —cotg —;7:1—) =J;.

The 1st kind central dispersions ®;,j = 0, 1, ..., m — 1 of (9) have the following
properties:

Pt) — P;_ (1) >0in(J; U ... U U (Upejrz V... UJ,) =
_(_ Jn G=Dn
= ( 00, cotg " )u (cotg m > oo),
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D) —®;_4(1) <0 in I ji1 = (cotg ]_m”_, cotg Q,%I)E)
forj=1,2,...,m — 1;

(1) —®,_()>0 in  (JyU..UJ,)= (—cotg 7”’; oo),

?,(t) — D,-,(1) <0 in Jy = (—-oo, —cotg f—),
m

where @,,(1) = (1), for j = m.
Let m = 2 be a natural number. Let k£ be a natural number, for which 1 < k <
< m — 1. Let us consider the functional equation

aof[‘pk(t)] + a]f[¢k—l(t)] + .o+ akf[q’o(t)] =0, (14)

where a; are real constants, j=0, 1, ...,k,a,#0,4, #0,and ¢; = tg(arctgt + in—)
m
denotes the 1st kind central dispersion of (9).

Definition. The functional equation (14) will be called a homogeneous linear
difference equation of the k-th order with constant coefficients on the finite cyclic

m—1

group {®;}75 of the Ist kind central dispersions of (9).

Theorem. Let ¢ = tg (arctgt + ——:1—) be the 1st kind central dispersion of (9).
Let Ao be a root of the characteristic equation

agd + a7+ .+ a =0, (15)

wherea;,j = 0,1, ..., k are the coefficients of (14), do # 0, a, # 0. Then the function

m
X = - arctg t (16)
is an increasing solution of the functional equation

X[tg(arctgt + %)] =X(t)+1 17

and the function

m
arctgt

f =4 (18)

is a solution of the functional equation (14).

Proof. The fact that function (16) is the solution of equation (17) may be
verified by ditect substitution.

To prove the second assertion we first mention that X[®;(r)] = X(z) + j, where

X =-’;—1arctg t, ®;,=tg (arctgt + %) holds for j=0,1, ...,k, because
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X[o;,(1)] = —':—:— arctg [tg (arctgt + %—)] = % arctg t + j = X(¢) + j. Search-

m
ing for a solution of the functional equation (14) in the form £ = A7 "% we get
after substitution
A;Aam!gt(ao)vk + aiﬁ,kbl + ... + ak) =0.

It then follows that A is a root of the characteristic equation (15).
It is fairly easy to show that the following Theorems hold:
Let Ay, Ay, ..., A be different real (simple) roots of the characteristic equation (15).

Let X = % arctg t be an increasing solution of the functional equation (17). Then the

Sfunction
m m
— arctgt -—arctgt
f(t) = ¢,Af + ook )
where c;, j = 1,2, ..., k, are real constants, is a solution of the functional equation
(14).

If the characteristic equation (15) has a simple complex root A, then

(D) = 4o | = " sin (arg Ao L:- arctg t) ,

m
o) = 4 |7f‘"°lgtcos (arg Ao —';—:-— arctg t)

are two linearly independent solutions of (14).
Let the characteristic equation (15) have an s-fold root A4, 1 < s £ k. Then

m arctgt n arctgt m s—1 ™ arctgt
Ag o arctg tlg y ooy (T arctg ¢ Ao

are s linearly independent solutions of the functional equation (14).

Remark 4. The differential equation (9) is a special equation of the finite type m

[1], p. 63.
7. Consider a 2nd order linear differential equation of Jacobi’s type

Y =00).7, Q

where Q € C° (— o0, ), being a special equation of the finite type m.

Let r,(s,) be the left (right) basic number of the 1st kind, of the differential
equation (Q).

Recall that r; = inf R, and s; = sup S;, where R,(S,) denote the set of numbers
in (—o0, c0) admitting conjugate numbers of the 1st kind from the left (right).
with respect to (Q).
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Definition. The function ® = ®(t) will be called the Ist kind basic central
dispersion of the special differential equation (Q) of the finite type m, if it immediately
at the right associates to every point t, € (— ©, s,) the following zero of a solution
Y € (Q), for which Y(t,) = 0.

Let us remark that the linearly dependent solutions have the same zeros and
vice versa, solutions having the same zeros are linearly dependent, so that the
function @ is uniquely defined.

As can be easily seen, the function & increases in the interval (— oo, s,) from
the value r; to oo and in the interval (s,, o) from the value — oo to ry. It holds

lim &(t) = oo for t —» s,-, lim &(t) = — o0 for t - s,
lim &(t) = r, for t —» oo, lim @(¢) = r, for t » — 0.

The function @ is of class C? on the set (— o0, 5,) U (51, ).

Remark 1. If Ye(Q) has only (m — 1) zeros in the interval (— oo, o0) (i.e.
in case of Y(r,) = Y(s,) = 0), then the set of (m — 1) zeros of the solution ¥
will be completed by one improper point at infinity.

Remark 2. It is easily seen that the function @ cyclically orders the m-tuple
of zeros of any solution Y € (Q) or the (m — 1)-tuple of zeros and the improper
point at infinity.

Let j be a natural number. We denote by @; = ®(¢) the j-times composite

function @ ... @(¢). The function @; then associates to every point from the cyclic
—_—
J-times
ordered m-tuples considered the following j-th element of the m-tuple in that
cyclic ordering.

Convention. We have defined the functions @; for j = 1, 2, .... Thereby &,(t) =
= @(r) denotes the basic central dispersion of the Ist kind. We set ®4(t) = ¢. The
symbol & _; stands for the inverse function to @;. Thus the function @, = ®.(¢) is
defined for any integer v.

Theorem. Let v be an integer. Let the function ®, = @.(t) have the stated meaning.
Then ®.t) = Pit), where j=vimodm), 0 <j<m—1 and the functions
by, Dy, ..., D,y form a cyclic group of the order m.

The group operation is the composition of functions, the function ®, is a generating
element of the group, ®,\t) = (1) = t is the neutral element of the group.

For j=1,2,..,m — 1 the function ®; = ®t) increases in the interval
(— o0, ®_(s,)) from the value ®(ry) to o and in the interval (® _ (s1), ) from — 0
1o the value ®(ry). Here ;€ C*).

The proof of this Theorem is analogous to that of the Theorem considered
in the foregoing paragraph.

Let m = 2 be a natural number. Be k£ a natural number for which 1 £ k <
< m — 1. Consider the functional equation



aof[ ()] + a fIPu-1 ()] + ... + af[Po(t)] =0, (19)
where a; denotes real constants, a, # 0, g, # 0, and @; stands for the j-th central
dispersion of the Ist kind of the differential equation (Q), for j = 0,1, ..., k.

Definition. The functional equation (19) will be called a homogeneous linear
difference equation of the k-th order with constant coefficients on the finite cyclic
group {®;}725 of the Ist kind central dispersions of the special differential equa-
tion (Q) being of the finite type m.

Theorem. Let & = D(t) be the basic Ist kind central dispersion of the special
differential equation (Q) of the finite type. Let X = X(t) be an increasing solution
of the functional equation

X[®()] = X(1) + 1 (20)
Be Ay a root of the characteristic equation
ag +a '+ . +a =0 21
relative to the functional equation (19). Then the function
f =20 @)

is a solution of the functional equation (19).

The proof is analogous to that of the Theorem in paragraph 3.

It is easy to show that the following Theorems hold:

Let A,, A, ..., A be the different real (simple) roots of the characteristic equation
(21). Let X = X(t) be an increasing solution of the functional equation (20). Then the
Jfunction

(1) = ¢ A5D + ¢, 250 + L+ aXO,

wherecj,j = 1,2, ..., k arereal constants, is a solution of the functional equation (19).
If the characteristic equation (21) has a simple complex root Ay, then two linearly
independent solutions of (19) are of the form
Fu(t) = 120 1¥ sin [arg A, X(1)],
Fat) = | 20 1% cos [arg 2, X (1)]-
Let the characteristic equation (21) have an s-fold root Ay, where 1 < s < k.
Then the functional equation (19) has s linearly independent solutions of the form

JXO]X (1) 2O, X5 () AXO.
REFERENCES
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Souhrn

PRISPEVEK K TEORII LINEARNICH
DIFERENCNICH ROVNIC

MIROSLAV LAITOCH

UvaZuje se funkéni rovnice tvaru

aofles] + a fl@u-1(D] + ... + afToo()] = 0, 3)

kde a, # 0, a, # 0. Pfitom ¢y(t) = ¢ a funkce ¢;(¢), j = 1,2, ..., n znadi j-tou
centralni dispersi 1. druhu pfisluSnou k linearni diterencidlni rovnici 2. fadu
Jacobibo typu

y'o=q().

kde ge C° (=0, o), a diferencialni rovnice je bud oboustrann& oscilatoricka
nebo specidlni typu m.
Ukazuje se zvlaste, Ze feSeni f(¢) rovnice (3) lze vyjadfit ve tvaru

J(@) =,
kde Ao je kofen charakteristické rovnice
a " +a "t + . +a,=0
a X(t) je rostouci feSeni Abelovy funké&ni rovnice
X[o)] — X(0) = 1,

kde ¢ = (t) je zakladni centralni disperse 1. druhu pfislusnd k diferencidlni
rovaici (q), tj. (1) = ¢, (1).

V Clanku se definuje centralni disperse 1. druhu pfislu§na k diferencialni rov-
nici (q), kterd je specidlni kone&ného typu m a odvozuji se explicitni vyjadieni
feseni funkéni rovnice (3) v zavislosti na kvalité kofenti charakteristické rovnice.

Pesrwnte

BAMETKA K TEOPUU JUHEMUHBIX
KOHEUYHO-PA3HOCTHbIX YPABHEHUMN

MWPOCJIAB JIAMTOX

PaccMaTtpuBaetcst PyHKIMOHAIBHOE YPaBHEHUE

(3) aOf[(pn(’)] + al.f[q)n— l(t)] +... +anf[(p0(r)J = 0’
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roe do + 0, a, + 0. Hanee @o(7) = t u Qpynxkuwun @,(¢), j = 1, 2, ..., n o6o3nayaror
J-TYIO LIEHTpaibHYIO0 OUCHIEPCHIO 1-ro pona, COOTBETCTBYIOILYIO JIMHEHHOMY mu(-
GepennyaabHOMY YPaBHeHuro 2-ro pona tuna JAkobu

@ V' =q(@) .
rae ge C© (— 00, ©0), KOTOpoe WM OCOWIUPYET B 06 CTOPOHBI WIIM CIIEUaNb-
HOE€ KOHEYHOro THIA m.

TToka3biBaeTcsi 0COOeHHO, 4TO petueHue f(#) ypasdenus (3) MOXHO BBIPAa3HTh
B BHIE

X
[ = 15,
rae A, KOpeHb XapaKTePHCTHYCCKOTO YPaBHEHMs
A"+ a4 +a, =0
u X(¢) Bo3pacraroniee pewerue QyHKIMOHAIBLHOTO ypaBHeHHs Abess
X[o(n)] — X = 1,

roe @ = @(tf) OCHOBHasI LEHTpajbHas ouchepcus 1-ro pona, COOTBETCTBYIOLIAs
muddepeHipanbHoMy ypaBHeHuto (q), T, €. @(t) = ¢ (7).

B pabGote ompenensieTcst eHTpaibHas qucrepcus 1-ro poaa, COOTBETCTBYOLIAS
nuddepeHnraIbHOMY ypaBHeHHIO (q), KOTOPOE SBJISETCS CHELHAIBHBIM KOHEYHOTO
THIA M W BBHIBOOATCS fABHbIE BMALI pelIeHMM (QYHKUMOHANLHOrO ypaBHeHus (3)
B 3aBHCHMOCTH OT Ka4eCTBA KOpHEN XapaKTePHUCTHYECKOTO YPAaBHEHHS.

Adresa autora: Prof. RNDr. Miroslav Laitoch, CSc.
katedra matematické analyzy
a numerické matematiky
piirodovédecké fakulty University Palackého
Gottwaldova 15
771 46 Olomouc, CSSR
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