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TO THE THEORY OF LINEAR D I F F E R E N C E 
EQUATIONS 

MIROSLAV LAITOCH 
{Received February 22nd, 1983) 

This paper is devoted to the theory of linear difference equations with constant 
coefficients from the viewpoint of Boruvka's theory of the 1st kind central disper
sions of the 2nd order linear differential equations of Jacobi's type. There is 
shown a natural generalization of a linear difference equation to a certain functional 
equation considered on an infinite or finite cyclic group of functions, which are 
the 1st kind central dispersions ot the above mentioned differential equation either 
bothside oscillatory or special of a finite type on the interval ( - c o , oo). 

1. Consider a bothside oscillatory 2nd order linear differential equation of 
Jacobi's type 

y' = q(f)y, (q) 
where q e C°(— oo, oo). 

The symbol C°(-oo, oo) denotes a set of real continuous functions on the 
interval (— oo, oo). 

Let (p = <p(t) be the basic 1st kind central dispersion of (q). Let n = 1, 2, .... 
Let cpn = (pn(t) denote the n-th 1st kind central dispersion, which is the n-times 
composite basic central dispersion of the 1st kind, whereby <Pi(0 = <p(t). We set 
<p0(t) = t. With this notation cp_n = cp-n(t) is an inverse function to the function cpn. 

Under the given assumption, the 1st kind central dispersions are known to 
form an infinite cyclic group {<jon}̂ L_00 of increasing functions of class C3 mapping 
the interval ( - c o , oo) onto the interval (— oo, oo); thereby the function q>x is 
a generating function, the group operation is the composition of functions. 

2. Let the differential equations 

f =q(t)y, (q) 
Y" = Q(t) Y (Q) 

be bothside oscillatory on the interval (— oo, oo) and the coefficients q, Q be 
from class C°°(-co, oo). For j = 0, ± 1 , ± 2 , ... let 9 j ^ yfc) and # , = <Pj(t) 
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be the fth central dispersions of the 1st kind of the differential equation (q) 
and (Q), respectively. 

The 1st kind central dispersions of (q) and (Q) are known to satisfy Kummer's 
nonlinear differential equation of the 3rd order 

~{<P, t} + q(<P) <p'\t) = q(t) (q, q) 
and 

respectively. Whereby 
-{<P,t} + QW <P'2{t) = Q(t), (Q,Q) 

1 <p'"(0 3 <p"\t) 
{<P, t} = 2 -,'(1) 4 - ' - ( t ) ' 

Fv"2/ 

{*,}_i*x>_±_^_) 
1 ' ' 2 <jV(t) 4 <*>'2(t) ' 

E. B a r v i n e k in [2] proved a Theorem which we will use in our considera
tions below. The Theorem reads: Let X, Z, £ be Solutions of Kummer's differen
tial equations 

-{X , t} +g (X )* ' 2 (0 = G(0 (q,Q) 

and 

and 

respectively. 

Then the equality 

•{Z,t} + Q(Z)Z'2(t) = Q{t) (Q,Q) 

-{í,t}+<7(CK'2(t) = <7(0, t,q,q) 

X[z(t)] = c[X(l)] (0 

ho/ds: for a// XG (q, Q) exactly if Z(t) = £(t) = t, 
for all increasing solutions X e (q, Q) exactly if Z = <Pn9 £ = (pn, 
for all decreasing solutions X e (q, Q) exactly if Z = 3>n, ( = (p_„. 

An immediate consequence of this Theorem is: 
If we set q(t) = — n2, we may use the foregoing Theorem to the basic 1st kind 

central dispersion cp of the differential equation ( —TT2), which is the function 
cp = t + 1, and to the basic 1st kind central dispersion <P of the differential equa
tion (Q). Then for any increasing solution Xe( —TC2, Q) we have the equality 

*[*( ')] = *10 + 1, 

and for any decreasing solution we have the equality 

X[<f>(0] = X(t) - l , 
because <P_ x = / — 1. 

If cpn denotes the n-th central dispersion of the 1st kind of ( —TU2), which, as 
we know, is the function (pn = t + n and <Pn denotes the n-th central dispersion 
of the 1st kind of (Q) for n = I, 2, 3, ..., then for any increasing solution Xe 
G ( — it2, Q) we have the equality 
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-*[*„(0] = no +« (2) 
and for any decreasing solution Xe (— n2, Q) we have the equality 

JT[*.(0] = * (0 ~ "> 
because @-n(t) = t — n. 

3. Consider a functional equation 

*o/[*,(0] + *i /[*n-i(0] + ... + a./[*o(0] = 0, (3) 

where a,- denotes real constants for / = 0, 1, ..., n in assuming a0 ?- 0, an ^ 0, 
and <£,- denotes thej-th central dispersion of the 1st kind of (Q). 

Definition. Equation (3) will be called the homogeneous linear difference equation 
of the n-th order with constant coefficients on the cyclic group {$„}?=-<x> °f tne 

1st kind central dispersions of the differential equation (Q). 

Theorem. Let # = $x be the basic 1st kind central dispersion of the differential 
equation (Q). Let X be an increasing solution of the functional equation 

X[<K0] = *(0 + L ^A> 
Let X0 be the root of the so-called char act erist equation 

a0X
n + M " - 1 + ... + a„ = 0 (4) 

for the functional equation (3), where aj9 j = 0, 1, ..., n, are the coefficients of 
equation (3). Then the function 

/ = 4 ( , ) (5) 

is a solution of the functional equation (3). 
Proof. Let us now try to find a solution of equation (3) in the formf -= XX(t). 

Inserting this into (3), we get 

a0x*l*n(t» + fli^-i(Oi + _ + anX
x^m = 0. 

Since by (2) X[#,(0] = X(t) +j for j = 0, 1, ...,/?, we get after substituting 

Xx(t\a0X
n + atX

n~l + ... + flj = 0 . 

From this it follows that 2 is the root of the characteristic equation (4). 
Analogous we may prove the following Theorem. 

Theorem. Let $ = #A be the basic 1st £md central dispersion 0f(Q). Le/ X be 
* he decreasing solution of the functional equation 

X[$(0] = -no - 1 . (A*) 

Let fi0 be the root of the reciprocal characteristic equation 

«J" + fln-lA""1 + ... + a0 = 0 (4*) 
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for the functional equation (3), where ap j = 0, 1, ..., n, are the coefficients of 
equation (3). Then the function 

f = ^ ( 0 (5*) 

is a solution of the functional equation (3). 

Example. Consider instead of the differential equation (Q) the differential 
equation (—it2), i.e. the differential equation 

Y" = ( -71 2 ) Y. (-7C2) 

As we know, the basic 1st kind central dispersion of equation ( — n2) is the 
function <P(t) = t + 1. Thef-th central dispersion of the 1st kind is the function 
<pj = t + j for j = 0, 1, ..., n. The increasing solution of the functional equation 

X(t + 1) = X(t) + 1 

is the function X(t) = t, which can be verified by substitution. It follows that the 
homogeneous linear difference equation of the n-th order with constant coefficients 

aj(t + n) + aj(t + n - 1) + ... + aj(t) = 0 (6) 

is a special case of the functional equation (3) and its solution with respect to 
formula (5) has the form 

/(0 = 4, 
where X0 is the root of the characteristic equation (4). 

If fi0 is the root of the reciprocal characteristic equation (4*), then the solution 
of the difference equation (6) may be expressed with respect to formula (5*) 
in the form 

m = ih\ 

because the function X(t) = — t is a decreasing solution of the functional equation 

X(t + 1) = X(t) - 1. 

It can be easily seen that the following Theorems are true. 
Let Au A2, ..., kn be real different (simple) roots of the characteristic equation (A). 

Let X be an increasing solution of the functional equation (A). Then the function 

/(o = c14(0+c2ir+... + rfo 

is a solution of the functional equation (3), where cpj = 1, 2, ..., n, are real constants. 
If the characteristic equation (4) has a simple complex root X0, then the two linearly 

independent solutions of the functional equation (3) have the form 

fiit) = | A0 |*<" sin [arg A0 2f(/)], 

f2(t) = U0|*<'> cos [argl0 *(/)]. 
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Let the characteristic equation (4) have an s-fold root X0, where 1 g s ^ n. 
Then the functional equation (3) has s linearly independent solutions in the form 

W<\X(t)Xy'\...,F-\t)W<\ 

5. Let the differential equations 

y" =q(t)y, (q) 

Y" = Q(0 Y (Q) 

be bothside oscillatory on the interval ( -co, oo). Let the coefficients q, Q be from 
class C°(—oo, oo). 

Consider two linear difference equations of the w-th order with the same coeffi
cients a0,au ...,an, the former on the group {&„}?=-*> of the 1st kind central 
dispersions of (q), the latter on the group {#nK°=~oo of the 1st kind central disper
sions of (Q): 

«orf>i,(0] + «i*[?i,-i(0] + - + <*»sL>o(0] = 0, (7) 

*o/[*„(0] + «i / [*„- i (0] + - + a„/[*olO] = 0, (8) 

where a0 ^ 0, an # 0 and for j -= 0, 1, ..., n, (pj e (q, q), #y e (Q, Q) are the 
y-th central dispersions of the 1st kind oi (q) or (Q). 

Theorem. Let X = X(t) be an increasing solution of the differential equation (q, Q). 
Let g = g(t) be a solution of the linear difference equation (7). Then the function 
/ = g[X(0] is a solution of the linear difference equation (8). 

Proof. Equation (7) may be written in the form 

*od>,*(0] + «isfo-i-r(0] + .- + ^[>o*(0] = o. (7*) 

Since the functions cpj, <Pj, X satisfy the assumptions of Barvinek's theorem, the 
equalities 

-n*/o] = ^wo] 
hold for j = 0, 1, ... ,n on the interval (— oo, oo). Thus, equation (7*) may be 
written in the form 

" o r f W O ] + *!*[**„-1(0] + - + " ^ [ W O ] = 0. (8*) 

Equations (8) and (8*) are identical exactly if/" = gX. Therefore, if g is a solu
tion of (7), then the function f = gX is a solution of equation (8). 

Theorem. Let X = X(0 &£ a decreasing solution of the differential equation (q, Q)~ 
Let g = g(t) be a solution of the linear difference equation 

<**g[<Pn(t)] + ^-iS[<r\.-i(0] + ... + *og[<Po(0] = 0. (70 

Fhe/i the function f = g[X(0] w # solution of the linear difference equation (8). 
Proof. Equation (7t) may be written in the form 
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a0gl<P-n(ty] + aig[<P-n+i(ty] + ... + ang[(p0(t)] = 0 
and also 

a0g{q>-nX(t)-\ + aig[(p„n + iX(t)] + ... + ang[cpQX(t)~\ = 0. (7?) 

Since the functions 'pj9 <Pj, X satisfy the assumptions of Barvinek's theorem, the 

equalities 

hold for j = 0, 1, ..., n on the interval (—oo, oo). Thus, equation (7*) may be 
written in the form 

«o*[**,(0] + «irf-y*i.-i(0] + - + «[Jr*o(0] = o. 

The last equation and equation (8) are identical exactly if / = gX. Thus, if g is 
a solution of (7t), then the function/ = gX is a solution of equation (8). 

6. We now show a certain generalization of the classical difference equation 
with constant coefficients. To do this requires the following consideration: 

Consider a linear differential equation of the 2nd order of Jacobi's type 

r = J-iJ-L Y (9) 
(i + t2)2 

for t e (— oo, oo), where /w ^ 2 is a natural number. 
Setting 

Yx = (t2 + 1)1/2 sin (m arctg t), Y2 = (t2 + 1)1/2 cos (m arctg t), (10) 

/ 6 (— oo, oo), then Yi and Y2 are two independent solutions of (9). 

Theorem. Let cx,c2 be nonzero real numbers. Let 

Y=C!YA +C 2Y 2 (11) 

be a particular solution of (9), where Yt and Y2 are given by formulas of (10). Let t0 

be the zero 0/(11), i.e. Y(t0) = 0. Then exactly the points 

Hfo) - tg Urctg t0 + A J, ; = 0, 1, ..., m - 1 (12) 

are all zeros 0/(11) on the interval (— oo, oo). 
Proof. Since the function m arctg t is strictly monotone on the interval (— oo, oo) 

and m arctg t el — — m, — m\ for t e (— oo, oo), we see that every solution of (11) 

of the differential equation (9) has exactly m zeros on ( — oo, oo) if c^ ^ 0, c2 ^ 0, 

Remark 1. Solutions Yt and Y2 in case of m being even and odd, respectively, 
and the solutions linearly dependent on them, have only (m — 1) zeros on (— oo, oo). 
In such cases we complete the set of (m — 1) zeros in the mentioned solutions by 
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one improper point. Thus in (12) we define the value tg ( ~ + xn J, x an integer, í ү + XП ) , X 

being equal to the point at infinity. 
It can be easily seen that the points <Pj(t0), j = 0, 1, ..., m — 1, are mutually 

different. 

Theorem. Let m ^.2 be a natural number. Let v be an integer. Let 

^v(0 = t g U r c t g t + ^ - j , (13) 

t G (— oo, oo). Then 

$v{t) = <Pj(t) holds, where j = v(mod m), 0 g ; ^ m - 1 

and the functions # 0 , <Pi9 ..., ^m^tform a cyclic group of the order m. The group 
operation is the composition of functions; #j is a generating element of the group, 
^m(0 == ^o(t) ~ t to t^£ neutral element of the group. 

Proof. Let \i, v be integers. It holds #M[#v(0] = #M+V(0> because ^ [ ^ ( 0 ] = 

= tg £arctg *v(/) + i£Lj = tg £arctg |̂ tg ^ arctg t + -^LJJ + - ^ J « 

-«[(-«»'+^)+~] -«(«.«+ -H- ) - •..*>• 
Thereby #0(0 = **, the inverse element to the function 4>v(t) is the function #v(0, 

because $v[$„v(t)] = <P0(t) = t. Next <PJt) = tgf arctg t + —— j = tg(arctg t + 71) = 

= tg (arctg l) = t. 
Thus the functions $0,4>l5 . . . , ^ W _ 1 form a cyclic group of the order m, 

because there exists an integer j for every integer v such that j = v(mod m) and 
o g y g w - i . 

Definition. The function <Pj = <Pj(t)forj = 0, 1, ..., m — 1 vv/7/ be called the j-th 
central dispersion of the 1st kind of the differential equation (9). 

Remark 2. Let us note that the functions $v = #v(0 may be written in the form 
of linear broken functions, namely 

vn 
t + tg 

*v(0 

( V7T \ 
ř + 1 

~ vn n . 1 In case of — = -—- + xn, x an integer, we set <PV = . m 2 f 

Remark 3. Let us denote by Ji9 J2, ..., Jm the following m intervals: 

J! = ( -CO, -COtg-^-j, 
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j2 = ( _ c o t g J L _ c o t g ^ . ) , 

h = (_ c o t g _______ _ c o t g A ) , 
3 \ m m J 

( (m-2)n ( m - l ) \ / 2TT TC \ 
Jm-i = [ -cotg- , - c o t g - - ) = ( c o t g — , cotg J, 

y m m J \ m m J 

Jm = ( C O t g ~ ~ > °°J 

Let now 
7T 

t + tg 

•.-7- f -
be a generating element of a cyclic group. Let us recall that 

l im $! = cotg-
| ř | - 0 0 

7Г 

m 

t 1 + t g z 

_,, I _,/ w 
#i = 9-, or #j = — — —- for m = 2, or m > 2. 

ľ-Г' [(--И 
It is easily seen that the image of thef-th interval Jj,j= 1, 2, ..., m — 1 in the 

mapping ^ x is the interval Ji + 1 and the image of the .m-th interval Jm is the 
interval Jl9 which can be indicated by writing: For y = 1,2 /w - 1 we have 

* , W - Ф , ( - c o , . - ^ _ , - c o , 8 f ) 

( Jя ( / + l ) я \ 

-cotgL-, -cotgiŁ___ - Ј y + i ; For j = m we have 

*.(-_) = * i (cotg -^-, oo j = ( -co, - c o t g ~ j = J t . 

The 1st kind central dispersions 4>j,j = 0, 1, ..., m — 1 of (9) have the following 
properties: 

*/r) - *;-.(/) > 0 in t/, u ... u /„_,) u (/n_ ; + 2 u ... u /m) = 

- (~ °°'cotg ^ r ) u (c o t g ^ r 1 ' c 0 ) ' 



Фj(t) - Ф,_ ,(ŕ) < 0 in Jm_J+І = fcotg І l , cotg Í L ^ Ü l ) 
\ m m ) 

forj = 1,2, ...,m - 1; 

< ř m ( 0 - í P m - 1 ( í ) > 0 in ( J 2 u ... u J J = ( - c o t g ^ - , o o ) , 

* m ( 0 ~ * m - l ( 0 < 0 in J! = f -00, - C O t g - M , 

where <Pm(t) = <P0(t), forj = m. 
Let w ^ 2 be a natural number. Let k be a natural number, for which 1 ^ i t ^ 

^ /w — 1. Let us consider the functional equation 

*o/[**(0] + * i / [ # * - i < 0 ] + ... + **/[*o(0] = 0, (14) 

where a. are real constants,./ = 0, 1, ..., k, a0 ^ 0, afc ?- 0, and 4>. = tg( arctg/ + ---— j 
\ m / 

denotes the 1st kind central dispersion of (9). 

Definition. The functional equation (14) will be called a homogeneous linear 
difference equation of the k-th order with constant coefficients on the finite cyclic 
group {Qjj'j^o1 of the 1st kind central dispersions of (9). 

Theorem. Let <P = tg ( arctg t + 1 be the 1st kind central dispersion of (9). 
\ m ) 

Let X0 be a root of the characteristic equation 

a0X
k + axk

k-1 + ... + ak = 0, (15) 

where a j , j = 0, 1, ..., k are the coefficients of (14), a0 # 0, ak ^ 0. Then the function 

m 
X = — arctg t (16) 

n 

is an increasing solution of the functional equation 

and the function 

X [tg (arctg t + JL.Y] = X(t) + 1 (17) 

arctgf 

/ = А<Г (18) 

is a solution of the functional equation (14). 

Proof . The fact that function (16) is the solution of equation (17) may be 

verified by diiect substitution. 

To prove the second assertion we first mention that X[#/0] = X(t) + J, where 

X = — a r c t g t, <Pj = tg( arctg t + — j holds for / = 0, 1, ..., k, because 
n V m / 
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X[$,(0] = — arctg tg {arctg t + i - i ) = — arctg / + j = X(0 + / Search-
71 V m J J 7i m 

i— ^ / _i - arete t* 

ing for a solution of the functional equation (14) in the form / = X n , we get 
after substitution 

A^"ctg'(a0A* + M * " 1 + ... + at) = 0. 

It then follows that A is a root of the characteristic equation (15). 
It is fairly easy to show that the following Theorems hold: 
Let A j , X2, ..., Xk be different real (simple) roots of the characteristic equation (15). 

n 
Let X = — arctg t be an increasing solution of the functional equation (17). Then the 

n 
function 

m m 
— arctg t —arctg t 

/ (0 = c.Ar +... + ckx; 
where Cj,j=l,2,...,k, are real constants, is a solution of the functional equation 
(14). 

If the characteristic equation (15) has a simple complex root A0, then 

/ i (0 = I X0 f*
 a' tgf sin ( arg X0 -^-arctg t ) , 

r s ^ i - .— arctgf ( m \ 

/>(0 = \X0 | * cos I arg X0 — arctg r J 

are lwo linearly independent solutions 0/(14). 
Let the characteristic equation (15) have an s-fold root Ao, 1 5j s :g A:. Phew 

wi m / v „ _ | m 
— arctg f w — arctgt I m y x — a r c t g t 

A£ ,—arctg US , ...,( — arctgt A0* 7c \ n J 

are s linearly independent solutions of the functional equation (14). 

Remark 4. The differential equation (9) is a special equation of the finite type m 
[1], p. 63. 

7. Consider a 2nd order linear differential equation of Jacobi's type 

Y" = Q(0 • Y, (Q) 

where g e C° ( —oo, oo), being a special equation of the finite type w. 
Let rx(s]) be the left (right) basic number of the 1st kind, of the differential 

equation (Q). 
Recall that rx = inf Rt and sx = sup Si9 where K^Si) denote the set of numbers 

in ( — oo, oo) admitting conjugate numbers of the 1st kind from the left (right), 
with respect to (Q). 
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Definition. The function «P = $(/) will be called the 1st kind basic central 
dispersion of the special differential equation (Q) of the finite type m, if it immediately 
at the right associates to every point t0 e (— oo, s}) the following zero of a solution 
Ye(Q),f0r which Y(t0) = 0. 

Let US remark that the linearly dependent solutions have the same zeros and 
vice versa, solutions having the same zeros are linearly dependent, so that the 
function # is uniquely defined. 

As can be easily seen, the function $ increases in the interval ( — oo, sj from 
the value rt to oo and in the interval (sx, 00) from the value — oo to rt. It holds 

lim $(t) = oo for t -> sx-, lim #(/) = — oo for t -> s1 + 

lim $(t) = rx foi t -> oo, lim $(t) — rx for t ~> — oo. 

The function <P is of class C3 on the set (—00, sx) u (st, oo). 

Remark 1. If Ye(Q) has only (m — 1) zeros in the interval (—00, oo) (i.e. 
in case of Y(rx) = Y(sj) = 0), then the set of (m — 1) zeros of the solution Y 
will be completed by one improper point at infinity. 

Remark 2. It is easily seen that the function # cyclically orders the m-tuple 
of zeros of any solution Ye(Q) or the (m — l)-tuple of zeros and the improper 
point at infinity. 

Let j be a natural number. We denote by <£,- = &j(t) the y-times composite 
function <P ... &(t). The function <Pj then associates to every point from the cyclic 

f-times 
ordered /w-tuples considered the following y-th element of the m-tuple in that 
cyclic ordering. 

Convention. We have defined the functions #,. for j = 1, 2, .... Thereby <Px(t) = 
= <P(t) denotes the basic central dispersion of the 1st kind. We set <&0(t) = t. The 
symbol <P_7- stands for the inverse function to <f>j. Thus the function # v = #v(/) is 
defined for any integer v. 

Theorem. Let v be an integer. Let the function # v = <Pv(t) have the stated meaning. 
Then <Pv(t) = $/t)9 where j = v(mod m), 0 ^ j :g m — 1 and the functions 
4>0, 0l9 ..., #„._! form a cyclic group of the order m. 

The group operation is the composition of functions, the function <PX is a generating 
element of the group, <Pn{t) = # 0 ( 0 = t is the neutral element of the group. 

For j = 1, 2, ..., m — 1 the function $j = <P/t) increases in the interval 
(—00, $-.foi)) from the value $ / r i ) to oo and in the interval ( ^ - / s j ) , oo) from — oo 
to the value ^j(rx). Here $ y e C{00). 

The p r o o f of this Theorem is analogous to that of the Theorem considered 
in the foregoing paragraph. 

Let m = 2 be a natural number. Be k a natural number for which 1 ^ k ^ 
«£ m — 1. Consider the functional equation 
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«o/T**(0] + «ifO*-i(0] + - + «*f[#o(0] = 0, (19) 
where ay denotes real constants, a0 7-= 0, ak ^ 0, and # . stands for thef-th central 
dispersion of the 1st kind of the differential equation (Q), for j = 0, 1, ..., k. 

Definition. The functional equation (19) will be called a homogeneous linear 
difference equation of the k-th order with constant coefficients on the finite cyclic 
group {$jfjZ0 of the 1st kind central dispersions of the special differential equa
tion (Q) being of the finite type m. 

Theorem. Let <P = <P(t) be the basic 1st kind central dispersion of the special 
differential equation (Q) Of the finite type. Let X = X(t) be an increasing solution 
of the functional equation 

X[4>(t)l = X(t) + 1 (20) 

Be X0 a root of the characteristic equation 

a0l
k + a!^"1 + ... + ak = 0 (21) 

relative to the functional equation (19). Then the function 

f = tf° (22) 

is a solution of the functional equation 119). 
The p r o o f is analogous to that of the Theorem in paragraph 3. 
It is easy to show that the following Theorems hold: 
Let kL, A?, ..., Xkbe the different real (simple) roots of the characteristic equation 

(21). Let X = X(t) be an increasing solution of the functional equation (20). Then the 
function 

/ ( 0 = CiAf> + c2Af> + . . . + c A X ( ° , 

where c,- ,j" = 1, 2, ..., k are real constants, is a solution of the functional equation (19). 
If the characteristic equation (21) has a simple complex root A0, then two linearly 

independent solutions of (19) are of the form 

ji(0 = U o | X ( , ) s in [a rgA o X(0L 

/2(0 = U 0 | X W cos [a rgA o X(0] . 

Let the characteristic equation (21) have an s-fold root A0, where 1 ^ s g k. 
Then the functional equation (19) has s linearly independent solutions of the form 

k^\X(t)k^\.^X^\t)k^\ 
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Souhrn 

PŘÍSPĚVEK K TEORII L I N E Á R N Í C H 
D I F E R E N Č N Í C H ROVNIC 

MIROSLAV LAITOCH 

Uvažuje se funkční rovnice tvaru 

«o/l>,(0] + aj/fo-iCO] + -. + *«/l>o(0] = 0, (3) 

kde a0 ^ 0, an ^ 0. Přitom (p0(t) = t a funkce <p/í)» J" = 1, 2, ..., n značí f-tou 
centrální dispersi 1. druhu příslušnou k lineární diferenciální rovnici 2. řádu 
Jacobiho typu 

y" = q(t).y, 

kde q e C° (— co, co), a diferenciální rovnice je buď oboustranně oscilatorická 
nebo speciální typu m. 

Ukazuje se zvláště, že řešení f(t) rovnice (3) lze vyjádřit ve tvaru 

Kt) = #«>, 

kde A0 je kořen charakteristické rovnice 

a0X
n + a^'1 + ... + an = 0 

a X(l) je rostoucí řešení Ábelovy funkční rovnice 

xicpuy] -x{t) = i, 

kde <P = <p(0 je základní centrální disperse 1. druhu příslušná k diferenciální 
rovnici (q), tj. <p(t) = ^ ( t ) . 

V článku se definuje centrální disperse 1, druhu příslušná k diferenciální rov
nici (q), která je speciální konečného typu m a odvozují se explicitní vyjádření 
řešení funkční rovnice (3) v závislosti na kvalitě kořenů charakteristické rovnice. 

Pe3fOMe 

3AMETKA K TEOPMM JIHHEMHbIX 
K O H E M H O - P A 3 H O C T H U X YPABHEHMM 

MUPOCIIAB J1AÍÍTOX 

PaccMaTpHBaeTc« (jjyHKUHOHajTbHoe ypaBHeHHe 

(3) to/M)] + «,/[<?„- ,(ť)] +... + a„f[cp0{t)] = 0, 
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где а0 Ф 0, ап Ф 0. Далее (р0(() = г и функции (р}(1),] = 1, 2, ..., /г обозначают 
у-тую центральную дисперсию 1-го рода, соответствующую линейному диф
ференциальному уравнению 2-го рода типа Якоби 

(Я) / = ?(0 - У, 

где де С ( 0 ) (— со, со), которое или осцилирует в обе стороны или специаль
ное конечного типа т . 

Показывается особенно, что решение /*(/) уравнения (3) можно выразить 
в виде 

Д О = я$<«>, 

где Х0 корень характеристического уравнения 

а0Х
п + а^-1 + ... + ап = 0 

и ЛХО возрастающее решение функционального уравнения Абеля 

*[>(0] - Х(г) = 1, 

где ф = ф(0 основная центральная дисперсия 1-го рода, соответствующая 
дифференциальному уравнению (с\), т, е. ф(*>) = <рх(1). 

В работе определяется центральная дисперсия 1-го рода, соответствующая 
дифференциальному уравнению (ф, которое является специальным конечного 
типа т и выводятся явные виды решений функционального уравнения (3) 
в зависимости от качества корней характеристического уравнения. 

Ас1ге§а аи*ога: РгоГ. К>Шг. М1гоз1ау ЕайосЬ, С8с. 
ка1ес(га та1ета1юкё апа1угу 
а пшпепскё та1ета11ку 
рпгос1оуёс1ескё ГакиИу Ш ^ е ш г у Ра1аскёпо 
ОоП^аМоуа 15 
771 46 О1отоис, С88Я 
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