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1. Introduction 

The distribution of zeros in solutions of a differential equation 

y" = g(0y, qeC°(R\ (q) 

may be described through the basic central dispersion (p of (q). O. Boruvka proved 
in [3] the function cp(t) — t, (p'(t), (p"(t) and cp'"(t) to be ^-periodic provided the 
coefficient q of (q) is a 7i-periodic function. In [6] the function (p(t) — t was proved 
to be almost periodic if the coefficient q of (q) is an almost periodic function. The 
present pader demontrates 

Theorem 1. Let cp be the basic central dispersion of an oscillatory equation (q) 
with an almost periodic coefficient q. Then also 

(pV\t), i= 1,2*3, 

are almost periodic functions. 

2. Basic concepts and lemmas 

A equation (q) is called oscillatory if ±oo are the cluster points of the roots 
relative to every nontrivial solution of this equation. All equation of the type (q) 
considered below are assumed to be oscillatory. The trivial solution of (q) will 
not be considered. 

A function a e C°(R) is called (first) phase of (q) if there exist its independent 
solutions u, v such that 

tg a ( 0 = w(0M0 f ° r l e R - {t; v(t) = 0}. 
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Every phase a of (q) possesses the foiloving properties: 

a e C3(R); a(R) - R; a'(0 # 0 for t e R. 

Let a be a phase of (q) and put cp(t) : = a - 1 [ a ( t ) + n sign a '] , t e R. The function <p 
is called the basic (first kind) central dispersion of (q) and we have 

q> e C3(R); (pit) > t, (p'(t) > 0 for t e R, 

(see [2], [3]). 
Let us recall at this point that a function fe C°(R) is called a l m o s t p e r i o d i c 

(see e.g. [5]), if there exists to every e > 0 a positive number L( = L(e)), such that 
there exists at least one number T, on every interval <x, x + L) (x e R), for which 

I fit + T) - f(t) | < e for t e R. 

Lemma 1. Let qn e C°(R) and lim qn(t) = q(t) uniformly on R. Then there exisf 
rt-»oo 

phases a„ and a Of (qn) and (q), respectively, such that sign â  = sign a' = 1 and 

lim a(0(t) = a(l)(t), i = 0, 1, 2, 3, 
n-+oo 

uniformly on every compact interval. 
Proof. Let u„, vn be solutions of (qn) and u, v be solutions of (q): u„(0) = u(0) = 

= ^(0) = i/(0) = 0, u„(0) = M'(O) = vn(0) = u(0) = 1. Let us put 

/WO : = V(u2
n(t) + v2(t)), /*(*) : = l/(u2(t) + v2(t)), t e R. 

Since lim u(0(t) = u(0(t), lim v(0(t) = v(0(t), (i = 0, 1, 2), uniformly 0 n every 
«->oo «->oo 

compact interval (see [4], Theorem 2.4.) then 

lim ft\t) = f\t), i = 0, 1, 2, 
n-» oo 

uniformly on every compact interval. Let us put 

t t 

«-(0: = | Pn(s) ds, a(0 : = J p(s) ds, t e R. 
0 0 

Then a„ is a phase of (qn) and a is a phase of (q) (see [2]) possessing the properties 
presented in Lemma 1. 

Remark 1. Lemma 1 has been proved in [6] in a special case with i ^ 0, 1-

Lemma 2. Let a„ e C°(R) and lim qn(t) = #(t) uniformly on R. Let <p atfd <p 

be the basic central dispersions of (qn) and (q), respectively. Then 

lim q>§(t) - <p%), i = 0 , l , 2 , 3 , 
n-+oo 

uniformly on every compact interval. 
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Proof. The case with i = 0 has been proved in [6]. Let an be a phase of (qn) 
and a be a phase of (q) possessing the properties stated in Lemma 1, By differentiat
ing the equalitues 

a/,[<P(«)(0] = «n(0 + n, «[<P(0] = a (0 + n, 
we obtain 

<[<P(»)(0] (p[n)J) = <(t\ *l<p(t)] <p'(t) = *'(t), 
whence 

cp[n)(t) - cp'(t) = - 5 « ^ _ - -£$- , teR. (1) 
«»[9(»)(0] a [<K0J 

From (1) immediately follows the assertion of the Lemma for i = 1. With the 
properties of an and a, and by differentiating (1), we become the assertion of the 
Lemma for i = 2, 3. 

Lemma 3. Let (p be the basic central dispersion of (q) with an almost periodic 
coefficient q. Then the composite function q\cp(t)] is also almost periodic. 

Proof. Let {t„} be an arbitrary sequence of numbers. According to our assump
tion, the function q is almost periodic and by [6] such also is the function d(t) :== 
= cp(t) — t, t e R. Thus, we may choose from {tn} a subsequence — denoted again 
fry {*„}—such that lim q(t + tn) = p(t), lim d(t + tn) = s(t) uniformly on R. We 

n -» oo n -* oo 

will show that 
lim q[<p(t + tn)] = p\t + s(t)] uniformly on R. (2) 
n-+oo 

Let e > 0 be an arbitrary number. Since q is uniformly continuous on R, there 
g 

exists a S( — 5(e)) > 0, such that | q(x + Ax) — q(x) | < —, x e R, for every Ax, 

| Ax | < S. Let N be such a positive integer whereby for every n ^ N: | q(t + tn) — 

- Pit) | < y , I d(t + tn) - s(t) | < (5, t e R. Then for n = N and t e R 

I q[<K' + O ] - P\J + s(t)] | = | q\t + tn + d(t + ?„)] - p\t + s(t)] | g 

g | q(t + tn + d(t + tn)] - g(l + l„ + s(0] I + I q(t + tn + s(t)] - p[l+s(0] I < 
£ £ 

< T + T = £" 

We see that (2) holds. It follows from the continuity of q and from Bohr — Bochner's 
theorem (cf. [5]) that the function q[<?(0] is almost periodic. 

Lemma 4. Let <p be the basic central dispersion of (q) with an almost periodic 
coefficient q. Then there exist positive numbers k, K, such that 

k ^ <P(t) - t ^ K, / e R. 
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Proof. With respect to Lemma 3 ([6]) it suffices to prove only the inequality 

k = cp(t) - t for t e R, 

where k > 0 is a constant. Assume, there exists a {t„} : lim [<p(tn) - t„] = 0. For 
n-*oo 

definiteness let, for example, lim tn = oo. Let un be solutions of (q): un(tn) == 0, 
n-> oo 

K(tn) = 1- According to our assumption, q is almost periodic function, which 
enables us to choose from {q(t + tn)} a subsequence {q(t + tnk)} such that 
lim q(t + tnk) = p(t) uniformly on R. Put vWfc(t) := unk(t + tnk) for t e R. Then vnk 

k-+ oo 

is a solution if the equa t ion / ' = q(t + t„k) y, vnk(0) = 0, v„k(0) = 1 and lim vj£(0 = 
n-+oo 

= v(0(0 uniformly on every compact interval, (i = 0, 1), v being a solution of (p), 
v(0) = 0, v'(0) = 1. Since vnk[q>(t„k) — t„J = 0, there exists a number Tke 
e (0, <p(tnk) ~ tnk): v'nk(Tk) = 0. Because of lim Tk = 0 necessarily v'(0) = lim vnk(Tk) = 

= 0, which is a contradiction. 

Lemma 5. Let <p be the basic central dispersion of (q) with an almost periodic 
coefficient q. Then there exist positive numbers a, b, c, such that 

a S <p'(t) = b, t e R, (3) 

I <P0)(t) | g c, tGR; i = 2 ,3 . (4) 

Proof. Let t0 G R and u be a solution of (q): u(t0) = 0, u'(t0) = 1. Then 

cp'(t0) = l/u,2[<p(to)], (5) 

(cf. [2]). Assume (3) not valid. As an example, let lim sup cp'(t) = oo. Then there 
r-*oo 

exists {t„}, lim t„ = oo such that lim cp'(tn) = oo. From (5) we obtain the exis-
n-*oo fi-+oo 

tence {un} solutions of (q), un(tn) = 0, un(tn) = 1, such that 

l i m u ; [ ^ ( O ] = 0. (6) 
n-> oo 

Put xn : = (p(tn), n = V 2, ... The fact that we may choose from {q(t + xn)} a sub
sequence uniformly convergent on R enables us to assume without any loss of 
generality that 

lim q(t + xn) = p(t) uniformly on R. (7) 
n-*oo 

If we put v„(t) : = u„(t + xn), t e R, (n = 1,2, ...), then vn is a solution of the equa
tion y" = q(t + xn)y, vn(tn - xn) = 0, v;(t„ - x„) = 1, lim v;(0) = 0. It follows 

n-»oo 

from Lemma 4 that we may choose from {xn - tn} = {(p(tn) — tn} a convergent 
subsequence {x„k - t„k} : lim (x„k - t„k) = a, where a > 0. From (7) we obtain 

k-* oo 

lim v^}(t) = v(0(t) uniformly on every compact interval, (i = 0, 1), where v is 
k-* oo 
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a solution of (p), v(a) = 0, v'(a) = V v'(0) = 0. On account of unk[q>(tnk)] = 0, 
we have v(0) = 0. Then, naturally, v = 0, which is a contradiction. 

We proceed similarly for lim sup <p'(t) = oo, lim inf (p'(t) = 0, lim inf (p'(t) = 0. 
t-+ —• cO f-*oo f-*> — oo 

Let us pass to the proof of inequality (4) for / = 2. Let this inequality invalid. 
Formula (6) in [1] yields for every t0 e R: q>"(t0) = 2v\cp(tQ)] v'\jp(t0)], v being 
a solution of (q), v(t0) = 1, v'(l0) = 0. Consequently, there exists a {tn}, lim | tn | = 

W-+00 

= oo such that lim | (p"(tn) | = oo. For definiteness we assume lim tn = oo. Let vn 
M-+00 n~>oo 

be solutions of (q), vn(tn) = 1, vn(tn) = 0. Then necessarily 

lim|vn

3[<p(tn)]v;[9(0]| = oo. (8) 
Я-+00 

Now we prove that {v„[(p(tn)]} and {vn[(p(tn)]} are bounded, contrary to (8). Let 
{vn[(p(tn)]} be unbounded. Without any loss of generality it may be assumed that 
lim | vn[cp(tn)] | = oo. If we put un(t) : = vn(t + tn) for teR and n = 1, 2, 3, ..., 
H~>00 

then un is a solution of the equation y" = q(l + t„) y, un(0) = 1, u^(0) = 0. Let {tnk} 
be such a subsequence {tn} that lim a(t + t„k) = p(t) uniformly on R and let cp(t) — 

n-+co 

— t ^ K for teR (the existence of the positive constant K is guaranteed by 
Lemma 4). Letting v be a solution of (p), v(0) = 1, v'(0) = 0 yields 

limu^(0 = ^(O(0, » = 0 , 1 , (9) 
fc->oo 

uniformly on <0, K>, contradicting the fact that lim | vnJjp{tnk)] \ = 
fc-+oo 

= lim I UnS-^nu) - t„J I = OO. 

Let {v&(p(tn)]} be unbounded and assume again lim {̂ ,[<p(l„)]} - °o- We come 
n - * oo 

to the contradiction in a manner analogous to that used above, but this time — 
unlike to the foregoin —we will utilize i = 2 in (9). 

It remains to prove (4) for i = 3. This result however immediately follows from 
the boundedness of the functions q, cp", from the inequalities (3) and from the 
equality 

1 ę'"(t) + 3 (^TŘ) +*'2(0«t>O)]--«(O,] 
\(p(t)J m 2 <p'(0 4 

introduced and proved in [2]. 

3. Proof of Theorem 1 

To show the function cp'(t) to be almost periodic it suffices to prove (by Bohr — 
Bochner's theorem —see [5]) that lor every sequence of numbers {hn} a subsequence 
uniformly convergent on R may be chosen from the sequence of functions 
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{q>'(t + hn)}. According to the assumption, a is an almost periodic function so 
that we may assume without loss of generality that lim q(t + hn) = p(t) uniformly 

n-*oo 

on R. In analogy with the proof of Theorem 1 ([6]) we may prove the function 
<p(t + hn) — hn to be the basic central dispersion of 

y» = q(t + hn)y. (10) 

Thus, by Lemma 2, {<p'(t + hn)} is uniformly convergent on every compact interval. 
Assume {<p'(t + hn)} not to be uniformly convergent on R. Then there exist 
a number a > 0, {tn} (lim \ tn\ = oo) and increasing sequence of natural number 

n-+ oo 

{*.}. W s u c h that 

I <P'(*n + Kn) - cp'(tn + hrn) | = a9 n = 1, 2, 3, ... . (11) 

By Lemma 4 {(p'(tn + hkn)}9 {q>'(tn + hrn)} are bounded. Thus, in passing to 
appropriate subsequences —to simplify the writing we use the same notation — 
we may obtain: lim <p'(tn + hkn) = b, lim (p'(tn + hrn) = c and 

J-->OO «-»oo 

lim q(t + tn + hj = p.(0, Hm q(t + t„ + hj = p2(t) 02) 
n~*co n-* ao 

uniformly on R. With respect to (11) we have 

\b - c\=a. (13) 

Next we have px = p2 (see the proof of Theorem 1 ([6])). The function 
(p(t + tn + hkn) — tn — hkn is the basic central dispersion of the equation y" = 
= q(t + tn + hkn) y and cp(t + tn + hrn) — tn — hrn is the basic central dispersion 
of the equation y" = q(t + tn + hrn) y. Consequently, it follows from (12), from 
the equality pl = p2 and from Lemma 2 that lim cp'(tn + hkn) = lim <p'(tn + hrn), 

n-*oo n-*oo 

contradicting (13). 
By an analogous method we can prove that (p"(t) is an almost periodic function. 

Then, we obtain from the equality - — ^ + — (3LLL J + ,p'2(t) q[<p(t)~\ = 
2 <p'(t) 4 \<p'(t)J 

= q(t), from Lemmas 3 and 5, and from the known properties of almost periodic 
functions (see e.g. 5, pages 9 — 11 and 19 — 21) that (p'"(t) is also almost periodic 
function. 
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Souhrn 

O VLASTNOSTECH DERIVACÍ ZÁKLADNÍ 
CENTRÁLNÍ DISPERSE OSCILATORICKÉ 

ROVNICE y" = q(i)y SE SKOROPERIODICKÝM 
KOEFICIENTEM q 

SVATOSLAV STANĚK 

Rozložení nulových bodů řešení rovnice 

y" = q(t)y, qeC°(R), (q) 

lze popsat základní centrální dispersí (1. druhu) <p rovnice (q). Hlavní výsledek je 
uveden v následující větě: Nechť (p je základní centrální disperse oscilatorické 
rovnice (q) se skoroperiodickým koeficientem q. Pak pro i = 1, 2, 3 jsou <p{i)(t) 
skoroperiodické funkce. 

Pe3WMe 

O CBOMCTBAX n P O H 3 B O ^ H H X 
OCHOBHOH HEHTPAJIbHOÍÍ flHCnEPCHH 

KOJIEEKOIIIErOCil Y P A B H E H H i l y" = q(t)y 
C n O H T H - n E P H O A H H E C K H M 

K03<J>d>HIIHEHT0M q 

CBATOCJ1AB CTAHEK 

Pa3Jioa<eHHe KopHeň MHTepBajioB ypaBHeHHa 

/ = q(t)y, q £ C°(R), (q) 

B03MOKHO oiiHcaTb OCHOBHOH ueHTpajibHOH AHcnepcHeň (1-OTO po,na) <p ypaBHeHHa 
(q). OCHOBHOH pe3yjnvraT paĎOTw: IlycTb (p-ocHOBHaa ^HTpajiBHaa fllícnepcmi 
KOJie6jiK>merocH ypaBHeroiH (q) c noHTH-nepuoflHHecKHM KoacJMpinmeHTOM q. 
Tor^a <p(i)(0 noHTH-nepHOAHHecKHe §yma$m (í = 1, 2, 3). 
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