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Physical problems are often described by integral equations. In general, the 
integral equation may be written in the form 

b 

u(x) + \K(x,t)u(t)dt=f(x). 
a 

For f(x) = 0 is the given equation homogeneous. If the unknown function u(x) 
is linear, then a linear equation is concerned. In the contrary case the equation 
is nonlinear. We may distinquish four cases of integral equations: 

1. Fredholm's equation of the first kind 
b 

J K(x, t)u(t)dt =/(x), a and b = constants. 
a 

2. Fredholm's equation of the second kind 
b 

u(x) + $K(x,t)u(t)dt=f(x). 
a 

3. Volterra's equation of the first kind 

$K(x,t)u(t)dt=f(x). 
o 

4. Volterra's equation of the second kind 
X 

u(x) + j K(x, t) u(t) dt = f(x). 
o 
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Programming of integral equations 

Integral equations with the kernel k(t — x), i.e. equations of the form 

Au(t) + B J k(t - x) u(x) Ax = C/(r), (1) 
o 

where u(t) is the unknown funcion,/(t) and k(t) are the given functions, A, B, C = 
= constants, B, C # 0, may be solved on an analog computer without any 
additional device (generators of functions of two variables, analog memories). 

Such equations may be programmed to advantage in utilizing the Laplace 
transform (with A = 0 or A # 0 meaning respectively the integral equation 
of the 1st or of the 2nd kind). Suppose 

L(u(t)) = U(s), L(k(t)) = K(s), L(f(t)) = F(s). 

Because of the convolution theorem 
t 

L\j k(t - x ) u(x) dx] = K(s) U(s), 
o 

the Laplace transform of (1) is of the form 

AU(s) + BK(s) U(s) = CF(s). 

From (2) the transform of the unknown function may be determined as 

The Laplace transform of the unknown function for the first kind integral equation 
with A = 0 is of the form 

So, in both cases the Laplace transform of the function being the solution of (1) 
is now know. This solution may be assigned to generating the function given by 
its transform Example 1: Write a programming diagram for solving equation 

t 

u(t) + | (t - x) w(x) dx = t. (5) 
0 

In our case k(t) = t, f(t) = l, the transforms of these functions are 

F(s) = K(s) = \ . 
s 

Thus the transform of the function as the solution of (5) will be obtained from the 
relation 

108 



U(s)+4-t!(s) = ^ ; 

where 

U(s) 
-V + i ^ * 2 

(6) 

As known, the function u(t) whose Laplace transform is given by (6) represents 
the output value of thecircuit with a transfer 

2 í +P2 
where z is a unit step. 

The programming diagram of the circuit with the transfer cited above is given 
in figure 1. The equation u" + u = z' is programmed by the method of successive 
integration: 

u" = z — u, 
u' = Z + u! , u! = j — u dt, 
u = u2, u2 = | (z + uO dt. 

L_4 

From figure 1 we see that 

Fig. 1 

u = - J ( - l - Uí)йt, 
uг = J u dt, 

ì.e. 

U' = 1 + ui , 
u( = — u, 
u" = uj[ = — u, 
u" + u = 0, u(0) = ui(0) = 0, 

u'(0) = 1. 
(7) 

Equation (7) is equivalent to equation u" + u = z'. Thus the function u = sin t 
is the solution of (7) and (5) as well, as it follows from (6). 

The correctness may be verified by inserting the relation u = sin t into equa
tion (5): 
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sin / + J (/ — x) sin x dx = /, 
o 

i 
J ( / - x ) s i n x d x = [(/ - x ) ( ~ c o s x ) - j ( - l ) ( -~cosx )dx ] r

0 = 
o 

= [ — / cos x + x cos x — sin x ] 0 = 
= - / cos t + / cos / — sin / + / == — sin / + t, 

sin / — sin / + / =. /, 
/ = /. 

Example 2. Write a programming diagram for solving equation 
t 

u(t) + J sin (/ - x) u(x) dx = t2. (8) 
o 

In this case k(t) = sin /, f(/) = t2, so that K(s) == 

F(s) 
s 

Then the transform of equation (8) is 

U(s) + K(s) U(s) = F(s), 
i.e. 

U(s\ = F(S) = *3
 B *3~ = 2(s2 + 1) 

] + K W i + _ i _ 2 + s2 53(s2 + 2) ' 
1 + S 2 l + s 2 

The function u(t) becomes the output value of the circuit with the transfer 

u 2p3 + 2p 

í + s2 

2_ 
з ' 

(9) 
- p 5 + 2p 3 

where z is a unit step function. 

Rewriting equation (9) into the form 

M<5) + 2 w < 3 ) = 2zw + 2z', (10) 

let us program it by the method of lowering the order of the derivative in introduc

ing a new variable. We decompose the equation into a system of two equations 

v(5) + 2 | ? ( 3 ) = Z j 

2v< 3 ) + 2v ' = u. ( U ) 

The programming diagram for solving system (11) is given in figure 2. 

From figure 2 we see that 

x" = - 1 - 2JC, (12) 
i.e. 
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x" + 2x = - 1 , whereby x(0) = 0, x'(0) = 0. 

The roots of the characteristic equation 

X2 + 2 = 0 

are Xia = ±iy/2, so that the solution of equation (12) may be written as 

x = ct sm^J2t + c2 cos*j2t + c 3, 

Fig. 2 

where c3 is a constant. This constant may be determined by inserting it into 
equation (12), i.e. 

2c3 = - 1 , 
1 

C 3 = y , 

so that x = c t sin ^2* + c2 coSy/2t ——. 

The coefficients cx and c2 will be determined from the initial conditions x(0) = 0, 
x'(0) = 0: 

x(0) = c2 

î 
= 0 i.e. I 

Thus the function 

2 ~ "" ~* 2 
x'(0) = yJ2cx cos^/2t — yj2c2 $itiy/2t, 
x'(0) = ^J2cx = 0 i.e. cx = 0. 

-(co%^j'2î - 1) 

becomes a solution of equation (12). 
From figure 2 we can also see then 

v" = - J x dt -f v"(0) = - — ( — - sin J2t - ř ) , 
o 2 V V 2 / 

ř ř ř 1 / 1 \ 
~-v' = J Jxd td t - v'(0) = J — -—sinJ2t - tìdt 

0 0 o l W2 / 

= 4(4cos^4í24)-

(13) 
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1 - 1 1 -2x + 2v' = - c o s ^ ŕ + 1 + —co$j2t + ~үt2 

The output value u of the summator is given by 

1 
î U v " ' 2 * 2 

Д«) 

= - үCOS^lt + 
1 
2 

2 1 

t 2 + T , 

1 
2 

s 

s2 + 2 
+ 1 

2 
2 

s 3 

1 
+ ^ " = 

2(s2 + 1) 

-s4 + 2s2 

2(s : 

+ 4 + s4 

! + 2 ) s 3 

+ 2s2 

(14) 

(15) 

s5(s2 + 2) ' 

being equal to the Laplace transform of the solution of equation (8). To be definite 
about it, let us insert relation (14) into (8): 

- y C O S ^ t + y * 2 + y + J SHI (t ~~ X H - y C O S ^ X + y X2 + y J dx = *2, 

| sin (t — x) ( — — cos yj'2x 1 dx = 

r i - i T 
= — sin (t — x) —— sin yjlx —•— cos (t — x) cos 2x = 

L V2 J° 
= — COSy/lt - y C O S t , (16) 

* 1 1 
I sin(r — x) —x2dx = — [2xsin(t — x) + (x2 — 2)cos(t — x)J0 = 
o 1 1 ' ' 

= y 0 2 - 2 + 2cosr), (17) 

f 1 1 1 1 
Jsin(t - x ) y d x = y[cos( r - x)]0 = — - y c o s t . (18) 

After substituting expressions (16), (17) and (18) into (15), we find this equation 
to be satisfied: 

-yCOS V2^ + y r + y + -jCOSyj2t -—cost + y t 2 -

1 1 2 
— 1 + cos t + —• cos t = t , 
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Solving nonhomogeneous integral equations by the method of successive 
approximations 

Applying the method of successive approximation in solving the equation 

b 

u(x) + X J k(x, t) u(t) dt = f(x), 
a 

let us pass to the iterative formula 

"*(*) =/(*) - A $K(x, t)uk^(t)dt. (19) 
a 

But this method requires an additional device able to store memory and generate 
functions again. 

Approximation the kernel of equations 

1. The first form: 
The kernel is approximated by a function of two variables as the end sum of 

functions, each of which depends on one variable, only. This means 

n 

K(x91) = £ at(x) bt(t). 
i-=i 

Integral equations whose kernels are expressible in the above form are called IE 
with a degenerate kernel. Equation (19) may then be written as 

n b 

u(x) + X £ afx) J bff) u(t) dt = f(x). (20) 
i~\ a 

This relation will be of practical importance if the error of approximation with 
a not large n will keep within the acceptable limits. 

2. The second form: 
Another (more universal) form is approximating the kernel by a set of functions 

K(xi? t), where each of these functions is dependent on a unique variable t, the 
second variable having a constant value. In such a case the solution of the equation 
will be carried over to determining the approximate solution at discrete points. 
Equation (19) will be solved in the form 

b 

u(xt) + X $K(xi9 t)u(t)dt =/(*,) i = 1, 2, ..., m. (21) 
a 

This way of solution requires m sufficiently large (m = 10 to 20 in general). 
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Solving nonhomogeneous Fredholm's equation with the first form of approximating 
the kernel by the method of successive approximations 

Using the method of successive approximations we pass to the iterative formula 

«*(*) - /(*) - Я І a,(x) j Ь,(0 uk. .(í) dí. (22) 
І = l 

To realize this process it is necessary to construit a model for (22) and to introduce 
a program of successive approximations for the unknown solution by means of 
a device capable of storing memory and generating functions again (enumerated 
approximations in our case). 

For simplicity we write (22) as 

Щ(x) = / ( * ) ~ Л £ cfc-lpłał(x), 
i=-l 

where 
ckj = 1 bt(t) uk(t) dt (= constant). 

(23) 

(24) 

If we preassign the initial approximations of the functional ct (choosing the zeroth 
approximation of the solution), we get the first approximation as the function 
of time and on integration within the limits from a to b we get new values of the 
functional etc. Inserting (23) into (24), we find that no distinct notation is necessary 
for independent variables: 

«*(0=/(0-*]•>*-.,.<.,(.), 
î = i 

«*,.=- J tVOLKO- AEc*-i.i«j(0]dr, 
a i = l 

(25) 

«*(0 
For example, the memory device may consists even of potentiometers wtereat 
the voltage is fixed corresponding to the output values c0 t l and coa. 

Í-2-S vf»-4/«,(•« t!li --¥*)««<) 

- * r 
ЄídЛ 

• sCif -f,î u. C\c,i 

M ~/(Vjo— > W y ,_ 
-J i V r - P ^ U "X [ ! \ 

"-''* V >—> s< N > 
o L—y^-í^ «*#> o L _ / , , ,! /^i 

i 

i 

Fig. 3 
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The model is set into working order and the solution is interrupted at t = b 
(assume a = 0). 

Values c0tl and c0t2 are interchanged for cltl and clt2 measured oft at the outputs 
of integrators. 

Further cycles proceed in sequence until sufficiently accurate solution is obtained, 
i.e. till the values ck-lti, cki cease to change with a sufficient accuracy. Picture 3a 
shows a programming diagram for a solution of equation 

u(x) — j xefw(0 df = ex — x, 
o 

Whose solution is the function 
u(x) = e~x, 

as may be verified by substitution relation (24b) into (24a), i.e. 

(24a) 

(24b) 

Fig. Зa 

e x — x J e*e * dt = e x — x, 
o 

e x ~~ x[/]o = e~x ~~ x> -̂e- e x "~ x ~ e 

The corriect solution is obtained on achieving 

ck = ^ f c - l = -• 

Example: We look for a solution of equation 

2 

u(x) - A J x<r°'2'w(0 dt = <r2\ 
0 

The kernel K(x, 0 i11ay be written in the form 

K(x,0 = xe-°>2t = fit1(x)b1(0? 

i.e. 
at = x; bt = e"°'2r. 

(26) 
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Similarly to (23) and (24) let us rewrite equation (26) as 

uk(x) = / (*) + A*<V-i, 
where 

Following (27) then 

ck = J e~°'2tu(t) àt = constant, 
o 

r' 

J 

í . ч-ŕC«.y 
X гü>Г 

Cк-* CCк) 
W 

-У 

-Ji 

~*x,(t)л -o,ц 

Aкft) X 

Fig. 4 

Example: We look for a solution of equation 

The kernel 

i.e. 

1 

u(x)-AÍe- ( o r a + , )«0)dí = sinx. 
o 

K(x,t) = e'axe~s, 

<.,(*) = ťT**; !J1(0 = e- í. 

П 

Cы (Cк) M үÀX7^ 
X 

Fig. 5 

Cк 

(27) 

(28) 
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Equation (28) will be solved in the form 
uk(x) = f(x) + ^e~a*ck-i = sinx + ke"<lxck-1, 

1 

Q = J<T'w*(0d*, 
o 

u(t) = / ( 0 + ke~atck-x = sin t + Ae""^-.!. 

Example: Write a programming diagram for solving equation 
1/2 

u(x) = x + J w(0 dr. (29) 

It holds ax(x) = bi(t) = 1 for the kernel K(x, 0 = 1 . Equation (29) will be written 
in the form 

Uk(x) =/(x) + cfc_i = x + Ck-l9 

1/2 
c* = Jwfc(0dr, 

0 

w*(0 = / ( 0 + <*-i = l + q . j . 

W 

_/ 

W , ŕftjf 

^ ; 

Fig. 6 

Example: Write a programming diagram for solving equation 

«W - y J(* + 0W(0^ = y x ~ y . 

The kernel K(x, f) may be written in the form 

K(x, t) = x + t = x. 1 + 1./ 
i.e. 

ai(x) = x; a2(x) = 1; bi(l) = 1; b2(t) = L 

Equation (30) will be solved in the form 

1 2 

"*(*) = /(*) + ~г £ ^ „ м a t < x ) , 
•э i = i 

where 

(30) 
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c м = ÍЬ.(0и*(0dí, 

и(o=лo + 4- Ec*-i.iИf(0-
J i = l 

4 o± 

т 
"С,-/,./ < й ^ x 

a^rt) č*-*,y 

9 - í 
<7 

TФ—Ü> 

-Cu,i 

-ťttihkfa 
L-J v 

•(?«-//i C-Цi) 
- / o 

C ^ i 

ťhгCt) 

Fig .7 

Solving Fredholm's equation of the second kind with the second form 
of approximating the kernel 

Solving integral equations by the method of successive approximations with the 
second form of approximating the kernel, the iterative process will be realized 
according the iterative formula 

uÁxò = /(*.) - A Í --(*.. 0 «*-1(0 dt. 
o 

(31) 

Figure (8) illustrates a block-diagram realizing the method of successive approxima
tion in the sense of (31). Here are determined the coordinates of the approximate 
solution at discrete points xt. In the process of the repeated reading of the foregoing 

fл*.ąЬ)Lk<*%tî)<li 
ЛЬфi) 

Fig. 8 
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k — 1 approximation from the memory device M there are in succession enumerat
ed the coordinates of the k-th approximation to secure the unknown function 
and are recorded in the memory. For instance, the points of the k-th approxima
tion are registred on the paper, a curve is drawm trough these points and we get 
a graph of the k-th approximation uk(x). This k-th approximation is then generated 
(for instance, by means of a follower of curves) as uk(t). After computation and 
recording all coordinates of the new approximation the positions of keys K! and K2 

are interchanged and the process will be reprated. Every change of the position 
of keys corresponds to one iteration step. The iterative process is at the end if two 
consecutive approximations are sufficiently near. The Gauss iterative process 
converges often more rapidly and may be written for solving Fredholm's integral 
equation of the second kind in the form of an algorithm 

«*(*«) = /(**) - A J K{x{, 0 «(0 dt\ (32) 
o 

where 
/uk(t) for t < xf, 

u(t) = < 
\uk~i(t) for t > xt. 

The above process is however based on a special memory unit and further units 
(such as comparatories) being available, enabling its realization. This process 
could also be realized by a follower of curves and by tracing the particular 
approximations, but it would be too lengthy. The iterative process with the second 
form of approximating the kernel consists of two types of iterative steps: 

a) from a slow iterative step, whereby from the k-lst approximation a k-th 
approximation is generated; 

b) from rapid iterative step, whereby the coordinates of the new approximation 
at the points x( are computed. 
Dividing the independent variable x into « + 1 points from x0 through xn, then 
the slow iterative step consist of computing the functional values of the new 
approximation at the n + 1 points from x0 through xn. 

Example: 
5 l l 1 

u(x) = — x - — + -j J" (t + x) ii(0 df, (33) 

5 1 1 1 

t*k(Xt) = -g- X, - y + y J (t + Xt) Uk-X(t) dt. 

Let us devide the interval <0,1> into 5 sections, i.e. xt = 0,2/, i = 0, 1, ..., 5. 
Choosing u0(x) = 0 yields 

Mj(0) . 1.. o - 1 + 1 | (t + 0) u0(0 dt = 

= i-0~l + T^ ( r + 0 ) 0 d r = : " T - ' 
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«l(0,2) = l . 0 , 2 - 1 + 1 í(( + 0,2).0dí = l - І = _Ľ, 

„l(0,4) = 4-0,4-l + l/(.- + 0,4). 0^ = 1 - 1 = - ! , 
9 3 ^ 6 9 

3 1 7 
U l(0, 6) = l o , 6 - 1 + | ( r + 0, 6). Odt = 6 

5 1 1 x 4 1 10 
u1(0,8) = T 0 , 8 - T + T i ( ( + 0,8).0d t = T - T = T ° . , 

« 1 ( l ) = 4 - l + l j ( t + l).0df = l - i - = i i . 

Functional values at the respective points are traced and a curve is drawn through 
the points (figure 9). Evidently, the graph of a function is the straight line with 
equation 

and therefore 

, . 5 1 
"i(x) = т x - т 

,ч 5 1 
«i(0 = т . - т 

(34) 

Лo(Ю 

Fig. 9 

This function may also be generated by solving an appropriate differential equation 
without using any follower of curves. We now will compute the points of the 
second approximation on the basis of rolation 
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5 1 1 
»2(*i) = -T-XІ - — + — | (/ + XІ) м,(ř) df, (35) 6 ' 9 3 0 

= _1 iГi-—-1—T- -1 — — -__-І-L= -L 
9" + 3 6 3 9 2 „ - 9 + 54 54 54 ~ 27 ' 

U 2 ( o)=A.o-!+!j ( .+o)(! ř -!) 
___L_îT= -1 
3 9 2 j 0 9 

мa(0, 2) = | - 0 , 2 - i + ^ }(t + 0, 2 ) ( i í - i ) d í -

5 Л „ 1 1 jfS t3 1 t2T A Л Г 5 t2 1 T ì 
--б-0 '2--9- + т{bт-ттJ0

 + 0 '2Lтт--- řJ0 | 
- 4 0 ' 2 - T + T4- + 0'2 

= 0 , 2 ( l + ^ - J f 

= 0 2 9 ° + 1 5 ~ 4 - б + 

5 1 \ 
36 2 7 1 

1 4 
9 + 54 -

= 0 2 Ш 
U ' 108 

1 
"27 108 54 

U 2 (0,4) = 0 , 4 i ° i - J f , 

"2(0, 6) = 0,6 l i - - ! - , 

MO,8) = 0 , 8 i ° ! - ^ , 

... 101 1 

" 2 ( 1 ) -W-_T 
, , 101 1 101 1 „ _ 

^ ) - - W x - w , „ 2 (0 _ . _ , - - _ . (36) 

We continue in repeating this procedure till approaching the desired accuracy. 
The correct solution is 

u(x) = x. (37) 

A part of the network for solving equation (33) is shown in figure 9a. The kernel 
t + x{ is generated in solving equation 

v' = 1; v(0) = x(. 

Let us assume that from the functional values of the function uk(x) zX the points xt 

we determine an analytic expression (or approximation) of this function, this 
will then be generated also by solving an appropriate differential equation. Respect
ing the fact that K(x, t) e <0,2> holds for x, t e <0; 1>, we will generate the expres-
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K(x t) 
sion — ~ — . The equation for generating the kernel will then be of the form 

We find step by step that 

0,5 

V'=0,5: V(o, = ү . 

101 1 
»2(t) = W t - - 2 Г > 

"„(t) = t 

0 _ i 

jžŕŁjj -KЛvO ««./ «) 

X 

ífk(xifí)uk^(í)dí 

0 

i* 

•,\ 

9 

^ « flrij 

ľ 
-fM 

\ A2(i) 
\ 
\ 
\ 
\ 
\ 
\ 
l 
•o-
A>«(iJ 

Ћ 

Fig. 9a 

Same results will be obtained in using the method of successive approximations 
without applying the computer. Choosing u0(x) = 0, yields w(0)(0 = 0 and 

i i J. 

I.Є . 

, л 5 - - , ч л -. 5 1 
"»(*) = • £ - * - — + y l ( í + x ) . 0 . d ř = — x - y , 

/ ч 5 1 
U 1 ( í ) _ — < - - _ , 

"2(x) = f x - l + 3 roЬ+*)(4<Ч)d' 
1 2 2 



__ _ __ + 1 J ( 5 
~ 6 X 9 

5 
T X 9 

1 i / 5 , 5 1 1 \ , 

TI{T' 2 + rtx-Tt-TX)<it = 
9 3 [ 6 3 + 6 2 X 9 2 9 tXJ0 ~ 

1 l + l (L i , i v _ i 1 \ _ 
~ 6 X 9 3 V6 ' 3 + 12 A 18 9 X)~ 

__ 1 _5_ _5_ _ _1_ 1 
~ 6 X " 9 + 54 + 36 X 54 27 X ~ 

__ _5_ _ _ 1 _ ___ _4_ 

~ 6 36 X 27 X ' 9 + 54 ~ 
____+15-4_ - 6 + 4 101 1 

~ X 108 + 54 108 X 27 " 

The correct solution is U(X) = x, (u(t) = f) as may be verified upon substituting 
in equation (33) 

5 1 1 J, 
x = = T x ~ T + To I ( t + x ) ' d t ' 

5 1 1 _, - , . 5 I 1 Tf3 f2 T 
x ~ T x ~ T + T0H

f + t x ) d t - T x - 9 - + TLT + TxJo' 
5 1 1 / 1 x 

X ~ T X ~ T + T(T + T 
X = X . 

Solving nonhomogeneous Solterra's equation with the first form of approximating 
the kernel 

The equation is of the form 

w(x) + k ] K(x, t) u(t) dt -- f(x). (38) 
o 

The fact that the equation contains an integral with a variable upper limit enables 
in some cases to use integrators in the most natural regime for them, i.e. in a regime 
of a continuous integration. One of such cases is the solution with the first form 
of approximating the kernel whereby the kernel may be written in the form (or 
we approximate it by the expression): 

In applying this form of approximation, equation (38) becomes the form 

uKx) + A £ a&x)) bit) ii(0 dt = f(x) (39) 
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in case of a nonlinear equation 

u(x) + k J K(x, t) F(u(t)) dt = f(x) 
o 

generally becomes the form 

u(x) + k £ at(x) J bit) F(u(t)) dt = f(x). (40) 
i = l 0 

The integral transform 

Ui(t)F(u(t))dt 
0 

will be realized over the function of one argument and integrating may be continu
ous with respect to the variable x. The result of this transform is merely a function 

~ţлt(i) dî 

-/ u1(x)*4 (/L4(i)*i) 

-fмчfOdt 

u,(x) - U \dt~Ux 

Г" 

-fatìdl 

ч 
A,ÓW~ í+X+lL 

Fig. 10 

of x. In this way all functions of the equation become dependent on one argument, 
which means that we may write a diagram for (40) enabling a direct solution as it 
is the case with ordinary differential equations with initial conditions. For instance, 
in solving equation 

u(x) = 1 + í u(ť) át (41) 

on the basis of the method of successive approximations we could proceed as 
shown below, if we start from u0(t) — 0. The programming diagram may be 
simplified to the form given in figure 11. 
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The programming diagram is described by equations: 

u(t) = 1 + j u(t) d/, 

u'(t) - u(t) = 0, uf(0) = 1, u(t) = e\ 

Example: 

u(x) — J xu(t) sin u(0 df = ex. 

-$Ad)dt 
Љ(X) - Ä ß j 

>Г 

Fig. 11 

The kernel K(x, t) may be written in the form 

K{x,i) = Y,al{x)bi{t), 
1 

where ax(x) = x, ^(f) = u(t). 
Then the equation may be rewritten as follows 

X 

u(x) - x j u(t) sin u(t) dt = ex. 
o 

The programming diagram is shown in figure 12. 

~ *>(x) /U*v (AOÙ 

~*>(I) A^y(A(i)) 

Fig. 12 
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Example: 

u(x) = 1 + ](t -x)u(t)dt. 

The kernel t — x may be written in the form 

t - x = at(x) bt(t) + a2(x) b2(t), 
where 

ö,0) = 1, b^t) = ř, 
«гW - -x, b2(t) = 1, 

X X 

u(x) = 1 + J tu(t) dt - x J w(í) dř, 
0 0 

t t 

u(t) = 1 + J tu(t) dí - t J u(0 ^ř, 
o o 

ř ř 

u(0 = 1 + J Ш(ť) + í J 11(1). 
0 0 

u(t) = cos t 
t t 

cos t = 1 + J t cos ř dí + t J cos í dt. 

The programming diagram is given in figure 13. The solution is the function 
u(t) = cos t. 

t 

J t cos t dt = [f sin r — J sin * df]0 = [t sin f + cos f] 0 , 

The solution is 

Лd) 

^Шi) 
ÍÍLCÍ) <к 

-J ^U) dt 

- t 

ífxt(i)dt <к -•/ 

Fig. 13 

cos t = 1 + [t sin t + cos Í]Q — t[sin t]0 

= 1 + t sin t + cos t — 1 — t sin t, 
cos l = cos t. 
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PEfflEHHE HHTErPAJIbHWX yPABHEHHÍl 
HA AHAJIOTOBWX MAIIIHHAX 

Pe3WMe 

B pa6oTe ooncaHM MCTO^M pemeHHH HHTerpaJibHJbix ypaBHeHHH c animKainiííMH H rjpHMepaMH.. 
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