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Physical problems are often described by integral equations. In general, the
integral equation may be written in the form

b
u(x) + | K(x, t)u(t) dt = f(x).
For f(x) = 0 is the given equation homogeneous. If the unknown function u(x)
is linear, then a linear equation is concerned. In the contrary case the equation
is nonlinear. We may distinquish four cases of integral equations:
1. Fredholm’s equation of the first kind
b
§ K(x,t)u(t)dt = f(x),  a and b = constants.
a
2. Fredholm’s equation of the second kind
b
u(x) + § K(x, t)u(t) dt = j'(x).
3. Volterra’s equation of the first kind
§ K(x, ) u(t) dt = f(x).
V]

4, Volterra’s equation of the second kind

u(x) + fK(x, tyu(t) dt = f(x).
0
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Programming of integral equations

Integral equations with the kernel k(t — x), i.e. equations of the form
t
Au(t) + B [ k(t — x) u(x) dx = Cf(1), )
1]

where u(t) is the unknown funcion, f(¢) and k(¢) are the given functions, 4, B, C =
= constants, B, C # 0, may be solved on an analog computer without any
additional device (generators of functions of two variables, analog memories).

Such equations may be programmed to advantage in utilizing the Laplace
transform (with 4 = 0 or A4 # 0 meaning respectively the integral equation
of the Ist or of the 2nd kind). Suppose

Lu(n) = U(s),  L(k() = K(s),  L(f(1)) = F(s).

Because of the convolution theorem
t
L[| k(t —x) u(x) dx] = K(s) U(s),
[}

the Laplace transform of (1) is of the form
AU(s) + BK(s) U(s) = CF(s).
From (2) the transform of the unknown function may be determined as

_ CF(s)

The Laplace transform of the unknown function for the first kind integral equation
with 4 = 0 is of the form '\

_ CF(s)
U(s) = BKG) “4

So, in both cases the Laplace transform of the function being the solution of (1)

is now know. This solution may be assigned to generating the function given by
its transform Example 1: Write a programming diagram for solving equation

t
u®) + [ (t = x)u(x)dx = 1. )
0 .
In our case k(t) = t, f(¢) = t, the transforms of these functions are

F(s) = K(s) = —;12— .

Thus the transform of the function as the solution of (5) will be obtained from the
relation
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U6) + 5 UO) =

s
where
1
s> 1
U(s) = = 7 (6)
Ao 1+s

SZ

As known, the function u(f) whose Laplace transform is given by (6) represents
the output value of thecircuit with a transfer

H(p) = AL 7 where z is a unit step.
z L+p

The programming diagram of the circuit with the transfer cited above is given

in figure 1. The equation u” + u = z' is programmed by the method of successive

integration:

"

u =2z - u,

W o=z+u, u =j—ud,
u = u,, u, = [(z + uy)de.
-1
_,%[—ﬂ Moy = 4t h—,{y
Fig. 1

From figure 1 we see that
10 = —-j(—l - ul) [N

uy = Judt,
i.e.
u =14 uy,
U = —u,
u' =u; = —u,
u +u=0, u(0) = u,;(0) =0, @)
u'(0) = 1.

Equation (7) is equivalent to equation u” + u = z'. Thus the function u = sin ¢
is the solution of (7) and (5) as well, as it follows from (6).

The correctness may be verified by inserting the relation u = sin ¢ into equa-
tion (5):
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t
sint + [(t — x)sinxdx =1,
0

f(t — x)sinx dx = [(t — x) (—cos x) — | (—=1)(—cos x) dx]j =

=[—tcosx + xcos x — sinx]g =
= —tcost+tcost —sint + ¢t = —sint + ¢,
sint —sint + ¢ =< ¢,
= I

Example 2. Write a programming diagram for solving equation

t
u(t) + jsin (l - x) u(x) dx = tz_ (8)
0
In this case k(f) = sint, f(¢) = 1%, so that K(s) = -1___-1 >
+ 5
2
F(s) = —.
©)=5
Then the transform of equation (8) is
U(s) + K(s) U(s) = F(s),
ie.
2 2
3 3- 2
Us) =S8 S _ S _AeHD
I+ K(s) 1+ b 245 s +2)

1+s* 1442

The function u(f) becomes the output value of the circuit with the transfer

u 2p? +2p ©)
z p5 + 2p3 ?
where z is a unit step function.
Rewriting equation (9) into the form
u® + 2u® = 22" + 27, (10}

let us program it by the method of lowering the order of the derivative in introduc-
ing a new variable. We decompose the equation into a system of two equations

03 4 203) = 2z,

203) + 20" = u. an
The programming diagram for solving system (11) is given in figure 2.
From figure 2 we see that
x' = -1-2x, (12)
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x" 4+ 2x = —1, whereby x(0) = 0, x'(0) = 0.
The roots of the characteristic equation
A+2=0
are A; , = +i \/5, so that the solution of equation (12) may be written as
x = ¢, sin\/2t + ¢, cos /2t + c3,

-1 %) ()
(X' - -x' X

Fig. 2

where c¢; is a constant. This constant may be determined by inserting it into-
cquation (12), i.e.
2¢; = —1,
1
C3 = *5' N

so that x = ¢, sin /2t + ¢, cos /2t — %

The coefficients ¢, and ¢, will be determined from the initial conditions x(0) = 0,
x'(0) = 0:

1 . 1
x(0) =c2——2—=0 ie. €2 =5
x'(0) = \/2¢; cos /2t — \/2¢, sin /21,
x'(0) =./2¢, =0  ie. ¢ =0.
Thus the function
X = —;—(cos\/it ) (13)

becomes a solution of equation (12).
From figure 2 we can also see then

t
U” — __j‘xdt + vu(o):
0

1 . =
——sin, /2t — t},
<\/2 v )
——sin,/2t — t )dt =
<\/2 \/ )
1 1 = R
—-+—2~<——2~cos\/2t 5 +7>.

Y N]v—

ov-,,‘

t
xdtdt — v'(0) = |
0
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The output value u of the summator is given by

U= —2x + 20" = —cos/2t + 1 +%—cos\/§1 vl Lo

2 2
1 = 1, 1
. 1 12 —s* + 257 ¢+ 257
L) = -+ zs—+-—§~+—1—= s+ 32+4+; + 257
2242 2 2s 2(s* + 2)s
A+
3% +2)

being equal to the Laplace transform of the solution of equation (8). To be definite
about it, let us insert relation (14) into (8):

1 N P 1 T L Y
__.cos\/2t+—2—-t -r—2-—I-gsm(t—-x)(——é—cos\/z,\+7x + 5 dx = t?,

2
(15)
t 1 -
_fsin(t - x)<~——cos\/2x)dx =
o 2
. 1 . = 1 ‘
= —[sm (1 — x) —= sin/2x — =cos (t — x) cos 2x:| =
V2 2 0
1 o~ 1
= 57C08+/21 — 5-cos (16)
P 1, 1 . 2 t
{sin(t — x)—2~x dx = —2—[2xs1n(t —x)+ (x* =2)cos(t — x)]p =
0
_—.%(ﬁ — 24 2cost), (17)
t
jsin(t—x)%dx=~21—[cos(t—x)]{)=2L-—21—cost. (18)

After substituting expressions (16), (17) and (18) into (15), we find this equation
to be satisfied:

1 e P A 1,
~3-cos\/2t+7t + 5+ 5C0s\/ 2t — 5-cost + -t

—1+4cost + L _ lcost—t2
2 2 T
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Solving nonhomogeneous integral equations by the method of successive
approximations

Applying the method of successive approximation in solving the equation
u(x) + 4 Ibk(x, Hu()de = f(x),
let us pass to the iterative formula
u(x) = f(x) — ).jK(x, ) u, (1) dt. (19)

But this method requires an additional device able to store memory and generate
functions again.

Approximation the kernel of equations

1. The first form:
The kernel is approximated by a function of two variables as the end sum of
functions, each of which depends on one variable, only. This means

n

K(x, 1) = Y, afx) b(t).
i=1
Integral equations whose kernels are expressible in the above form are called IE
with a degenerate kernel. Equation (19) may then be written as

n b
u(x) + 4 Y, af(x) | bt) u(1) dr = f(x). (20)
i=1 a
This relation will be of practical importance if the error of approximation with
a not large n will keep within the acceptable limits.

2. The second form:

Another (more universal) form is approximating the kernel by a set of functions
K(x;, 1), where cach of these functions is dependent on a unique variable ¢, the
second variable having a constant value. In such a case the solution of the equation
will be carried over to determining the approximate solution at discrete points.
Equation (19) will be solved in the form

b
u(x;) + A [ K(x;, ) u(t) dt = f(x;) i=1,2,...,m (21)
a
This way of solution requires m sufficiently large (m = 10 to 20 in general).
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Solving nonhomogeneous Fredholm’s equation with the first form of approximating
the kernel by the method of successive approximations

Using the method of successive approximations we pass to the iterative formula
n b
w(x) = f(x) — l_; af(x) § bi(t) (1) dt. (22)

To realize this process it is necessary to construit a model for (22) and to introduce
a program of successive approximations for the unknown solution by means of
a device capable of storing memory and generating functions again (enumerated
approximations in our case).

For simplicity we write (22) as

W) =10 = A3 o0, @3
where
b
= [ b()u(t)dt (= constant). 24)

If we preassign the initial approximations of the functionals ¢; (choosing the zeroth
approximation of the solution), we get the first approximation as the function
of time and on integration within the limits from @ to b we get new values of the
functionals etc. Inserting (23) into (24), we find that no distinct notation is necessary
for independent variables:

w(®) =10 = 1T eu-1100)

cn = § b (D) ~ Az Ceeria (D] dt, 25)

w(1)

For example, the memory device may consists even of potentiometers wtereat
the voltage is fixed corresponding to the output values ¢y 4 and ¢, .
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The model is set into working order and the solution is interrupted at ¢t = b
(assume a = 0).

Values ¢g,; and ¢, are interchanged for ¢; ; and ¢;,, measured oft at the outputs
of integrators.

Further cycles proceed in sequence until sufficiently accurate solution is obtained,
i.e. till the values ¢;_;,;, ¢,; cease to change with a sufficient accuracy. Picture 3a
shows a programming diagram for a solution of equation

u(x) — j}xe'u(t) dt = ¢ — x, (24a)
(4]

Whose solution is the function
u(x) = e’ %, (24b)

as may be verified by substitution relation (24b) into (24a), i.e.

Ao,
-t
Ci-g+Crat -t 4-1
3
Fig. 3a
1
e ¥ —x[eedt=e" —x,
V]
e —x[t]§=e*—x, e eF-—x=eF-x
The corriect solution is obtained on achieving
Cp = Cgp—q = 1.
Example: We look for a solution of equation
2
u(x) — 4 [ xe”®%u(t) dt = ™%~ (26)
(1]

The kernel K(x, {) may be written in the form

K(x, 1) = xe” %' = a,(x) b,(t),
i.e.

al = X, bl = 8_0’2‘.
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Similarly to (23) and (24) let us rewrite equation (26) as
w(x) = f(x) + 4 xe_y, 27
where

2
¢, = | e”®%u(t) dt = constant.
o

Following (27) then

ult) = f(1) + Mep—y = € 2" + My

Fig. 4

Example: We look for a solution of equation

u(x) — A _‘1' e~ @ Du(t) dt = sin x. (28)
0

The kernel

ax,— ¢
e

K(x,1) = e

a,(x) = e by()=e"".
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Equation (28) will be solved in the form
u,(x) = f(x) + Ae™ ¢, = sinx + Ae” ey,

1
o = [ e 'u(t) dt,
1]

u(t) = f(t) + Ae %y, =sint + A%y,

Examplz: Write a programming diagram for solving equation

1/2
u(x) = x + [u(r)dt. 29)
(1]

It holds a,(x) = b,(¢) = 1 for the kernel K(x, t) = 1. Equation (29) will be written

in the form
w(x) = f(x) + ¢4y = x + ¢y,
1/2

¢ = [ur)dt,
0

w(@) =f() + ey =1+ -y

+1

"'Cl{

“Ceg , (<C)

Fig. 6

Example: Write a programming diagram for solving equation

1
u(x)——;—g(x+t)u(t)dt=—2~x-—é—. (30)

The kernel K(x, t) may be written in the form
Kx,)=x+t=x.1+ 11

i.e.
a(x)=x; ax) =1, b@t)=1  b() =1

Equation (30) will be solved in the form
1 2
u(x) = f(x) + 3 .Z:Ick-l,iai(x)»
where
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aq(t) Cx-#;1 ’ [: -Curt

-6 (E) 2y
j -1
~Ce-t;t (~Ceja) teba(t)

Fig. 7

2lktd ael)

Solving Fredholm’s equation of the second kind with the second form
of approximating the kernel

Solving integral equations by the method of successive approximations with the
second form of approximating the kernel, the iterative process will be realized
according the iterative formula

u (%) = f(x) — A } K(x;, t) u,_,(t) dt. 31
0

Figure (8) illustrates a block-diagram realizing the method of successive approxima-
tion in the sense of (31). Here are determined the coordinales of the approximate
solution at discrete points x;. In the process of the repeated reading of the foregoing

,[/LM @), kexsd)dt

> A (i)

Fig. 8
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k — 1 approximation from the memory device M there are in succession enumerat-
ed the coordinates of the k-th approximation to secure the unknown function
and are recorded in the memory. For instance, the points of the k-th approxima-
tion are registred on the paper, a curve is drawm trough these points and we get
a graph of the k-th approximation #,(x). This k-th approximation is then generated
(for instance, by means of a follower of curves) as #(f). After computation and
recording all coordinates of the new approximation the positions of keys K, and K,
are interchanged and the process will be reprated. Every change of the position
of keys corresponds to one iteration step. The iterative process is at the end if two
consecutive approximations are sufficiently near. The Gauss iterative process
converges often more rapidly and may be written for solving Fredholm’s integral
equation of the second kind in the form of an algorithm

w(x) = £(x) = 4§ K(xi, yu() ds 32)
0
where
/uk(t) for ¢t < x;,
Nt () for t > x,.

The above process is however based on a special memory unit and further units
(such as comparatories) being available, enabling its realization. This process
could also be realized by a follower of curves and by tracing the particular
approximations, but it would be too lengthy. The iterative process with the second
form of approximating the kernel consists of two types of iterative steps:

a) from a slow iterative step, whereby from the k-1st approximation a k-th
approximation is generated;

b) from rapid iterative step, whereby the coordinates of the new approximation
at the points x; are computed.
Dividing the independent variable x into » + 1 points from x, through x,, then
the slow iterative step consist of computing the functional values of the new
approximation at the n + 1 points from x, through x,.

u(t) =

Example:
5 s :
u(x) = i j (t + x)u(t)de, (33)
0
5 I
llk(xi) = —6—x,- - —9"‘ -+ ? _‘.(t -+ x,~) uk_l(t)dt‘
0

Let us devide the interval ¢0,1) into 5 sections, i.e. x, = 0,2/, i =0,1,..., 5.
Choosing uy(x) = 0 yields

5 1 !
u,(0)=?. 6f(t+0)uo(t
5 1 -1
=-€.0——9‘+?5(t+0)0dt=—9—,

119



w(0.)= 202 5 + 10§1(t+02)0dt_%—%.=%8_,
u,(0, 4) = Z - lgl(t+04) 0dt = 2—%=358.,
u1(0,6)=.g0,6_g+;<,+O,6).0d,=%_;=gg, '
u1(08)=—08——+ (fu+08) Odt—%——;—=.i.g_,
u1(1)=—2-——;—+—;—£(z+l).0d:=%-—%=—i§—.

Functional values at the respective points are traced and a curve is drawn through
the points (figure 9). Evidently, the graph of a function is the straight line with
equation
5 1
uy(x) = 'E‘x iy (34)

and therefore

5 1

Fig. 9

This function may also be generated by solving an appropriate differential equation
without using any follower of curves. We now will compute the points of the
second approximation on the basis of rolation
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J (1 + x)uy(r)de, (35)

5 c 5 1
112(0)=—6-0~'§+?g(t+0)<€l‘—9—-)dt=
1,5 &L —6+4 1
9—— ————— =

T w 77

6 9 7 54 36
S i =
u,(0, 4) = 0,4% - 717—,
u,(0, 6) =0,6%8% - 717—
(0, 8) = o,slig% - 717_
u(x) = %x —%, u,(t) = %gé—t - 717~ (36)

We continue in repeating this procedure till approaching the desired accuracy.
The correct solution is

u(x) = x. (37)
A part of the network for solving equation (33) is shown in figure 9a. The kernel
t + x; is generated in solving equation
v =1; Vo) = X;.

Let us assume that from the funetional values of the function u,(x) at the points x;
we determine an analytic expression (or approximation) of this function, this
will then be generated also by solving an appropriate differential equation. Respect-
ing the fact that K(x, t) € {0,2) holds for x, ¢ € {0; 1>, we will generate the expres-
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sion _Kﬁzc:_t_)_ The equation for generating the kernel will then be of the form
’ Xi
V'=0,5: Vioy = 5
We find step by step that
1
u () =—1t— 9
101 1
)= 158t~ 37

Fig. 9a

‘Same results will be obtained in using the method of successive approximations
without applying the computer. Choosing uy(x) = 0, yields uo)(f) = 0 and

1 1
u,(x)=—56—x—-—;—+-§i(t+x).0.dt=%x—%,
i.e.
5 1
“1(‘)—3' -9
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5 1 ,11%L/5 5 1 1
VN L I e 1,1 -
i 3!‘\6t+6tx 5! 9x)dt
—_S_x__1/+l_ _5_£+iﬁx*l~ﬁ~l_t 1——
679 3|83 62 92 9T
5 1 1(5 1 5 11
e b2 X — - x) =
I U A VIR A
_S5. 1.5 5 ! L _
6 9 " 54 36" 54 27
5 5 1 1 4
= + —_—

6 3 " ¥ ot
_ 0+1s-4  —6+4 100 1
= 108 54 T 108 F T AT

The correct solution is u#x) = x, (u(t) = t) as may be verified upon substituting
in equation (33)

5 1 1!
X~Fx—~9—+§—6[(t+x)tdt,

5 | B NI 5 t 1 2 1
X—FX—-§—+30(I‘ +tx)dt——6—x—?+? §+?xo,
6 9 "3\3 " 72)

X = X.

Solving nonhomogeneous Solterra’s equation with the first form of approximating
the kernel

The equation is of the form
u(x) + 4 [ K(x, t) u(t) dt == f(x). (38)
0

The fact that the equation contains an integral with a variable upper limit enables
in some cases to use integrators in the most natural regime for them, i.e. in a regime
of a continuous integration. One of such cases is the solution with the first form
of approximating the kernel whereby the kernel may be written in the form (or
we approximate it by the expression):

K(x,t) = Z a;,(x) b(t).

In applying this form of approximation, equation (38) becomes the form

ux) + 4% a0 ] b0 u() dt = £ (39)
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in case of a nonlinear equation
u(x) + 4 | K(x, t) F(u(t)) dt = f(x)
0
generally becomes the form

u(x) + 4 ‘2 ay(x) j’f b(t) F(u(t)) dt = f(x). (40)
i=1 0
The integral transform
[ bt) Flu(ty) dr
0

will be realized over the function of one argument and integrating may be continu-
ous with respect to the variable x. The result of this transform is merely a function

X
0 ‘;(M(g)d'é
) ~ Py =1 (w,ct)=1)
1
1
: -fa ) dt «
A i7‘>_ﬁ1c2(x)-/+ dt=1+X

{ ~ () dt
4 vy (X = {+X+ L
O] 1
i

Fig. 10

of x. In this way all funetions of the equation become dependent on one argument,
which means that we may write a diagram for (40) enabling a direct solution as it
is the case with ordinary differential equations with initial conditions. For instance,
in solving equation

u(x) =1+ [u(yds (41)
(V]

on the basis of the method of successive approximations we could proceed as
shown below, if we start from u,(f) = 0. The programming diagram may be
simplified to the form given in figure 11.
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The programming diagram is described by equations:
u® =1+ [u()dt,
u,(t) - u(t) = 0’ Ugo) = I’ u(t) =e".

Example:

u(x) — jfxu(t) sinu(t)dt = €.
0

X
’gﬂ{{)di’

y L) - #
L

Fig. 11

The kernel K(x, t) may be written in the form

1

K(x, 1) = ¥, ai(x) bi(1),

1
where a,(x) = x, b,(¢) = u(?).
Then the equation may be rewritten as follows

u(x) — x f u(t)sin u(t) dt = e™.
1]

The programming diagram is shown in figure 12.

#D_‘{Z} ’ won  (a)
= 7

4om U (X)
-]
™
|

T pie () :X I

T A () /‘W‘V(M(g))

Fig. 12
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Example:
u(x) =1+ f(t — x)u(t)dt.
1]

The kernel ¢+ — x may be written in the form

1 — x = a;(x)b(t) + ay(x)ba(),
where
a(x) =1, b =1
a)(x) = —x, b(r) =1,

ux)=1+ ftu(t) dt — x fu(t) dt,
(4] 0
u(t)y=1+ }tu(t) dt — tjtu(t) dt,
/] V]

u(t) =1+ ftu(t) + zfu(t).

The solution is

u(t) = cos t

t t
cost=1+ [tcostdt+t|costdt.
(1] 0

The programming diagram is given in figure 13. The solution is the function
u(t) = cost.

t
[tcostdt=[tsint — [sintdt]y = [tsint + cos t]p,
0

om &) D\ '):ﬂ-u)df_

. ifﬂ«)dt

Fig. 13
cost =1+ [tsint + cost]o — t[sin ]y =

=1+ ¢sint+cost —1—¢tsint,
coSt = COS 1.
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