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A study of differential equations and systems admitting
some solutions of the prescribed properties is very important
from the physical point of view /4/. The mathematical meaning
of this problem consists of their finding to the given solu=-
tions, Thus, such a problem can be regarded as an inverse to
the usual ones. Although nonconstructive approaches allowing to
omit certain alternatives only are considered sometimes in this
field, a "power” of sufficient conditions with respect to their
necessity may be judged at that time gt least,

Consider a system of first order differential equations

(1) X* = F(t,X) /ey,

%) The author gave a lecture on its applications at the Collo=-

uium on the Qualitative Theory of Differential Equations
?Szeged, August, 1984)
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where FecP : Rl x R" — R" and assume that all solutions
X(t) are uniquely determined by the Cauchy’s initial values

(2) X(0) = Xq

and continuously depend on them., Our aim is to secure the
existence of a solution X(t) of (1) with

(3) lim sup [[X(t) = 2 ()< o= |
[t]—>eo

where Q (t) is an everywhere continuous function of the
prescribed asymptotic behaviour.

The following intuitively clear lemma which i¢ only a
slightly modified assertion from /5, pp.l178-180/ allows us to
realize it.

Lemma. Let {X (t)] be_the_sequence of sglutions_of (1) such

that_every element xk(t) is_defined_on the interval <'Tk'Tk> B

where lim Tk = o= and
koo

(4) X (1) - (et te =TT >

where I denotes a bounded subset_of R" and (1 (t) 1s_the_sbove

function. Then (1) _pgossesses_at least one solution X(t) with
3).

Proposition. The system (1) admits a solution X(t) with (3),
when_the following two_conditions are Satisfied:

W wn wn wn wn R wn anVem wh Gn e we e o - e e e e e

F(0,X) p F(0,=X)

(1)
[F(0,x)[ [F(0,=X)|

/F(0,X) # 0/
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of_the_problem (1) (1 (1), where
(Lp)  X(2pTy) = x(0) + ot 0t ™) pe(0.1),

j'rklg (0,0c) /see Lemma/ and 1 < i...const.

Pr oo f, Let us consider the sequence of the boundary value
problems (1)(1(1,) for k = 1,2,... and define in a correspon-
ding way the modified translation operator T /see /5// as

[X(Z p Ty sX0)=X(0)~ &1_(1(:1-“] /(:/ﬂ-k) for me(0,1
T(“‘(XO):.

F(O,XO) for /4. = 0,

where X(t,xo) = X(t,X(0)) is the solution X(t) of (1) with (2).

It is obvious that the problem (l)n(ll) is solvable for
a fixed k i1if and only if

(5) Tl(xo) =0,

But since we assume on a priori uniform boundedness of the
expressions from (ii), which implies

Ta(Xg) # 0 M€(0.1)
" for |l Xoilé R...great enough number, the satisfying

(6) ' TolXg) ¥ 0O for [[xgll =R
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is enough instead of (5) (see /3, p. 20/, for more details see
also /1/) and consequently, we may only assume

To(Xg) = (1 =y )Tp(=Xg) # O for ve(0,1),
because the topological degree
d [To(Xg)=To(=Xg)y IXgll & R,O] g0  for lixgll =R

with respect to the Borsuk theorem (see /3, p. 24/}. That is,
however, (i) for F(O,X) # O,

This guarantees the existence of solutions xk(t) of
(1) 1(1;) with (4) on the interval < -T,,T, > for k = 1,2,...
and that is why at least one solution X(t) of (1) with (3)
must exist with respect to Lemma, too.

Remar k. If there exist such a function Y(t) and such a
constant ( that

(7) F(t + W, Y(t + W )) = F(t,'Y(t)),

the existence problem of a solution X(t) of (1), which is par=-
tially periodic (i.e. in one its component at least), is rea-
sonable.

Since (7) yields for such solutions X(t) that X (t+ w ) &
= X°(t), it is necessary to replace condition (3) by

X(kw) = X(0) = £) (kw) [T = kw/

with one component of the vector.fl (w) not equal to zero at
least and Lemma by the assumption of an '&1(k¢u)-periodicity'
of the function F(t,X) in X allowing to provide an w -partial
periodic prolongation of solutions X(t) on the whole interval
(oo ,00).
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Ex ample. Consider the special system (1) for n = 2:

(1) X" = AX + Fg(t,X),
x 01 ]

where X = » A= . Fo(t,X) - 0
Y c O f(x)+e(t)+ca-;t

and f(x +.f1) = f(x), e(t + ) = e(t).
In view of Proposition and Remark, it can be proved in an
analogous way to /2/ that (1°) admits for O ¥ |c| L 1/ w
a solution X(t) with y(t + @ ) 2 y(t) and x(t + ¢ ) * x(t)e
Following the idea of R, Re i s 8 1ig /6/, we can
furthermore specify this solution X(t) to be just one under
the hypotheses

0£e(x - y)2+ [f(x) - f(y) (x - y) < (x - 92,

resp, 0 = {f(x) - f(y)] (x = y) + c(x - y)2,

holding for all real x,y.

Further important remark, Taking into
account the boundedness of solutions of (1) /)(t) = O/, it
can be seen by stepwise critical reading the proofs in /7/
that the criteria, obtained there for the so called D’~-diver-
gent solutions via tne Liapunov’s direct method, guarantee
simultaneously the uniform a priori boundedness of those to
(1) N (in) for e (0,1>, and conseguently a bounded solution
is admitedd under (i).

- 161 -



/1/

/2/

/3/

/4/
/5/

/6/

77/

REFERENGES

Andres, Jd,: Periodic derivative of solutions to non-
linear differential equations, to appear in Czech, Math,

Je

Andres, J.: On the equation x°““+ ax’“+ bx“+ csin x =
= p(t), to appear in Proceed. Conf.Diff.Eqs.held in KoZo-
brzeg, 1984,

Fué&dik, S, et al.: Spectral Analysis of Nonlinear Ope-
rators, Springer, LNM 346, Berlin - Heidelberg - New York,
1973,

Horédk,R,, Pe & ina, Jo: Private communication.

Krasnoselskdii, M.A.: Translation Operator
along Trajectories of Differential Equations (Russian),
Nauka, Moscow, 1966.

Reis s ig, R.: Continua of periodic solutions of the
Liénard equation, Constr.Meth.Nonl.BVPs Nonl, Oscill,,
ed.J.Albrecht, L.Collatz and K.Kirchg@ssner, Birkhduser,
Basel, 126-133,

Vorac¢e k, J.:, Ober D'-inergente L8sungen der Diffe-
rentialgleichung x(N)=f(x,x",...,x(n=1);t),"Acta UPO 41,
1973, 83-89,

-~ 162 -



SOUHRN

JISTA UZITECNA PROPOZICE PRO NELINEARNT DIFERENCIALNEI SYsTEmy
S RESENIM PREDEPSANYCH ASYMPTOTICKYCH VLASTNOSTE

JAN ANDRES

V préci je vyslovena propozice, umoZnujici studium obec-
nych diferencidlnich systéml vzhledem k existenci jejich fe-
$eni, majicich predem zadané vlastnosti. S vyuZitim modifiko-
vaného Krasnoselského lemmatu a vysledkl teorie topologického
stupné zobrazeni je tento problém pfeveden na otézku a prior-
nich odhaddé FeSeni jisté posloupnosti okrajovych uloh a li=-
chosti normovaného operétoru pravych stran.,
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PE3OME

OIHO TIOJESHOE INPEMIOJOXEHNE I8 HEJNVHEMHHX IV$®®EPEHLIMATBHHX
CVUCTEM PEUEHVE KOTOPHX OBJIALAET 3AIAHHHMM
ACYIMIITOTHMUECKVIMM CBONCTB AMM

fAH AHIPEC

B pafGoTe chopmyaupoBaHO npexnjoxeHue, yHNo6GHOe IJAA M3ydeHUS
obuux nubpdPepeHUUBIBHHX CHCTEM IO OTHOMEHMD K CYNeCTBOBaHMD HX
pemleHuii ¢ 3afeHHHMU cBolicTBamMu. [lpu nomomm o6paboTaHHO% JeMMH
HpacHoCeJbCKOTO M pe3yJbTATOB TEOpUM TOMOJOTHUEcCKoit cTeneHu
oTOOpaxeHUs NPUBOAAT BTy nNpobieMy K BONpPOCy 06 aNpUOPHHX OleH=-
Kax pelleHuii OXHOJ cepuM KpaeBHX 38184Y ¥ HEeUeTHOCTM HOPMMUDOBEH=-
HOTO OmnepaTopa NPaBHX yacTeii.

AUPO, Fac.r.nat.85, Mathematica XXV, (1986)
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