Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Jan Stépéan
Propositional calculus proving methods in Prolog

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 29 (1990), No.
1, 301--321

Persistent URL: http://dml.cz/dmlcz/120239

Terms of use:

© Palacky University Olomouc, Faculty of Science, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/120239
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM
1990 MATHEMATICA XXIX VOL. 97

Katedra vypocetni techniky
prirodovédecké fakulty Univerzity Palackého v Olomouci

Vedouci katedry: Doc.RNDr.DrantiSek Koliba, CSc.

PROPOSITIONAL
CALCULUS PROVING METHODS IN PROLOG

JAN STEPAN

(Received March 31, 1989)

Two methods of proving the theorems of the propositional
calculus are described in this paper - Wang's algorithm (acc.
[1]) and the method of analytical tables (acc. [3]). Two pro-
grams in Prolog are quotated to Wang's algorithm (from (1] and
[2]), for the method of analytical tables author ‘s program is
presented. Efficiency of the programs is demonstrated on
examples. Furthetr, the practical and didactic value of pre-
sented methods and programs is discussed.

I. WANG'S METHOD

Wang's method lies in the transformation of given formula
to the sequence of formulas, in which the relation of inference
is held. Further, this sequence is simplified by transformation
of its constituents (formulas). During these modifications

either inference relation among these formulas is confirmed or

- 301 -

it is evident that given formula is not provable. Proper pro-
cess is following:

(Denotation: symbols ~, & , vV, 2 , <=> denote negation,

conjuction, disjunction, implication and equivalence respecti-
vely; = is the symbol of inference - let’s expression A -» B,
where A, B are sets (of formulas), call sequent, and the set
of formulas A antecedent and set B succedent of the sequent

A —->B.

1.

We express the given formula into the form of sequence, in
which premises are on the left of the symbol — (separated
by comma) and assertion is on the right of the symbol —
for instance

premisel, premise2, ..., premisen —» assertion;
any of sequences separated by — can be empty.

The transformations of partial formulas are performed by

these rules:

- if the formula is negation, i.e. ™A, we erase it and on
the other side of the sequent according to symbol = we
add the formula A - for instance

pvag, Ar&s), ™, pvr—=> s,
we change to sequence
pvg,pvr,p-=>s,r&s, q;

- if the formula is conjuction in antecedent or disjunction
in succedent, we replace these connectives by comma, for
instance

p&a, t & (™pvs)—> ~gv~r
we change to sequence
p, 9, L'y ¥p Vv s —> ~g, ~r;

- if the formula is disjunction in antecedent or con-
junction in succedent, we decompose considerated sequent
to two sequents - the first one contains one argument of
the formula, the second one contains remaining argument;
each of these sequents must be further transformated se-
parately; for instance

- 302 -

r, vs-—->~, &S

e

r, ¥p >~g, T & s r, s —>~q, T & s
L,%p —>~q,"T r,~p —>~q,s r,s —»~q,~T r,s > "q, s

- if the formula is implication or equivalence, we re-
place it on the principle of the schemas:

A=> B ... "Av B, or
A<¢=>B ... (A B)&(B => A), event.
A<=>B ... (M&~™B) v (A& B).

3. If there is the same formula both in the antecedent and
succedent, the given formula is a theorem. If it is not
more possible to apply any of the rules mentioned in 2
(i.e. both antecedent and succedent are sequences of ato-
mic formulas and no of them occurs in the antecedent and
the succedent at the same time), the given formula is
not provable.

Note: In both following programs based on Wang's method
there is the symbol of inference used as the symbol for impli-
cation, which is not quite correct. It is motivated by tech-
nical reasons, the function of proper programs is not influ-
enced and it is always evident from the documentation of the
proofs which sense of the symbol ® is considered.

II. ALGORITHMS IN PROLOG TO WANG'S METHOD

Algorithm 1 - comes from [1], where it is published with
errors. In the same way it is accepted even in [2]. I bring up
the original version here, incorrect clause is mentioned la-
tely.

Logic program for algorith 1:

/% Operations x/

2-op(788,xfy, <=>). /% equivalence x/
-op(65@,xfy,=>). /% implication x/
:-op(6@8@,xfy,v). /% disjunction x/
-op(55@,xfy,&). /% conjunction x/
-op(5@8,fy, ™). /% negation x/

- 303 -

/% Read in and try to prove formula;
write ‘valid or ‘not valid’ accordingly x/
formulas:- repeat,write(Formula:’),nl,
read(T),(T==stop;theorem(T),fail).
theorem(T):- nl,nl,
(prove([J& [1=> [1& [TD,!,n1,
write(Formula is valid);
nl,write(Formula is not valid)),nl,nl.
to_prove(T):- write(‘prove,),nl,write(T),nl,nl,
prove(T).
prove(El):- rule(El,E2,Rule),!,
write(E2),by—rule(Rule),nl,
prove(E2).
/% Case for v on l.h.s. %/
prove(L&[H v I} T] => R):- !,
first_branch,to—prove(L& [H:T] = R),
branch-proved,
second_branch,to_prove(L & [I{T] = R),
branch.proved.
/% Case for v on r.h.s. %/
prove(L& [H&I!T] => R):- !,
first_branch,to_prove(L > R&[H!T]),
branch_proved,
second_branch, to_prove(L & R& [1:T]),
branch_proved.
/% Case for atom x/
prove(L& [H!T] = R):- !,prove([HIL]& T => R).
prove(L => R& [H!T]):- !,prove(L => [HIR]& T).
/% Finally, check whether tautology x/
prove(T):- tautology(T),write('Tautology.'),nl.
prove(_):- write(‘This branch is not provable.’),fail.
/% Case where => appears in one of the sides x/
rule(L & [H = I!T] > R, ‘
L&[*H v I'T] => R, rule.5).
rule(L => R&[H => 1:7],
L => R&[™H v I!T], rule_6).

- 304 -

/% Cases where <{=> appears in one of the sides x/
rule(L& [H <=> I.T] => R,

L& [(H = 1)&(I => H)!T]) => R, rule_7).
rule(L => R& [H <=» I:T],

L => R [(H =>)& (I => H)!T], rule_B).
/% Case where ~ appears x/
rule(L& [*H!T] =y R& R2,

L&T => R& [H!R2], rule_2).
rule(L1& L2 => R& [VH& T],

L1& [H:L2]) => R& T, rule.2).
/% Case for & on 1l.h.s. x/
rule(L & [H&I:T] => R,

L& [H,IiT] => R, rule_3).
/% Case for v on r.h.s. x/
rule(L => R& [H v I:T],

L = R&[H,I!T], rule.3).
tautology(L& [] => R& []):- member(M,L),

member(M,R).

branch_proved: - write(“this branch has been proved.'),nl.
first_branch:- nl,write(First branch:).
second_branch: - nl,write('Second branch:).
by_rule(R):- write(’ by “),write(R),nl,nl.
member (H, [Hi_]).
member(I,[_!T]):- member(I,T).

Examples of algorithm 1 performance (by ji]):

Formula:

a => a.

(J&l]=>[1&[*a v a) by rule_é6
[Je[] > []&' ["’a,a] by rule_3
[14 (] & [1& [a] by rule_2
Tautology.

Formula is valid

Formula:

(a => b)& (b => ¢c) => (a => ¢).

- 305 -

[1e[]=>[J&Pa=>bk(b=>c)) v (a=pc)] by rule_6
(18] = [1&[((a => b)& (b =3 c)),(a > o)) by rule_3
[laa=>)& M =>c)) =>[Jala=c] by rule-2
[Jela=>b)& b =>0c)] => []&lav c] by rule_é
[Jgla=>0bb=>c] =>[]%[avc] by rule_3
[Jawlvavib,o=>c] =>[1%][avc] by rule.5
[l1&vavib,o=cl &[]%[a,c] by rule.3
[1wv[a,va vib,b=c] = []%[c] by rule-2

First branch: prove,

la] ¢-[a,b => c] => []e[c]

[a] ¥[b =>¢c] => [14 [a,c] by rule.2
fala b v el =2 [18 [a,c] by rule_5
First branch: prove,

[al4-[v0] => [18- [a,c]

[a] $[1 = [:I!r[b,a,c] by rule_.2
Tautology.

This branch has been proved.

Second branch: prove,

[a&[c] => []¥[a,c]

Tautology.

This branch has been proved.

Second branch: prove, =

[a] 8-[b,b => c] => [1% [c]

(b,als-[wb v cl => [I3 [cl by rule_5
First branch: prove,

[b,al & [vb] =>- [J& [c]

[b,al&[1 = [Is[b,ec] by rule_2
Tautology.

This branch has been proved.

Second branch: prove,

(b,a] &[]l » [1%[c]

Tautology.

This branch has been proved.

Formula is valid.

These examples are quotated as it was mentioned above. But
this program evaluates proper formulas as improvable, because it

- 306 -

contains an error. Apart from that algorithm 1 causes runaway
for the (improvable) formula

(wpvag)bgvro)¥hr vs)¥uvs) =) (wpvu) (%)

which is recommended to verification of this program in |1| and
|2|. The first deffect can be remedied by changing the second

of rules labelled as "rule 2" to

"rule(Ll L2 = R | HT|, Ll |HL2| = R T, rule 2).".

The second deffect can be put away by suitable location of cut
in the clauses "prove" (separating branches). Then we can intro-
duce the proofs of other theorems for comparison.

Formula:

p Vv ND..

[IY0T = [1slp,~p] by rule_3
[1vlp] => 111 : by rule_2
Tautology.

Formula is valid.

Formula:

~v(p ¥ ap).

[1elpen~p] = [18[] by rule_2
[T lp,wp]l => [1%([] by rule_3
[P] g1 = [1v(p) by rule_2
Tautology.

Formula is valid.

Formula:

~p¥p.

First branch: prove,

(1401 = [1¥[~]

(10l =>[1%[] by rule_2
This branch is not provable.

Formula is not valid.

Algorithm 2 is founded on Wang s method as well. It differs
from algorithm 1 especially by technique of programming and more

- 307 -

over by documentation of proof. The proof of (nonvalid) formula
(p => q) => ((p =>) =>(q => r))

following program leads to runaway, for quotated formula (%) as
well. So it provides only partial decision of given formula
provability.

Logic program of algorithm 2:
/% Wang’'s algorithm x/

:-op(788,xfy,). /% equivalence x/
:-op(6088,xfy,=>). /% implication %/
:-op(508,xfy,v). /% disjunction x/
:-op(4@8,xEy,¥). /% conjunction x/
:-op(308,£fy,n). /% negation */

wang: - nl,nl,write(’Formula:'),nl,read(T),
(T==stop,!;prove(T),wang).
prove(L => R):-
nl,theorem(L ¢ true => R v false),!, /x procedure theorem x/
write(Formula is a theorem’); /% requires this x/
nl,write('Formula is not a theorem’).
prove(T):- prove(true => T).
theorem(T):- nl,write(Prove:),write(T),(tautology(T));
perpartes(T);transf(T,T1),theorem(T1)).
tautology(L => R):- conmember(Exp,L),dismember(Exp,L),!,
nl,write(” This is tautology),nl.
perpartes(L => R):- conconc(Ll,(El v E2)% L2,L),
conconc(L1,L2,LL),
nl,write(First branch:),nl,
theorem(E1l% LL => R),
nl,write(‘Second branch:),nl,
theorem(E2& LL => R).
perpartes(L => R):- disconc(R1,(E1%E2) v R2,R),
disconc(R1,R2,RR),theorem(L => E1 v RR),
theorem(L => E2 v RR).
transf(L => R,LL => Exp v R):- /% negation x/
conconc(L1l,~Exp¥L2,L),
conconc(L1,L2,LL).

- 308 -

transf(L = R,Exp%L => RR):- disconc(Rl,~Exp v R2,R),
disconc(R1,R2,RR).

transf(L => R,LL => R):- conconc(Ll,(A%B)3L2,L),
conconc(L1,A% (B& L2),LL).

transf(L => R,L => RR):- disconc(R1,(A v B) v R2,R),
disconc(R1,A v (B v R2),RR).

transf(L => R,LL => R):- conconc(Ll,Exp% L2,L),rule(Exp,Expl),
conconc(L1l,Expl%L2,LL).

transf(L = R,L => RR):- disconc(Rl,Exp v R2,R),rule(Exp,Expl),
disconc(R1,Expl v R2,RR).

/% Rules x/

rule(A => B,~A v B).

rule(A <=> B,(~A%w~B) v (A¥B)).

conconc(true,Exp,Exp).

conconc(Term & Expl,Exp2,Term »Exp3):-
conconc(Expl,Exp2,Exp3).

conmember(Term,Exp):- conconc(Expl,Term& Exp2,Exp).

disconc(false,Exp,Exp).

disconc(Term v Expl,Epo;Term v Exp3):-
disconc(Expl,Exp2,Exp3).

dismember(Term,Exp):- discont(Expl,Term v Exp2,Exp).

/%Empty expression on the left is true, on the right is falsex/

Examples of algorithm 2 performance:
Formula:
p => p.
Prove: p¥%true => p v false
This is tautology
Formula is a theorem

Formula:

p v ~p.

Prove: true¥true => (p v ~p) v false

Prove: true ¥true => p v ~p v false

Prove: p &true ¥true => p v false
This is tautology

Formula is a theorem

- 309 -

Formula:

~phap).

Prove: true % true => ~(p%¥ ap) v false

Prove: (p¥ ~p) ¥true >true => false

Prove: p% ~p ¥ true¥ true => false

Prove: p% true »true => p v false
This is tautology

Formula is a theorem

Formula:

~p ¥p.

Prove: true & true => ap & p v false

Prove: true & true =) ~p v false

Prove: p % true % true => false

Formula is not a theorem

Formula:

(p => qg) & (g =>) => (p => r).

Prove: ((p => q) ¥ (g => r)) % true => (p => r) v false
Prove: (p => q) ¥ (g => r) % true => (p => r) v false
Prove: (vp v g) ¥ (g => r) & true => (p => r) v false
First branch:

Prove: ~p ¥ (g => r) % true => (p => r) v false

Prove: (q => r) & true => p v (p => r) v false

Prove: (vg v r) ¥ true => p v (p => r) v false
First branch:

Prove: ~q % true => p v (p = r) v false

Prove: true => q v p (p = r) v false

Prove: true => g v p

v
Prove: true => qv p v (vp v r) v false
v ~p vr v false
v

Prove: p v true = q pvrv false
This is tautology
Second branch:
Prove: r ¥ true => p v (p => r) v false
Prove: r % true => p v (wp v r) v false
Prove: r ¥ true => p v ap v r v false
This is tautology

- 310 -

Second branch:
Prove: q % (g => r) ¥ true => (p = r) v false
Prove: q ¥ (vgq v r) & true => (p => r) v false
First branch:
Prove: ~q ¥ q ¥ true => (p => r) v false
Prove: q & true => q v (p => r) v false
This is tautology
Second branch:
Prove: r % q & true => (p => r) v false
Prove: r & q 3 true => (vp v r) v false
Prove: r 3 q % true => ap v r v false
This is tautology
Formula is a theorem

The form of algorithm 2 listings is better arranged than
that of algorithm 1. The protocol of proof is closely related
to logical symbolics, it is not necessary to differentiate two
meanings of the symbol => , it can be considered only as im-
plication. Then it is evident, that given formula is trans-
formed to form (of tautology)

X% A= Xv8,

where X, A, B are arbitrary formulas. The front memeber is
concsidered as a conjunction, the back one as a disjunction of
certain expressions - subformulas of given formula.

III. METHOD OF ANALYTICAL TABLES

Method of analytical tables is founded on decomposition
of formula to simpler components - subformulas of considered
formula. The models of the decomposition are rules for con-
struction of tables. The analytical table of the formula X is
taken as a dyadic tree (graph), the nodes of which are occu-
rences of the formulas, and which is constructed by following
way - by the help of two-type rules:

- 311 -

- conjunctive of form K and disjunctive of form D

K1 pD1|D2
K2

The process of construction:
1.
2.

the root of the tree is formula X;

let formula Y be terminal node of the given tree

if there - on the way from X to Y - occurs a formula K,
then any of formulas K1 or K2 as the only successor of
node Y can be added - we usually add step by step firstly
K1, secondly K2 (the tree in considered branch develops
linearly);

if there - on the way from X to Y - occurs a formula D,
then formula D1 can be added as left successor and D2 as
right successor of formula Y (the tree in the node Y de-
velops into two branches).

The branch of given tree is said to be closed, if it

contains a formula and its negation. Analytical table (tree)
is called to be closed, if every of its branches is closed. The
proof of the formula X is then understood as a closed table

for formula ~X. Such accepted proof seems to demonstrate that
every branch of decomposition of formula ~X forms inconsistent
set of formulas. That is why the formula ~X inconsistent,
hence formula X is a tautology or theorem.

Decompositional rules, which may be used in above men-

tioned process, are according types:
- conjunctive rules with two successors

X &y (X v Y) (X = Y)
X ~X X
Y ~Y _aY

- conjunctive rules with one successor

pX X <= Y a(X £=> Y)
X (X => Y) ¥ (Y =5 X) X <D

<

- disjunctive rules

~(X ¥ Y)
~X | oAy

<
<
=<
>
i\
v
=<

>
—<
R
>
—<

Example: proof of formula (p => q) => (ag => ap)

1. ~((p => q) => (vq => ap))

2. (p => q) & ~(vg => ap) (1)
3. p =>q (2)
4. ~(~vg => wp) (2)
5. ~p q (3)
6. ~q ~q (4)
7. ~op ~ap (4)
8. p p (7)

In this proof on the left there are lines numbered, on the
right there is the source of formula, which occurs here, in-
troduced by a line number. Both branches of proof are closed.
In the left branch there is a contradiction between formulas
in lines 5 and 7 or 5 and 8, in the right one there is a
contradiction between formulas in lines 5 and 6. There is no
need to continue in decomposition of given branch when contra-
diction appears. In this proof there are redundant the formulas
of line 8 and in the right branch that of line 7. The proof
can be shortened by the preferring of the conjunctive type
rules applications.

IV. ALGORITHM TO METHOD OF ANALYTICAL TABLES IN PROLOG

Algorithm 3 is written in Prolog-8@, that is why here are
some differences from algorithms 1 a 2. Especially, there

differs priorities of "operations" - logical connectives, but
only by numerical values. Usual convention of descending
prioriry of sequence of conectives ~, %, v, = , & is

respected. It appears in the proof protocol - the brackets
are omitted always there, where the order of operations is
given by implicit relationship.

Optimizing of proof construction is not applied, because
it would make computation longer.

In proof protocol the branches are signed only as the
first one and the second one. Corresponding assignment is re-
alized on the principle of LIFO.

- 313 -

Algorithm works as follows - if it finds out the first
branch, in which there is no contradiction, the computation is
finished, because the formula cannot become a theorem.

Logic program of algorithm 3:
/% Operations - logical connectives x/

- op(21@,xfy, ¢&>) /% equivalence x/
:- op(l8@,xfy,=>) /% implication %/
- op(15@,xfy,v) /% disjunction x/
- op(l2@,xfy,%) /% conjunction x/
:- op(98,xfy,n) /% negation */

/% Organisation of reading and proving of formula x/
formula:- repeat,nl,nl,write('Formula;'),nl,
read(F),(F==stop;theorem(~F),fail).
theorem(T):- nl,nl,write(Proof of ‘inconsistency of formulq:’),
nl,write(T),nl,nl,write(Main branch: '),
(seq([7],[1]),!,n1,nl,write(formula is theorem);
nl,nl,write(formula is not theorem’)).
/% Decomposition of formula and branching x/
seq([x1 Y],2):- nl,write(X),fail.
/% Conjunctive rules x/ -
seq([vax1l X2],Y):- append([X1],Y,T),
append(X2, [x1],2),!,
seq(Z,T).
seq([X1 & X2 x3],Y):- append([X1,Xx2],Y,T),
append(X3, [x1,x2],2),!,
seq(Z,T).
seq([~(X1 v X2)1X3],Y):- append([~X1 & aX2],Y,T),!,
seq([wX1 & ~Xx21X3],T).
seq([w(X1 => X2)| X3],Y):- append([X1& ~X2],Y,T),!,r
seq([X1 & ~X21X3],T).
seq([X1 <=> x2{x3],Y:- append([(X1 => X2) & (X2 => Xx1)],Y,T),!,
seq([(Xx1 => x2) & (X2 => X1)|x3]}, T).
seq([~(X1 <=> x2)|Xx3],Y:- append([~X1 <=> X2],Y,T),!,
seq([vx1l <=> Xx21x3],7).

- 314 -

/% Disjunctive rules x/
seq([w(X1 % x2)| X3],Y):- append([~X1],Y,T1),
append([wox2],Y,72),!,
vl,seq([~x11x3],71),1,
v2,seq([wX21%3],72).
seq([X1 v X21X3],Y):- append([x1],Y,T1),
append([x2],Y,72),!,
vl,seq([x11x3],T1),!,
v2,seq([x21x3],T12).
seq([X1 => X21x3],Y):- append([~x1],Y,T1),
append([x2],Y,72),!,
vl,seq(fvx1] x3],71),1,
v2,seq([x2]x3],72).
/% Atomic formula x/
seq([_Ix],Y):- sea(X,Y).
/% End of decomposition x/
seq([],X):- scontr(X,X).
append(f 1,L,L).
append([HIT],L[H| u]):- append(T,L,u).
/% Searching of contradiction in actual branch x/
scontr([],):- fail.
scontr([X1Y],Z):- (contr(X,Y),nl,write(‘branch closed));
scontr(Y,Z).
contr(X, [~x| _1).
contr(wX, [X|_1). L
contr (X, [_1Y]):- contr(X,Y).
vl:- nl,nl,write(1. branch’).
v2:- nl,nl,write(2. branch’).

Examples of algorithm 3 performance:

Formula:

p =2 p.

Proof of inconsistency of formula:
~(p => p)

- 315 -

Main branch:

~(p => p)
p & ~p

p

~p

branch closed

formula is theorem

Formula:
pv p.
Proof of inconsistency of formula:
(p v ~p)
Main branch:
~(p v ~p)
~p & ~ap
~p
wap
p
branch closed

formula is theorem

Formula:

~(p ¥ ap).

Proof of inconsistency of formula:
~w(p & wp)

Main branch:

ra(p & wp)

p & ap

p

~p

branch cloced

formula is theorem

Formula:
~p3fp.

Proof of inconsistency of formula:
N(Np 3 p)

- 316 -

Main branch:
wivp ¥ p)
1. branch
vap
p
formula is not theorem

Formula:

(p=>a) ¥ (q=>r)=>(p=>1).
Proof of inconsistency of formula:
~((p=>q)%& (g =>r1) => (p =>r))
Main branch:
~v((p => q) ¥ (q => 1) => (p => 1))

(p=>9) & (g=>1)

~(p => 1)

p& ~r

p=>aq

1. branch 2. branch
~p

g =>rT q =>r

1. branch 1. branch
~q ~q

P P

w~r ~T

branch closed branch closed
2. branch 2. branch

r

p p

AT wr

branch closed branch closed

formula is theorem

V. COMPARISON OF ALGORITHMS

Let s choose the law of implication transitivity as re-
presentative - it is more complicated formula, individual

- 317 -

proofs are regardless of used algorithm approximately of the
same length and in all proofs multiple branching is used.

Firstly we can assume that documentation of proofs at
all algorithms is badly arranged as soon as the p;oof "length"
overpasses screen range. It seems to be a serious didactic
deffect, if uwer wants to understand more complicated proofs.

If we eliminate algorithm 1, which has not a character
of logic program (see [2]), there are algorithms 2 and 3 left
to evaluation. The length of the proof made by algorithm 2
will be usually little bit less than that of algorithm 3.
Essential advantage of algorithm 3 is the fact that

- during realization the proof the formulas become more and
more simple, so the proof is clearer than at the other
algorithms,

- formulas are in usual syntactic form and so it is easy
to find the reason of contradiction in actual branch

(closed branch).

- 318 -

SOUHRN

METODY DOKAZOVANT TEOREMO vYROKOVEHO POCTU V PROLOGU

JAN 3TEPAN

V &lédnku jsou popsdny dva algoritmy.dikazu teorémd vyro-
kového poétu - Wangova metoda a metoda analytickych tabulek.
Wangova metoda je doloZena dvéma programy v Prologu pfevzaty-
mi z [1] a [2]. Pro metodu analytickych tabulek je pfedloZen
autordv program. Efektivnost programt je demonstrovédna na pfi-
kladech. Ddle je diskutovdna praktickd a didakticka hodnota
uvedenych metod a programi.

- 319 -

PEGDME

METOIH LOKASATEJNBCTBA TEOPEMOB ITPONOSMIMIOHAJIBHOI'O
VICWICJIEHMA B MPOJIOTE

fl. WTENAH

)

B arolt crarre onuceHm nBe aaropudue AokeseTexLCTBA
TEOPEeMOB NpPONMOSUNMOHAABHOT'O MCUMCAEHMS - MeTOh BaHra u
MeTOJ, eHeANTHUYHNX Telbaun. Meron BaHra sBafeTcs OCHOBE-
HueM IBYX nporpams, KOTOpHe NpMHATH us /1/ M /2/. las
MeTOZla HAJMTUYHHX TabJMI sleCh IOKEeSeHA NMpPOrpeMse 8BTO-
pa. lleficTBeRHOCTH 3TMX IPOrpaMM NOK&8s8HAa HA npuMepax. Jla-
xee sjnech o6cywaeHa NpaKTHueckes M yueCHas NEHHOCTL BTHX
aaropuduMoB M mporpaMM.

- 320 -

REFERENCES

[il] Coelho,H.-Cotta,JC.-Pereira, L.M.: How to
solve it with Prolog. Lisboa, LNEC 1985.

2] cCoelho,H. -Cotta, J.C.: Prolog by example. Springer-Ver-
lag 1988.

[3] smullyan, R.M.: First order logic. Bratislava, ALFA 1979.

Author’s address:
RNDr.PhDr.Jan St&pan, CSc.

katedra vypocetni techniky
pfirodovédecké fakulty UP

771 46 Olomouc
Czechoslovakia

Acta UPO, Fac.rer.nat.97, Mathematica XXIX, 1990, 301 - 321.

- 321 -

		webmaster@dml.cz
	2012-05-03T21:16:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

