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PROPOSITIONAL 
CALCULUS PROVING METHODS IN PROLOG 

JAN STEPAN 

(Received March 3 1 , 1989) 

Two methods of proving the theorems of the propositional 

calculus are described in this paper - Wang's algorithm (ace. 

[l]) and the method of analytical tables (ace. [3]). Two pro­

grams in Prolog are quotated to Wang's algorithm (from [l] and 

[2]), for the method of analytical tables author s program is 

presented. Efficiency of the programs is demonstrated on 

examples. Further, the practical and didactic value of pre­

sented methods and programs is discussed. 

I. WANG S METHOD 

Wang s method lies in the transformation of given formula 

to the sequence of formulas, in which the relation of inference 

is held. Further, this sequence is simplified by transformation 

of its constituents (formulas). During these modifications 

either inference relation among these formulas is confirmed or 
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it is evident that given formula is not provable. Proper pro­

cess is following: 

(Denotation: symbols ~, & , v, => , <=> denote negation, 

conduction, disjunction, implication and equivalence respecti­

vely; —> is the symbol of inference - let's expression A -» B, 

where A, B are sets (of fo rmu las ) , call sequent, and the set 

of formulas A antecedent and set B succedent of the sequent 

A -» B. 

1. We express the given formula into the form of sequence, in 

which premises are on the left of the symbol -*(separated 

by comma) and assertion is on the right of the symbol —> , 

for instance 

premisel, premise2, ..., premisen -> assertion; 

any of sequences separated by ~> can be empty. 

2. The transformations of partial formulas are performed by 

these rules: 

- if the formula is negation, i.e. ^ , we erase it and on 

the other side of the sequent according to symbol —> we 

add the formula A - for instance 

p v q, v ( r { s), ~q, p v r -> s, ̂ p 

we change to sequence 

p v q , p v r , p-*s, r * s, q_; 

- if the formula is conduction in antecedent or disjunction 

in succedent, we replace these connectives by comma, for 

instance 

p & q, r $ (~p v s) —> ~q v ~r 

we change to sequence 

p, q, r, ~p v s -> ^ , ~r; 

- if the formula is disjunction in antecedent or con­

junction in succedent, we decompose considerated sequent 

to two sequents - the first one contains one argument of 

the formula, the second one contains remaining argument; 

each of these sequents must be further transformated se­

parately; for instance 
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г, ~p v s -> ~q, ^ A s 

*p -> ~q, ~г & s г, s -> ̂ q, ^т 81 s 

r , ~p -> ~q , "c r , ~p -> ~q , s r , s -> ~q , ~r r , s -> ̂ q , s 

- if the formula is implication or equivalence, we re­

place it on the principle of the schemas_: 

A => B . . . ~A v B, or 

A <=> B ... (A => B)*(B => A ) , event. 

A < = > B . .. (~A&~B) v (A & B ) . 

3. If there is the same formula both in the antecedent and 

succedent, the given formula is a theorem. If it is not 

more possible to apply any of the rules mentioned in 2 

(i.e. both antecedent and succedent are sequences of ato­

mic formulas and no of them occurs in the antecedent and 

the succedent at the same time), the given formula is 

not provable. 

Note: In both following programs based on Wang's method 

there is the symbol of inference used as the symbol for impli­

cation, which is not quite correct. It is motivated by tech­

nical reasons, the function of proper programs is not influ­

enced and it is always evident from the documentation of the 

proofs which sense of the symbol => is considered. 

II. ALGORITHMS IN PROLOG TO WANG S METHOD 

Algorithm 1 - comes from [l], where it is published with 

errors. In the same way it is accepted even in [2]. I bring up 

the original version here, incorrect clause is mentioned la­

tely. 

Logic program for algorith 1: 

/x Operations x/ 

_:-op(700,xfy, < = > ). 

_:-op(650,xfy,=> ). 

_:-op(600,xfy,v). 

_:-op(550,xfy,$). 

_:-op(500,fy,^ ). 

/x equivalence x/ 

/x implication x/ 

/* disjunction x/ 

/x conjunction x/ 

/x negation x/ 
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/* Read in and try to prove formula; 

write valid' or not valid' accordingly */ 

formulas:- repeat,write( 'Formula: '),nl, 

read(T),(T==stop;theorem(T),fail). 

theorem(T):- nl,nl, 

(prove([ ]*[]-> [ ] * [T]),!,nl, 

write(Formula is valid); 

nl,write('Formula is not valid')) ,nl,nl. 

to.„prove(T):- write( 'prove, '),nl,write(T),nl,nl, 

prove(T). 

prove(El)_:~ rule(El, E2 , Rule), ! , 

write(E2) , by_rule(Rule), nl, 

prove(E2). 

/* Case for v on l.h.s. */ 

p r o v e d [H v I ! T] => R)_:- !, 

first_branch,to_prove(L4 [H;T] => R), 

branch-proved, 

second„branch , to_prove(L 4 [l\ T] => R), 

brancruproved. 

/* Case for v on r.h.s. */ 

prove(Ll{ [H $ I« T] => R)_:- ! , 

nrst_branch,to_prove(L => R4[HjT]), 

branchuproved, 

secondjDranch, to_prove(L => R k [i! T] ), 

branch^proved. 

/* Case for atom */ 

prove(L* [H',T] => R):- ! ,prove( [H! L] «< T => R). 

prove(L => R*[H!T]):- !,prove(L => [ H ! R ] M ) . 

/* Finally, check whether tautology */ 

proved):- tautology(T),write('Tautology. '),nl. 

prove(_):- write('This branch is not provable. ),fail, 

/* Case where => appears in one of the sides x/ 

rule(L 4r [H => I.T] => R, 

L ̂  [*H v IIT] => R, rule_5). 

rule(L => R4 [H => I'.T] , 

L => R 4 [~H v I IT] , rule„6). 
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/x Cases where <=> appears in one of the sides */ 

r u l e ( L & [H < = > 11 T] => R, 

L4 [(H => 1 ) 4 ( 1 => H)iT] => R, r u l e_7 ) . 

ru le (L => R4 [H <=> I . T] , 

L => R^ [(H => 1)4 ( I => H ) ! T ] , mle_.8) . 

/x Case where ** appears x/ 

ru le (L 4 ['"HIT] => R4 R2, 

L$ T => R4 [HIR2] , r u l e_2 ) . 

r u l e ( L l $ L2 => R$ [~H 4 T] , 

L l 4 [H:L2] => R 4 T, r u l e_2 ) . 

/x Case for 4 on l . h . s . x/ 

ru le (L 4 [H 4 I i T] => R, 

L 4 [H, I : T] => R, r u l e_3 ) . 

/x Case for v on r . h . s . x/ 

ru le (L => R «t [H V I : T ] , 

L => R& [H ,HT ] , r u l e . 3 ) . 

t au to l ogy (L4 [ ] => R 4 [ ] ) : - member(M,L), 

member(M,R). 

branch_proved:- w r i t e ( t h i s branch has been p r o v e d . ' ) , n l . 

f i r s t _ b r a n c h : - n l , w r i t e ( F i r s t branch: ) . 

second_branch:- n l , w r i t e ( Second b r a n c h : ' ) . 

by_ ru le (R) : - w r i t e ( ' by ' ) , w r i t e ( R ) , n l , n l . 

member(H, [ H L ] ) . 

member(I, [ _JT ] ) : - member(I,T). 

Examples of a lgor i thm 1 performance (by | i | ) : 

Formula: 

a => a. 

[ ] * [ ] -> [ H h v a ] 
[ ] * [ ] = > [ H [ ~ a , a ] 
[ ]A [a] = > [ ] « , [a] 
Tautology. 

Formula is valid 

by rule_6 

by rule_3 

by rule_2 

Formula : 

(a => b)4 (b => c) => (a => c). 
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[ ] * [ ] => [ ] * ["((a => b) * (b => c)) v (a => c)] by ru le jS 

[ 3 If [ ] => [ ] ^ [ ^ ( ( a => b ) * ( b => c)),(a => c)] by rule_3 
[]ti [(a => b)* (b => c)) => [ ] * [a => c] by rule_2 
[ ] fc [(a => b)^ (b => c)] => [ ] 2r[ a v c] by rule_6 

[ ] fc,[a => b,b => c] => [ ] %. [ a v c] by rule_3 

[ ] it [^a v b,b => cj => [ ] *r [ a v c] by rule_5 

[ ] fr [<va v b,b => c] => [ ] V [ a,c] by rule_3 

[ ] h- [a ,*a v b,b => c] => [ ] V [c] by rule_2 

F i r s t branch: prove, 

[a] V [ a,b => c] => [ ] J r [c ] 

[a] v [ b => c] => [ ] v [ a , c ] by rule...2 

[a]4r[-vb v c] =) [ ] ! r [ a , c ] by rule_5 

F i r s t branch: prove, 

f a ] « r [ * b ] => [ ] t r [ a , c ] 

[a] %r[ ] => [ ] &r [b ,a,c ] by ru le^2 

Tautology . 

This branch has been proved. 

Second branch: prove, 

[a] H e ] => U H a . c ] 
Tautology . 

This branch has been proved. 

Second branch: prove, 

[a]^[b,b => c] => [ ]v[c] 
[ b , a l a - [ * b v c] => [ ] & - [ c ] by rule_5 

First branch: prove, 

[ b , a I S r [ / v b ] = > • [ ] « r [ c ] 

[b,a] »-[ ] => [ ] v [ b , c ] by r u l e . 2 

Tautology. 

This branch has been proved. 

Second branch: prove, 

[b .a lKe] * [ ] V [ c ] 
Tautology. 

This branch has been proved. 

Formula is valid. 

These examples are quotated as it was mentioned above. But 

this program evaluates proper formulas as improvable, because it 
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contains an error. Apart from that algorithm 1 causes runaway 

for the (improvable) formula 

(/vp v q)V-(<vq v r)V(vr v s)V(<vu v s) => (<vp v u) (*) 

which is recommended to verification of this program in |l| and 

|2|. The first deffect can be remedied by changing the second 

of rules labelled as "rule 2" to 

"rule(Ll L2 = R | H T|, LI |H L2| = R T, rule 2).". 

The second deffect can be put away by suitable location of cut 

in the clauses "prove" (separating branches). Then we can intro­

duce the proofs of other theorems for comparison. 

Formula: 

p v /vp. 

[ ] V [ I => [ ] *r[p,<vp] by rule_3 

[ ] V [ p ] => [p l V [ ] by rule_2 
Tautology. 

Formula is valid. 

Formula: 

'v(pXrvp). 

[ ] V [ p V * p ] = > [ ] V [ ] by rule_2 

[ ]<&r [p , "P ] => [ ] V [ ] by rule_3 

[p] «r [ ] => [ ] V [p] by rule_2 

Tautology. 

Formula is v a l i d . 

Formula: 

.vp V p. 

First branch: prove, 

[ ] V [ ] => [ ] V [ ^ p ] 

[ ] * - [p ] => [ ] V [ 1 by rule_2 
This branch is not provable. 

Formula is not valid. 

Algorithm 2 is founded on Wang's method as well. It differs 

from algorithm 1 especially by technique of programming and more 
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over by documentation of proof. The proof of (nonvalid) formula 

(p => q) => ((p => r) =>(q => r)) 

following program leads to runaway, for quotated formula (x) as 

well. So it provides only partial decision of given formula 

provability. 

Logic program of algorithm 2: 

/x Wang s algorithm x/ 

-op(700,xfy, <=> ) . /x equivalence x/ 

-op(600,xfy,=>). /x implication x/ 

-op(500,xfy,v). /x disjunction x/ 

-op(400,xfy,V) . /* conjunction x/ 

-op(300,fy,^). /x negation x/ 

wang:- nl,nl,write('Formula: '),nl,read(T), 

(T==stop,!;prove(T),wang). 

prove(L => R):-

nl, theorem(L2rtrue => R v false),!, /x procedure theorem x/ 

write( Formula is a theorem); /x requires this x/ 

nl,write( Formula is not a theorem ) . 

prove(T):- prove(true => T ) . 

theorem(T):- nl,write('Prove:'),write(T),(tautology(T)); 

perpartes(T);transf(T,Tl),theorem(Tl)). 

tautology(L => R ) : - conmember(Exp,L),dismember(Exp,L),!, 

nl,write(' This is tautology ),nl. 

perpartes(L => R):- conconc(Ll, (El v E2)^L2,L), 

conconc(Ll,L2,LL), 

nl,write( First branch:'),nl, 

theorem(El$r LL => R ) , 

nl,write('Second branch:'),nl, 

theorem(E2$LL => R ) . 

perpartes(L => R):- disconc(Rl, (El fl~-E2) v R2,R), 

disconc(Rl,R2,RR),theorem(L => El v RR), 

theorem(L => E2 v RR). 

transf(L => R,LL => Exp v R):- /x negation x/ 

conconc(Ll,A,Exp V L 2 , L ) , 

conconc(Ll,L2,LL). 
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transf(L => R,Exp^L => RR):- disconc(Rl ,/̂ Exp v R2,R), 

disconc(Rl,R2,RR). 

transf(L => R,LL => R ) : - conconc(Ll, (ASr B)V L2 ,L), 

conconc(Ll,A^(B8rL2),LL). 

transf(L => R,L => RR):- disconc(Rl,(A v B) v R2,R), 

disconc(Rl,A v (B v R2),RR). 

transf(L => R,LL => R ) : - conconc(Ll,Exp&-L2,L),rule(Exp,Expl), 

conconc(Ll,ExplSrL2,LL). 

transf(L => R,L => RR):- disconc(Rl,Exp v R2,R),rule(Exp,Expl), 

disconc(Rl,Expl v R2,RR). 

/x Rules x/ 

rule(A => B,"A v B ) . 

rule(A <=> B,(~ASTA,B) V (AVB)). 

coneone(true,Exp,Exp). 

conconc(Term &~Expl,Exp2 ,Term &~Exp3) : -

conconc(Expl,Exp2,Exp3). 

conmember(Term,Exp):- conconc(Expl,Term&-Exp2,Exp). 

disconc(false,Exp,Exp). 

disconc(Term v Expl,Exp2,Term v Exp3):-

disconc(Expl,Exp2,Exp3). 

dismember(Term,Exp):- discont(Expl,Term v Exp2,Exp). 

/xEmpty expression on the left is true, on the right is falsex/ 

Examples of algorithm 2 performance: 

Formula: 

p => p. 

Prove: pXrtrue => p v false 

This is tautology 

Formula is a theorem 

Formula : 

p v "/p. 

Prove: true&true => (p v A^D) v false 

Prove: true ̂ -true => p v *>p v false 

Prove: p irtrue Jrtrue => p v false 

This is tautology 

Formula is a theorem 
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Formula: 

*(p h *jp). 

Prove: true^rtrue => ^(p2r/up) v false 

Prove: (p2r *>p) *&-true >true => false 

Prove: p 2r «,p V true Sr true => false 

Prove: p & true 2rtrue => p v false 

This is tautology 

Formula is a theorem 

Formula: 

A/p 8rp. 

Prove: true &- true => <vp 2r p v false 

Prove: true ^ true => ~p v false 

Prove: p $r true %- true => false 

Formula is not a theorem 

Formula : 

(p => q) %• (q => r) => (p => r). 

Prove: ((p => q) V (q => r)) V true => (p => r) 

Prove: (p => q) V (q => r) V true => (p => r) v 

Prove: (*/p v q) Xr (q => r) &~ true => (p => r) v 

First branch: 

Prove: /vp V (q => r) %- true => (p => r) v false 

Prove: (q => r) %r true => p v (p => r) v false 

Prove: (<vq v r) V true => p v (p => r) v false 

First branch: 

Prove: ^q &• true => p v (p => r) v false 

Prove: true => q v p v (p => r) v false 

Prove: true => q v p v (̂ p v r) v false 

Prove_: true => q v p v ^ p v r v false 

Prove: p v true => q v p v r v false 

This is tautology 

Second branchj 

Prove: r V true => p v (p => r) v false 

Prove: r & true => p v (/vp v r) v false 

Provej r Sr true => p v *p v r v false 

This is tautology 

v false 

f alse 

false 
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Second branch: 

Prove*, q -> (q => r) V true => (p => r) v false 

Prove: q 2r (/vq v r) V true => (p => r) v false 

First branch: 

Prove: Ajq %• q %- true => (p => r) v false 

Prove-, q $r true => q v (p => r) v false 

This is tautology 

Second branch: 

Prove: r %- q &-true => (p => r) v false 

Prove: r 3- q %~ true => (<vp v r) v false 

Prove: r %• q V true => */p v r v false 
This is tautology 

Formula is a theorem 

The form of algorithm 2 listings is better arranged than 

that of algorithm 1. The protocol of proof is closely related 

to logical symbolics, it is not necessary to differentiate two 

meanings of the symbol => , it can be considered only as im­

plication. Then it is evident, that given formula is trans­

formed to form (of tautology) 

X & A => X v B, 

where X, A, B are arbitrary formulas. The front memeber is 

considered as a conjunction, the back one as a disjunction of 

certain expressions - subformulas of given formula. 

III. METHOD OF ANALYTICAL TABLES 

Method of analytical tables is founded on decomposition 

of formula to simpler components - subformulas of considered 

formula. The models of the decomposition are rules for con­

struction of tables. The analytical table of the formula X is 

taken as a dyadic tree (graph), the nodes of which are occu­

rences of the formulas, and which is constructed by following 

way - by the help of two-type rulesj 
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- conjunctive of form K and disjunctive of form D 

Kl Dl|D2 

K2 

The process of construction: 

1. the root of the tree is formula X; 

2. let formula Y be terminal node of the given tree 

if there - on the way from X to Y - occurs a formula K, 

then any of formulas Kl or K2 as the only successor of 

node Y can be added - we usually add step by step firstly 

Kl, secondly K2 (the tree in considered branch develops 

linearly); 

if there - on the way from X to Y - occurs a formula D, 

then formula Dl can be added as left successor and D2 as 

right successor of formula Y (the tree in the node Y de­

velops into two branches). 

The branch of given tree is said to be closed, if it 

contains a formula and its negation. Analytical table (tree) 

is called to be closed, if every of its branches is closed. The 

proof of the formula X is then understood as a closed table 

for formula A/X. Such accepted proof seems to demonstrate that 

every branch of decomposition of formula /vX forms inconsistent 

set of formulas. That is why the formula /vX inconsistent, 

hence formula X is a tautology or theorem. 

Decompositional rules, which may be used in above men­

tioned process, are according types: 

- conjunctive rules with two successors 

X 8rY /uQC v Y) A / (X => Y) 

X A>X X 

Y "Y . /vY 

- con junct ive ru les w i th one successor 

/UA/X X <=> Y A , ( X <=> Y ) 

X (X => Y) V (Y => X) /vX <=> Y 

- d i s j u n c t i v e r u l e s 

/v(X 3r Y) X v Y X => Y 

rvX I A/Y X I Y ^ X I Y 
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Example: proof of formula (p => q) => (/vq => /̂ p) 

1 . * / ( ( p => q ) => (*>q => /up)) 

2 . (p => q ) <V A/(A/q => A / P ) ( 1 ) 

3. p => q ( 2 ) 

4. /v(.A/q => A/p) ( 2 ) 

5. /vp q ( 3 ) 

6 . A/q A.«q ( 4 ) 

7 . /VA/p A/AVp (4 ) 

8 . p p ( 7 ) 

In this proof on the left there are lines numbered, on the 

right there is the source of formula, which occurs here, in­

troduced by a line number. Both branches of proof are closed. 

In the left branch there is a contradiction between formulas 

in lines 5 and 7 or 5 and 8, in the right one there is a 

contradiction between formulas in lines 5 and 6. There is no 

need to continue in decomposition of given branch when contra­

diction appears. In this proof there are redundant the formulas 

of line 8 and in the right branch that of line 7. The proof 

can be shortened by the preferring of the conjunctive type 

rules applications. 

IV. ALGORITHM TO METHOD OF ANALYTICAL TABLES IN PROLOG 

Algorithm 3 is written in Prolog-80, that is why here are 

some differences from algorithms 1 a 2. Especially, there 

differs priorities of "operations" - logical connectives, but 

only by numerical values. Usual convention of descending 

prioriry of sequence of conectives /v, &•, v, => , <=> is 

respected. It appears in the proof protocol - the brackets 

are omitted always there, where the order of operations is 

given by implicit relationship. 

Optimizing of proof construction is not applied, because 

it would make computation longer. 

In proof protocol the branches are signed only as the 

first one and the second one. Corresponding assignment is re­

alized on the principle of LIFO. 
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Algorithm works as follows - if it finds out the first 

branch, in which there is no contradiction, the computation is 

finished, because the formula cannot become a theorem. 

Logic program of algorithm 3: 

/x Operations - logical connectives x/ 

- op(210,xfy, <=>) /x equivalence x/ 

- op(180,xfy,=>) /x implication x/ 

- op(150,xfy,v) /x disjunction x/ 

- op(120,xfy ,&-) /x conjunction x/ 

- op(90, xf y ,/v/) /x negation x/ 

/x Organisation of reading and proving of formula x/ 

formula:- repeat,nl,nl,write( 'Formula: '),nl, 

read(F), (F = = stop_; theorem(^F),f ail). 

theorem(T):- nl,nl,write( Proof of inconsistency of formula:'), 

nl,write(T),nl,nl,write( Main branch: ' ) , 

(seq( [T], [T]),!,nl,nl,write('formula is theorem); 

nl ,nl,write( formula is not theorem')), 

/x Decomposition of formula and branching x/ 

seq( [Xl Y] ,Z)_:- nl ,write(X), f ail. 

/x Conjunctive rules x/ 

seq( [v̂ /Xll X2] ,Y)_:- append( [Xl] ,Y,T), 

append(X2, [Xl],Z),!, 

seq(Z,T). 

seq( [XI 8r X2l X3] ,Y)_:- append ([XI, X2] ,Y,T), 

append(X3, [X1,X2],Z),!, 

seq(Z,T). 

seq([A/(Xl v X2)IX3],Y):- append ( [~>X1 h- A/X2] , Y , T ) , ! , 

seq([A/Xl2r A/X2|X3] ,T). 

seq([^(Xl => X2)| X3] ,Y)_:- append( [XI tr <vX2] , Y , T ) , ! , 

seq([Xl V A / X 2 | X 3 ] , T ) . 

seq([Xl <=> X2jX3],Y_:- append([(Xl => X2)2>~(X2 => X1)],Y,T),!, 

seq([(Xl => X2) ^ (X2 => XI) | X3_), T) . 

seq([~(Xl < = > X2)|X3],Y:- append( [A/X1 <=> X2],Y,T),!, 

seq([~Xl <=> X2|X3] ,T). 
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/x Disjunctive rules x/ 

s e q ( [ / v ( X l V X2)| X3] ,Y)_: - append( [ ~X l ] , Y , T 1 ) , 

append( [ /vX2] , Y , T 2 ) , ! , 

v l , s e q ( [ A / X l | X 3 ] , T l ) , ! , 

v 2 , s e q ( [ v X 2 | X 3 ] , T 2 ) . 

s e q ( [ X l v X 2 l X 3 ] , Y ) _ : - append( [ x i ] , Y , Tl) , 

a p p e n d ( [ X 2 ] , Y , T 2 ) , ! , . 

v l , s e q ( [ X l | X 3 ] , T 1 ) , ! , 

v 2 , s e q ( [ X 2 | X 3 ] , T 2 ) . 

s e q ( [ X l => X 2 | X 3 ] , Y ) _ : - append( [/vXl] , Y , T 1 ) , 

a p p e n d ( [ X 2 ] , Y , T 2 ) , ! , 

v l , s e q ( [ v X l | X3] , T 1 ) , ! , 

v 2 , s e q ( [ X 2 | X 3 ] , T 2 ) . 

/ x A tomic f o r m u l a x / 

s e q ( [ j X ] ,Y)_: - s e q ( X , Y ) . 

/ x End of d e c o m p o s i t i o n x / 

seq( [ ] ,X)_: - s c o n t r ( X , X ) . 

a p p e n d ( [ ] , L , L ) . 

a p p e n d ( [ H l T ] , L [ H | u ] )_: - a p p e n d U ,L , U ) . 

/ x S e a r c h i n g of c o n t r a d i c t i o n i n a c t u a l b ranch x / 

s c o n t r ( [ ] , _ ) . : - f a i l . 

s c o n t r ( [ X I Y ] , Z ) : - ( c o n t r ( X , Y ) , n l , w r i t e ( ' b r a n c h c l o s e d ' ) ) ; 

s c o n t r ( Y , Z ) . 

c o n t r ( X , [ ~ X | _ ] ) . 

c o n t r ( / u X , [ X | _ ] ) . 

c o n t r ( X , [ _ l Y ] ) _ : - c o n t r ( X , Y ) . 

v l : - n l , n l , w r i t e ( ' l . b r a n c h ' ) . 

v 2 : - n l , n l , w r i t e ( ' 2 . b r a n c h ' ) . 

Examples of algorithm 3 performance: 

Formula: 

p => p. 

Proof of inconsistency of formula: 

/v(p => p) 
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Main branch: 

A/ (p => p ) 

p ir A/p 

P 

A/p 

branch closed 

formula is theorem 

Formula: 

p v p. 

Proof of inconsistency of formula: 

( p v A/p) 

Main branch: 

A/(p v A /p ) 

A»p a" A/A/p 

A/p 

A/A/p 

P 

branch closed 

formula is theorem 

Formula: 

A/(p 8< <vp). 

Proof of inconsistency of formula: 
*w(p %r vp) 
Main branch: 

A/A/(p &- A/p) 

p 6r A/p 

p 
A/p 

branch closed 

formula is theorem 

Formula: 

A/p &~ p. 

Proof of inconsistency of formula: 

A/ (A/p %" p ) 
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Main branch: 

/v(/vp V p) 

1 . branch 
/\/A/p 

P 
formula is not theorem 

Formula: 

(p => q) *r (q => r) => (p => r ) . 

Proof of inconsistency of formula: 

^((p => q) 2r (q => r) => (p => r)) 

Main branch: 
/v((p => q) 2r (q => r) => (p => r)) 

(p => q) &-(q => r) 

A/(p => r) 

p Sr ,vr 

p => q 

1. branch 2. branch 

~P q 

q => r q => r 

1 . branch 1 . branch 
A/ q A/q 

P P 

A/r A/T 

branch closed branch closed 

2. branch 2. branch 

r r 

P P 

^r n/r 

branch closed branch closed 

formula is theorem 

V. COMPARISON OF ALGORITHMS 

Let's choose the law of implication transitivity as re­

presentative - it is more complicated formula, individual 
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proofs are regardless of used algorithm approximately of the 

same length and in all proofs multiple branching is used. 

Firstly we can assume that documentation of proofs at 
> 

all algorithms is badly arranged as soon as the proof "length" 

overpasses screen range. It seems to be a serious didactic 

deffect, if uwer wants to understand more complicated proofs. 

If we eliminate algorithm 1, which has not a character 

of logic program (see [2]), there are algorithms 2 and 3 left 

to evaluation. The length of the proof made by algorithm 2 

will be usually little bit less than that of algorithm 3. 

Essential advantage of algorithm 3 is the fact that 

during realization the proof the formulas become more and 

more simple, so the proof is clearer than at the other 

algorithms, 

formulas are in usual syntactic form and so it is easy 

to find the reason of contradiction in actual branch 

(closed branch). 
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SOUHRN 

METODY DOKAZOVÁNÍ TEORÉM0 VÝROKOVÉHO POČTU V PROLOGU 

JAN ŠTĚPÁN 

V článku jsou popsány dva algoritmy důkazu teorémů výro­

kového počtu - Wangova metoda a metoda analytických tabulek. 

Wangova metoda je doložena dvěma programy v Prologu převzatý­

mi z [l] a [2]. Pro metodu analytických tabulek je předložen 

autorův program. Efektivnost programů je demonstrována na pří­

kladech. Dále je diskutována praktická a didaktická hodnota 

uvedených metod a programů. 
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РЕЗЮМЕ 

МЕТОДЫ ДОКАЗАТЕЛЬСТВА ТЕОРЕМОВ ПРОПОЗИЦИОНАЛЬНОГО 

ИСЧИСЛЕНИЯ В ПРОЛОГЕ 

Я» ШТЕПАН 

1 

В этой статье описаны два алгорифме доказательства 

теоремов пропозиционального исчисления - метод Венге и 

метод енелитичных таблиц* Метод Ванге является основа­

нием двух программ, которые приняты и8 /1/ и /2/* Для 

метода енелитичных таблиц вдесь покаеене программе авто­

ра • Действенность этих прогремм показана не примерах* Де-

лее здесь обсуждена практическая и учебнея ценность этих 

елгорифмов и прогремм* 

320 



REFERENCES 

[ l ] C o e 1 h o, H. - C o t t a, J.C. - P e r e i r a , L.M.: How t o 
solve i t w i th Prolog. Lisboa, LNEC 1985. 

[2] C o e l h o , H. - C o t t a , J .C. : Prolog by example. Sprinqer-Ver-
lag 1988. 

[3] S m u 1 1 y a n, R.M.: F i r s t order l o g i c . B r a t i s l a v a , ALFA 1979. 

Authors address_: 

RNDr.PhDr.Jan Štěpán, CSc. 

katedra výpočetní techniky 
přírodovědecké fakulty UP 

771 46 Olomouc 

Czechoslovakia 

Acta UP0, Fac.rer.nat.97, Mathematica XXIX, 1990, 301 - 321. 

321 -


		webmaster@dml.cz
	2012-05-03T21:16:52+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




