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Abstract: Let R be a reflexive binary relation on a set A. 

We proceed to show under which conditions the relation T ( R ) -

= ROR~ is an equivalence on A and the factor relation R/T(R) 

is a pseudoorder on the factor set A/T(R). 
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Let A be a non-void set. Let R be a binary relation on A 

and £ be an equivalence on A such that £ SL R. Denote by R/£ 

the binary relation defined on the factor set A/£ by the rule: 

B,C£A/£ , <B,C^€R/£ if and only if there exist elements 

b€B , c € C such that <b,c>€ R . 

By a quasiorder on a set A is meant a reflexive and tran

sitive binary relation on A. An order on A is a reflexive, 

antisymmetrical and transitive relation on A. The following 

elementary proposition is well-known: 
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Proposi tion. Let Q be a quasiorder on a set A / p . The relation 

£ (Q) = QAQ" is an equivalence on A (evidently £(Q)£- Q) and 

the relation Q/£ (Q) is an order on the factor set hit (Q). 

Since an order and quasiorder on A are transitive binary 

relations, we will try what happens if the transitivity of Q in 

the Proposition would be omitted. 

A binary relation P on a set A / 0 is called a pseudoorder 

if P is reflexive and antisymmetrical. A binary relation T on A 

is called a tolerance if it is reflexive and symmetrical. 

Clearly, every order is a pseudoorder (but not vice versa) and 

every equivalence is a tolerance (but not vice versa, see e.g. 

[2], [4]), Denote by 00 the identical relation on A, i.e. 

<a,b>€oo if and only if a = b. 

Definition 1. Let T be a tolerance on a set A / 0. A non-void 

subset B - A is called a block of T if B is a maximal subset 

of A such that x,y€B implies <x, y>€ T. Denote by A/T the set 

of all blocks of T. 

For the concept of block and properties of A/T, see e.g. 

[l] and [3J. It is evident that if T is an equivalence on A, 

the concept of equivalence class coincides with the concept of 

block and A/T is the factor set. 

For a binary relation R on A, denote by T*(R) = ROR" . 

The following lemma is evident: 

Lemma 1. Let R be a reflexive relation on a set A. Then 

(i) ?^(R) is a tolerance on A; 

(ii) if T is a tolerance on A, then i (T) = T. 

Definition 2. Let R be a binary relation on a set A and T be 

a tolerance on A such that T -=• R. The relation R/T defined on 

the set A/T by the rule: 

(a) B,C€A/T , <B,C>6R/T if and only if there exist elements 

b £ B , c € C with <b,c>£ R 

will be called induced by R on A/T. 

Hencefore, we will try under which conditions, the concepts 

of a quasiorder, an equivalence and an order in the Proposition 

can be replaced by concepts of a reflexive relation, a tolerance 

and a pseudoorder, respectively. 
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Definition 3. Let R be a binary relation on A. R is called 

weakly transitive if for each three elements a,b,c of A, 

<a,b>€ T(R) and <b,c> 6 T(R) imply <a , c> e T(R) • 

Lemma 2. For a reflexive relation R on a set A, the foll°w--n9 

conditions are equivalent: 

(a) T(R) is an equivalence on A; 

(b) R is weakly transitive. 

The proof follows immediately from Definition 3 and Lemma 1. 

Example 1. Let A be a three element set {a,b,cl and R be a 

reflexive relation on A given by 

R = c O U { < a 5 b > , < b , c > , < c , a > { , 

( 
X 

-*• • denoíes 

<x<y>eR and lh<z 

reffzyt'vz paCrQ are 
omtiiecL ) 

• > • . 
Fig. 1 a b 
see Fig.l. Then R is weakly transitive relation which is not 

. . . . <*>-/• r, \ 

transitive and T"(R) = oO 

Lemma 3. Let R be a reflexive binary relation _ 

order on A/T(R), then R is weakly transi 

зt A. If oп a set 

tive 

oп A. 

?(R) and 

rance the toler 

reflexive and be C as well as b€U, we have <.u,L 

< D , C > € R/2"(R). 

However, R/T(R) is antisymmetrical, thus C = D, 

belong to the one block of T*(R). Hence <a,c>€ 

the transitivity of the tolerance Z~(R) and, by 

also " 

;rical, thus C = D, i.e. both a.c 

,c > €. T(R) proving 

Z~(R) and, by Definition 3, 

ong to the one block of ?*(R). Hence <a,c>€ T(R) proving 

transitivity of the tolerance Z~(R) and, by Definition 3, 

o the weak transitivity of R. 

In other words, if we try to give an analogy of the Pro-

ition for non-transitive relations, Lemma 3 yields that the 

essary condition is that R has to be weakly transitive. The 
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following example shows that this condition need not be suffi

cient : 

Example 2. Let A = {a,b,cj and R be a binary relation on A 

given by 
R = < o u { < a > b > > < b > a >> < b > c > , < c , a > | , 

see F i g . 2 . 

Fig. 2 

Then R is reflexive and weakly transitive, i.e. 7T(R) is 

an equivalence (its blocks are visualized by dotted lines in 

Fig.2). However, A/T(R) is a two element set, see Fig.3, but 

Fig. 3 •' {a,b} 

R/?(R) is not antisymmetrical, hence R/2"(R) is not a pseudoorder. 

Definition 4. A binary relation R on a set A is called semi-

transitive if for each a,b,c of A , 

<a,b> e t(R) , <b,c>€ R imply <a,c><sR • and 

<a,b> c 7*(R) , <c,a> € R imply <c,b>eR . 

The situation of Definition 4 can be visualized in Fig.4. 

Lemma 4. (i) Every transitive relation is semitransitive; 

(ii) Every semitransitive relation is weakly transitive; (iii) 

Semitransitive as well as weakly transitive relations satisfy 

the Duality Principle, i.e. if R is semitransitive (weakly 

transitive) then also R~ has this property. 
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The proof is clear and hence omitted. 

It is also evident that every antisymmetrical relation is 

semitransitive. 

If R is a reflexive and weakly transitive relation on A, 

then, by Lemma 2, T*(R) is an equivalence on A, thus the block 

of T(R) containing an element a € A is uniquely determined. In 

such case, denote this block (i.e. the equivalence class of 

^(R)) by the symbol a. 

Lemma 5. Let R be a reflexive and weakly transitive binary 

relation on A. The following conditions are equivalent: 

(a ) < a , b > € R/r (R) i f and on ly i f < a , b > € R ; 

(b) R is semi t rans i t i ve . 

P r o o f. (a) = > (b): Let <a ,b > e ^(R) and <b,c> S R. By 
Lemma 2, £*(R) is an equivalence on A, thus <a,b> € T*(R) 
implies ~a = b. Further, <b,c > € R implies < b,c~ > e R/r(R), thui 
lso < a ,c > €. R/T(R) . By (a), we have <a,c>€R. Analogously 
t can be proved for the second law of semitransitivity, thus 

b) is satisfied. 

a 

it 

(b 

(b) = > (a): If <a,b>e R then clearly < a,b >6 R/T(R). 

It remains to prove the converse implication. Suppose 

< a ,b> e R/T(R). Then, by Definition 2, there exist elements 

a, e. a and b,6 b such that <a, ,b,> B R. Since R is reflexive, 
also ae¥, beb, thus <a,a, > c t*(R), <a,,b,>e R imply by 

(b) <a,b1>e R. Analogously, <b ] L,b>e^(R) and <a,b,>€ R 

imply <:a,b>€.R proving (a). 

Now, we are ready to formulate the answer to the intro

ductory question: 
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Theorem 1. Let R be a reflexive binary relation on a set A. 

The following conditions are equivalent: 

(1) R/«R) is a pseudoorder on A/?(R) and<a,b>€ R/^(R) 

if and only if < a , b > e R ; 

(2) R is semitransitive. 

P r o o f . (l) =-> (2): Let a,b,c€Aand < a , b > e ^ ( R ) , 

< b , c > € R . Then < a~,E > <£ R/r(R) and < b ,a > e R/F(R). By (1), 

the antisymmetry of R/2"(R) implies a = b. However, < b , c > € R 

implies < E ,c > e R/^(R), thus also < a,c > e R/r(R). By (1), we 

obtain <a,c><£ R. Analogously it can be proved the second law 

of semitransitivity. 

(2) ===-> (1): The second assertion of the condition (1) is 

a direct consequence of Lemma 5. It remains to prove the anti

symmetry of R/2*(R). By (ii) of Lemma 4 and Lemma 2, T(R) is 

an equivalence on A. Let < a~,b > <£" R/2~(R) and < E,"a > e R/t(R) . 

By Lemma 5, it gives <a,b>€R and <b,a>£"R, i.e. 

<a,b>€. ^ ( R ) . Since ?*(R) is an equivalence, it implies a = E 

proving the antisymetry of R/T(R). 

Corollary 1. If R is a reflexive and semitransitive binary 

relation on A / 0, then ?*(R) is an equivalence on A and R/^(R) 

is a pseudoorder on A/'?(R). Moreover, R/?"(R) is an order on 

A/?(R) if and only if R is transitive. 

It is clear that if R is not transitive, then R/?"(R) also 

is not transitive. 

Now, we proceed to show what of the foregoing results can 

be transfered from sets into lattices. For this reason, recall 

first some other concepts. Let L be a lattice. Denote by — its 

lattice order and by V , A its lattice operations join and meet, 

respectively. A binary relation R on L is compatible if for any 

a,b,c,d of L , 

< a , b > e R a n d < c , d > € R imply < a v c , b V d > c R and < a A c , 

b A d > £ R . 

It is easy to examine that if R is a reflexive and compatible 

binary relation on a lattice L, then 2* (R) is a compatible 

tolerance on L (see [lj, [4]) and for any compatible tolerance 

T on L, ^(T) = T. By [3], the set L/f(R) forms again a lattice 

with the induced lattice order. 
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By using of Lemma 2, we obtain immediately: 

Lemma 6. Let R be a reflexive and compatible binary relation 

on a lattice L. The following conditions are equivalent: 

(a) ^(R) is a congruence on L; 

(b) R is weakly transitive. 

Analogously as in the case of Theorem 1, we can prove the 

following 

Theorem 2. Let R be a reflexive and compatible binary relation 

on a lattice L. The following conditions are equivalent: 

(1) R/?*(R) is a compatible pseudoorder on the lattice 

L/MR) and < a, b > € R/^(T) if and only if <a,b>€R; 

(2) R is semitransitive. 

By [l], a lattice L is tolerance trivial if every compat

ible tolerance on L is a congruence. The foregoing method of 

induced relations enables us "to characterize such lattices: 

Theorem 3. A lattice L is tolerance trivial if and only if 

T/T = co for every compatible tolerance T on L. 

P r o o f . Let L be tolerance trivial and T be a compatible 

tolerance on L. Thus T is a congruence on L, clearly f(T) = T, 

thus T/T = T/T(T) = co directly by Definition 2. Conversely, 

if T is a compatible tolerance on L and T/f(T) = co , then 

every two distinct blocks of T are disjoint, hence T is a 

congruence on L. 

We finish our paper by a comparison of the compatible 

pseudoorder and the lattice order induced by a reflexive 

relation: 

Theorem 4. Let R be a reflexive and semitransitive compatible 

relation on a lattice L such that T(R) — - . The following 

conditions are equivalent: 

(i) <I,b > e V t t R ) ; 

(ii) £ a A b , ~a>e RfT(R) and < a , a A b > £ R / « R ) ; 

(iii) <a Ab, a > e <MR). 

The proof is an easy consequence of the foregoing results 

and the fact that a — b in L if and only if a A b = a. 
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