
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Jan Štěpán
Automated theorem proving in monadic predicate calculus

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 30 (1991), No.
1, 273--283

Persistent URL: http://dml.cz/dmlcz/120263

Terms of use:
© Palacký University Olomouc, Faculty of Science, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/120263
http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS
FACULTAS RERUM NATURALIUM

1991 MATHEMATICA XXX VOL. 100

Katedra výpočetní techniky

přírodovědecké fakulty Univerzity Palackého v Olomouci

Vedoucí katedry: PhDr.RNDr.Jan Štěpán, CSc.

AUTOMATED THEOREM PROVING

IN MONADIC PREDICATE CALCULUS

JAN STEPAN

(Received January 31, 1990)

Abstract: In this paper a modification of the method of

analytical tables is described which makes possible to construct

an effective logic program for automated theorem proving in

monadic predicate calculus. The logic program is enclosed and

its function is demonstrated.

Key words: Monadic predicate calculus, analytical table,

logic program.

MS Classification: 68G15

In the sphere of logic programming there exists a great

number of programs for proving of theorems of the propositional

calculus (see for example [l], [2]). That is to say - highly

effective algorithms of the matematical logic were developed

which make the construction of such programs possible. For the

proving of theorems of the predicate calculus there exists a

very strong universal instrument - resolution principle. But

this method is usually very slow in practice. Therefore it is

- 273 -

more convenient to pay attention on the solving of these quest

ions in some more narrow or special field of problems. In this

case such a narrow field seems to be the monadic predicate

calculus. By monadic predicate calculus we mean the logic with

maximally unary predicate constants and (specially here) only

with 0-ary (individual) function constants. For this calculus

there exist algorithms, by which total decidability of prova

bility is guaranteed. One of these algorithms is the method of

analytical tables (ace. [3]).

Denotation: symbols ~ , tt ,# , => , <=> denote negation,

conduction, disjunction, implication and equivalence respective

ly, symbols "all" and "ex" denote universal and existential

quantifier respectively.

I. Proof construction

The method of analytical tables is based on decomposition

of formula to simpler components - subformulas of considered

formula. The models of the decomposition are the rules for

construction of tables. The analytical table of the formula X

is taken as a binary tree (graph), the nodes of which are oc

curences of the formulas, and which is constructed as following

by the help of four-type rules:

Rule A: C

(conjuctive) Cl

C2

Rule C (univeгsal) : A ,

Rule B: D

(disjunctive) D1|D2

where a is an arbitrary parameter.

A(a)

Rule D (existential): E , where a is a new parameter.

E(a)

Rules of the type A and B deal with propositional connectives,

rules of the type C and D serve for elimination of quantifiers.

Construction process:

1. the root of the tree is formula X;

2. let formula Y be terminal node of the given tree

- if there - on the path from X to Y - occurs a formula C,

then any of formulas CI or C2 as the only successor of

node Y can be added - we usually and step by step firstly

274 -

CI, secondly C2 (the tree in considered branch develops

linearly);

- if there - on the path from X to Y - occurs a formula D,

then formula Dl can be added as left successor and D2 as

right successor of formula Y (in the node Y the tree de

velops into two branches);

- if there - on the path from X to Y - occurs a formula A,

then formula A(a) can be added;

- if there - on the path from X to Y - occurs a formula E,

then formula E(a) can be added, but a-parameter choice

is limited by reservation.

The branch of given tree is said to be closed, if it contains a

formula and its negation. Analytical table (tree) is called to

be closed, if every of its branches is closed. The proof of the

formula X is then understood as a closed table for formula ~*X.

Such accepted proof seems to demonstrate that every branch of

decomposition of formula ~X forms inconsistent set of formulas.

That is why the formula ~X is inconsistent, hence formula X is

tautology or theorem.

Decompositional rules, which may be used in above mentioned

process, are according types:

rules A with two successors

Rl: X & Y R2: " (X t Y) R3: ~(X => Y)

rules A with one successor

R4:

rules B

R7: X #

X I

rules C

RU

R5:

R8:

X <=> Y

(X => Y)í (Y => X)

v (X å Y)

R6:

R9:

all (x,A)

A(x/a)

Rll: ~ex(x,A)

~A(x/a)

rules D (with parameter choice reservation)

R12: ex(x,E) R13: ̂ all(x ,E)

E(x/a) t(x/a)

"(X <=> Y)

~X <=> Y

X => Y

~X I Y

275 -

Note to rule D: If we prove during an argumentation (for

example in mathematics), that there exists an element x holding

a property p, i.e. that ex(x,p(x)) is valid, then we can affirm

"let a be such x", i.e. p(a) is valid. If we later prove, that

ex(x,q(x)) is valid for some property q, then it is not possible

to affirm "let a be such x", because a had been related to pro

perty p, therefore we take a new parameter b, we say "let b is

such x" and we write q(b). So that is the reason for reservation

in rule D.

If we apply that reservation in proof is sufficient to

restrict the application on considered branch of proof. That

means we choose such parameter, that in given branch had not

been used in a rule of the type D. This simplification gives a

possibility to shorten some proofs, but the main merit is a

possibility to avoid multiple applications of rules of the type

C, which is visible from following example.

Example: proof of formula

all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q(x)))

1. ^(all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q(x))))

2. all (x,p(x) => q(x)) R3(l.)

3. ~(all(x,p(x)) => alKx-q(x))) R3(l.)

4. p(a) => q(a) R10(2.)

5. all(x,p(x)) R3(3.)

6. ~all(x,q(x)) R3(3.)

R9(4.)

R10(5.)

R13(6.)

R10(2.)

R9(12.)

R10(5.)

7. ^p(a) 8. q(a)

9. p(a)

x

10.

11.

12.

p(a)

~q(b)

p(b) => q(b)

13. ~p(b) 14. q(b)

15. p(b)

x

x

The symbol x indica tes a t зlosed bгanch of proof

- 276 -

The length of a proof depends on order of applications of

the rules. The most effective proof can be obtained by priority

application the rules of type A and if it not possible more,

then we use other rules in order D, C, B.

Let us consider the formula used in example and let us

construct the proof by mentioned process:

1. ~(all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q(x))))

2. all(x,p(x) => q(x)) . R3(l.)

3. ~(all(x,p(x)) => all(x,q(x))) R3(l.)

4. all(x,p(x)) R3(3.)

5. ~all(x,q(x)) R3(3.)

6. ~q(a) R13(5.)

7. p(a) R10(4.)

8. p(a) = q(a) R10(2.)

9. ~p(a) 10. q(a) R9(8.)

The basic proof algorithm is not convenient for logic

program construction, because multiple applications of rules of

the type C on the same formula can account to an infinite com-

•putation. Above described optimized process is not convenient

as well, because choice of rules by the types lengthens the

computation nearly twice.

So the algorithm will be used in such modification, that

it eliminates mentioned defects. But the modification is effecti

ve for monadic predicate calculus only - in full predicate cal

culus it would not be decision procedure yet. By point of view

of effective computation the modification is a compromise

between the length of a proof (a number of formulas - steps of

proof is not minimal) and the length of computation The mo

dification is based on these principles:

every subformula of starting formula (i.e. negation of

given formula) is decomposed step by step into atomic

formulas or their negations

this is performed in order, which is given by the rules

- 277

only under this sequence (branch of proof) there is joined

the sequence, that is relevant to paralel non-analysed

formula

rules of the type C are always applied with constant a

rules of the type D respect branching of proof and apply

succesively constants a, b, c,...,o.

Further we demand these limitations of the formulas form:

bound variables are denoted by lower case characters x,

y, 2; they can be indexed

formulas do not contain free variables, i.e. for example

expression p(x) can occur as subformula only in expressions

all(x,p(x)) or ex(x,p(x)); but it is not necessary, that

in the scope of quantifier the variable quantified by them

occurs, for example in expressions all(x,A) or ex(x,A) the

subformula A does not have to contain x

constants are denoted by lower case characters a,b,...,o

if given formula contains constants,, they occur there in

above mentioned order form the left to the right beginning

with the letter a

- usage of constants in formulas is not limited, but it is

recommended.

Following logic program holds these conditions in its con

struction and function.

II. Logic program

/K Operations - logical connectives K/

- op(900,xfy,<=>)

- op(800,xfy,=>)

- op(700,xfy,*)

- op(600,xfy, &)

- op(500,fy,~)

/K Regarding, testing and proving of formula K/

formula:- repeat,nl,nl,write(Formula:),nl,

read (F), (F = = stop;

(testar(F),theorem(^F),fail)).

/K equivalence K/

/K implication K/

/K disjunction K/

/K conjuction K/

/K negation K/

- 278

/* Arity testing */

testar(F):- ((arity(F), !) ;

(nl,write(formula is not monadic'),fail).

arity(X):- functor(X,F,N),test(X,F,N).

test(X,~,l):- arg(l,X,Y),arity(Y).

test(X,Y,2):- (Y = = &; Y = = *; Y = = =>;Y = =<=>),

arg(l,X,Xl),arg(2,X,X2),arity(Xl),arity(X2).

test(X,Y,2):- (Y== all;Y== ex),arg(l,X,X1),arg(2,X,X2),

test(Xl,Xl,0),arity(X2).

test(X,Y,l):- test(Y,Y,0).

test(X,X,0).

/* Control of proof */

•fcheorem(T) : - n l , w r i t e (' M a i n b r a n c h : ') ,

(a n a l ([T] , [T] , a) , ! , n l , n l , w r i t e (' f o r m u l a i s t h e o r e m ') ;

n l , n l , w r i t e (' f o r m u l a i s not t heo rem ')) .

/ * C o n s t r u c t i o n of a n a l y t i c t a b l e * /

ana l ([X I Y] , Z , C) : - n l , w r i t e (X) , f a i l .

/ * Con junc t i ve r u l e s * /

• a n a l ([^ ^ 1 1 X 2] , Y , C) : - append([X l] , Y , T) ,

a p p e n d (X 2 , [X l] , Z) , ! ,

anal (Z ,T , C) .

a n a l ([X l g , X2 1X3] , Y ,C) : - append([X I ,X2] , Y , T) ,

a p p e n d (X 3 , [X 1 , X 2] , Z) , ! ,

ana l (Z ,T , C) .

a n a l ([~ (X l * • X2) |X3] , Y,C) : - append(["X l ,~X2] , Y , T) ,

append(X3, [~X1 ~X2] , Z) , ! ,

a n a l (Z , T , C) . / * R2 * /

a n a l ([~ (X l => X2) |X3] , Y ,C) : - append([XI ,~X2] , Y , T) ,

append(X3, [X1,~X2] , Z) , ! ,

a n a l (Z , T , C) . / * R3 * /

ana l ([X l < = > X2 I X3] , Y ,C) : - append ([X I => X2 ,X2 => X l] , Y ,T) ,

append(X3, [X1=>X2,X2 = > X l] , Z) , !

a n a l (Z , T , C) . / * R5 * /

a n a l ([' v (X U = >X2)|X3] , Y , C) : - append([~X1 => X2,X2 = > ~ X l] , Y , T) ,

append(X3, ["X I =>X2,X2 =>~X l] , Z) ,

a n a l (Z , T , C) . / * R6 * /

/ * D i s j u n c t i v e r u l e s * /

a n a l ([~ (X l i X 2) I X 3] , Y , C) : - append([~ X l] , Y , T 1) ,

a p p e n d ([~ X 2] , Y , T 2) , ! ,

/ * R4 * /

/ * R1 * /

- 279 -

v l , a n a l ([A / X l | X 3] , T l , C) , ! ,
v 2 , a n a l ([~ X 2 | X 3] , T 2 , C) . / * R 8 H/

a n a l ([x i 4 = X 2 | X 3] , Y , C) : - append([X l] , Y , T 1) ,

a p p e n d ([X 2] , Y , T 2) , ! ,

v l , a n a l ([X l | X 3] , T 1 , C) , ! ,

v 2 , a n a l ([X 2 1 X 3 j , T 2 , C) . /* R7 */

n a l ([x i => X 2 I X 3] , Y , C) : - append([~ X l] , Y , T l) ,

a p p e n d ([X 2] , Y , T 2) , ! ,

v l , a n a l ([~ X l | X 3] , T l , C) , ! ,

v 2 , a n a l ([X 2 | X 3] , T 2 , C) . /* R9 */

I* U n i v e r s a l r u l e s */

anaK [a l l (X , A) |Z] , Y ,C) : - subs t (a ,X , A , U) ,

a p p e n d ([u] , Y , T) , !

a n a l ([U | Z] , T , C) . /* R10 */

anaK [~ex(X, A) I Z] , Y , C) : - subs t (a ,X ,^A , U) ,

a p p e n d ([u] , Y , T) , ! ,

anal([U|Z],T,C). /* Rll */
I* Existential rules */
anal([~all(X,A)|z],Y,C):- subst(C,X,~A ,U),

exch(C,K),
append([u],Y,T),!
a n a l ([U | Z] , T , K) . I* R13 */

anaK [ex (X, A) | Z] , Y , C) : - subst(C , X , A , U) ,

exch (C ,K) ,

a p p e n d ([u] , Y , T) , ! ,

anal([U!Z],T,K). I* R12 */
I* Atomic formula */
anal([_|X],Y,C):- anal(X,Y,C).
/* End of analysis */
anal(["] ,X,):- scontr(X,X).
I* Substitution */
subst(N,P,P,N):- !.

- a t o m i c (H) , ! .

- H = . . [F | A] , s a r g (N , P , A , B) , D = . . [F ! B] .

s a r g)) _ , _ , [] , []) : - ! .

s a r g (N , P , [A I B] , [C | D]) : - s u b s t (N , P , A , C) , s a r g (N , P , B , D) .

I* Exchange */

e x c h (C , K) : - c o n s t (X) , e x c (C , K , X) .

exc(C,K, [C , K | J) .

subs t (N ,P ,H,H)

subs t (N ,P ,H,D)

- 280

exc(C,K,[_|X]):- exc(C,K,X).

const([a,b,c,d,e,f,g,h,i,j,k,l,m,n,o]).

append([] ,L ,L) .

append([HIT],L,[H|U]):- append(T,L,U).

/x Searching of contradiction in actual branch x/

scontr([],_):- fail.

scontr([XIY],Z):- (contr(X,Y),nl,write(branch closed'));

scontr(Y,Z).

contr(X, [~X|J).

contrC^X, [Xlj).

contr(X,LlY]:- contr(X,Y).

vl:- nl,nl

write(1. branch ') .

v2:- nl,nl

write(2. branch ') .

IV. Execution examples

Mentioned logic program can prove self-evidently any

theorem of propositional calculus. Examples of such proofs can

be seen in [2]. Here we show only the proofs of formulas of

monadic predicate calculus.

Formula:

ex(y,ex(x,p(x)) =>p(y)).

Main branch:

~ex(y ,ex(x,p(x)) => p(y))

~(ex(x,p(x)) => p(a))

ex(x,p(x))

p(a)

~p(a)

branch closed

formula is theorem

Formula:

(all(x,p(x))4=all(x,q(x))) => all(x,p(x)# q(x)).

Main branch:

'v((all(x,p(x)4=all(x,q(x))) => all(x,p(x)# q(x)))

all(x,p(x» + all(x,q(x))

- 281 -

1. branch

all(x,p(x))

p(a)

^all(x,p(x)*q(x))

*(p(a)+-q(a))
~p(a)

^q(a)

branch closed

2. branch

all(x,q(x))

q(a)

~all(x,p(x) + q(x))
/ v (p(a) -# - q(a))

^p(a)

~q(a)

branch closed

formula is theorem *

These examples demonstrate objectively the function of the

program. Now let us show another usage of program as decision

procedure by example of converse implication of last formula.

Formula:

all(x,p(x)4- q(x)) => (all(x,p(x))4 all(x ,q(x))) .

Main branch:
A/(all(x,p(x)+q(x)) =>(all(x,p(x))+-all(x,q(x))))

all(x,p(x)4i q(x))

p(a)4= q(a)

1. branch

p(a)

~(all(x,p(x)-#=all(x,q(x)))
/vall(x,p(x))

^p(a)
/vall(x,q(x))

^q(b)

branch closed

2. branch

q(a)

~(all(x,p(x)) + all(x,q(x)))

- 282 -

~all(x,p(x))

~p(a)

~all(x,q(x))

~q(b)

formula is not theorem

V. Evaluation of logic program

Logic program can be used as standard decision procedure.

In the majority of cases it is difficult to watch the proof

protocol (i.e. analytical table). Proofs of more complicated

formulas are rather long, so they exceed the range of the screen

and the program operates fast. To make possible the watching of

proof protocol we can use the interruption of execution or to

print the protocol. As it is evident from program and from

examples the branches in protocol are signed only as the first

one and the second one and it is not possible to demonstrate

the branching visually. Vie remind (for easier orientation in

listing), that corresponding assignment is realized on the

LIFO-principle.

REFERENCES

[l] C o e 1 h o, H. and C o t t a, J.C.: Prolog by example,
Springer-Verlag, Berlin Heidelberg, 1988.

[2] § t 6 p a" n, J.: Propositional Calculus Proving Methods
in Prolog, Acta UPO 97 (1990), (to appear).

[3] S m u 1 1 y a n, R.M.: First Order Logic (Slovak), Alfa,
Bratislava, 1979.

Department of Computer Science

Palacký University

Vídeňská 15, 771 46 Olomouc

Czechoslovakia

Acta UPO, Fac.rer.nat. 100, Mathematica XXX (1991) f 273 - 283.

- 283 -

		webmaster@dml.cz
	2012-05-03T21:46:35+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

