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Abstract: In this paper a modification of the method of 

analytical tables is described which makes possible to construct 

an effective logic program for automated theorem proving in 

monadic predicate calculus. The logic program is enclosed and 

its function is demonstrated. 
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In the sphere of logic programming there exists a great 

number of programs for proving of theorems of the propositional 

calculus (see for example [l], [2]). That is to say - highly 

effective algorithms of the matematical logic were developed 

which make the construction of such programs possible. For the 

proving of theorems of the predicate calculus there exists a 

very strong universal instrument - resolution principle. But 

this method is usually very slow in practice. Therefore it is 
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more convenient to pay attention on the solving of these quest

ions in some more narrow or special field of problems. In this 

case such a narrow field seems to be the monadic predicate 

calculus. By monadic predicate calculus we mean the logic with 

maximally unary predicate constants and (specially here) only 

with 0-ary (individual) function constants. For this calculus 

there exist algorithms, by which total decidability of prova

bility is guaranteed. One of these algorithms is the method of 

analytical tables (ace. [3]). 

Denotation: symbols ~ , tt ,# , => , <=> denote negation, 

conduction, disjunction, implication and equivalence respective

ly, symbols "all" and "ex" denote universal and existential 

quantifier respectively. 

I. Proof construction 

The method of analytical tables is based on decomposition 

of formula to simpler components - subformulas of considered 

formula. The models of the decomposition are the rules for 

construction of tables. The analytical table of the formula X 

is taken as a binary tree (graph), the nodes of which are oc

curences of the formulas, and which is constructed as following 

by the help of four-type rules: 

Rule A: C 

(conjuctive) Cl 

C2 

Rule C (univeгsal) : A , 

Rule B: D 

(disjunctive) D1|D2 

where a is an arbitrary parameter. 

A(a) 

Rule D (existential): E , where a is a new parameter. 

E(a) 

Rules of the type A and B deal with propositional connectives, 

rules of the type C and D serve for elimination of quantifiers. 

Construction process: 

1. the root of the tree is formula X; 

2. let formula Y be terminal node of the given tree 

- if there - on the path from X to Y - occurs a formula C, 

then any of formulas CI or C2 as the only successor of 

node Y can be added - we usually and step by step firstly 
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CI, secondly C2 (the tree in considered branch develops 

linearly); 

- if there - on the path from X to Y - occurs a formula D, 

then formula Dl can be added as left successor and D2 as 

right successor of formula Y (in the node Y the tree de

velops into two branches); 

- if there - on the path from X to Y - occurs a formula A, 

then formula A(a) can be added; 

- if there - on the path from X to Y - occurs a formula E, 

then formula E(a) can be added, but a-parameter choice 

is limited by reservation. 

The branch of given tree is said to be closed, if it contains a 

formula and its negation. Analytical table (tree) is called to 

be closed, if every of its branches is closed. The proof of the 

formula X is then understood as a closed table for formula ~*X. 

Such accepted proof seems to demonstrate that every branch of 

decomposition of formula ~X forms inconsistent set of formulas. 

That is why the formula ~X is inconsistent, hence formula X is 

tautology or theorem. 

Decompositional rules, which may be used in above mentioned 

process, are according types: 

rules A with two successors 

Rl: X & Y R2: " ( X t Y ) R3: ~(X => Y) 

rules A with one successor 

R4: 

rules B 

R7: X # 

X I 

rules C 

RU 

R5: 

R8: 

X <=> Y 

(X => Y)í (Y => X) 

v ( X å Y) 

R6: 

R9: 

all (x,A) 

A(x/a) 

Rll: ~ex(x,A) 

~A(x/a) 

rules D (with parameter choice reservation) 

R12: ex(x,E) R13: ̂ all(x ,E) 

E(x/a) t(x/a) 

"(X <=> Y) 

~X <=> Y 

X => Y 

~X I Y 
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Note to rule D: If we prove during an argumentation (for 

example in mathematics), that there exists an element x holding 

a property p, i.e. that ex(x,p(x)) is valid, then we can affirm 

"let a be such x", i.e. p(a) is valid. If we later prove, that 

ex(x,q(x)) is valid for some property q, then it is not possible 

to affirm "let a be such x", because a had been related to pro

perty p, therefore we take a new parameter b, we say "let b is 

such x" and we write q(b). So that is the reason for reservation 

in rule D. 

If we apply that reservation in proof is sufficient to 

restrict the application on considered branch of proof. That 

means we choose such parameter, that in given branch had not 

been used in a rule of the type D. This simplification gives a 

possibility to shorten some proofs, but the main merit is a 

possibility to avoid multiple applications of rules of the type 

C, which is visible from following example. 

Example: proof of formula 

all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q(x))) 

1. ^(all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q(x)))) 

2. all (x,p(x) => q(x)) R3(l.) 

3. ~(all(x,p(x)) => alKx-q(x))) R3(l.) 

4. p(a) => q(a) R10(2.) 

5. all(x,p(x)) R3(3.) 

6. ~all(x,q(x)) R3(3.) 

R9(4.) 

R10(5.) 

R13(6.) 

R10(2.) 

R9(12.) 

R10(5.) 

7. ^p(a) 8. q(a) 

9. p(a) 

x 

10. 

11. 

12. 

p(a) 

~q(b) 

p(b) => q(b) 

13. ~p(b) 14. q(b) 

15. p(b) 

x 

x 

The symbol x indica tes a t зlosed bгanch of proof 

- 276 -



The length of a proof depends on order of applications of 

the rules. The most effective proof can be obtained by priority 

application the rules of type A and if it not possible more, 

then we use other rules in order D, C, B. 

Let us consider the formula used in example and let us 

construct the proof by mentioned process: 

1. ~(all(x,p(x) => q(x)) => (all(x,p(x)) => all(x ,q( x )))) 

2. all(x,p(x) => q(x)) . R3(l.) 

3. ~(all(x,p(x)) => all(x,q(x))) R3(l.) 

4. all(x,p(x)) R3(3.) 

5. ~all(x,q(x)) R3(3.) 

6. ~q(a) R13(5.) 

7. p(a) R10(4.) 

8. p(a) = q(a) R10(2.) 

9. ~p(a) 10. q(a) R9(8.) 

The basic proof algorithm is not convenient for logic 

program construction, because multiple applications of rules of 

the type C on the same formula can account to an infinite com-

•putation. Above described optimized process is not convenient 

as well, because choice of rules by the types lengthens the 

computation nearly twice. 

So the algorithm will be used in such modification, that 

it eliminates mentioned defects. But the modification is effecti

ve for monadic predicate calculus only - in full predicate cal

culus it would not be decision procedure yet. By point of view 

of effective computation the modification is a compromise 

between the length of a proof (a number of formulas - steps of 

proof is not minimal) and the length of computation The mo

dification is based on these principles: 

every subformula of starting formula (i.e. negation of 

given formula) is decomposed step by step into atomic 

formulas or their negations 

this is performed in order, which is given by the rules 
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only under this sequence (branch of proof) there is joined 

the sequence, that is relevant to paralel non-analysed 

formula 

rules of the type C are always applied with constant a 

rules of the type D respect branching of proof and apply 

succesively constants a, b, c,...,o. 

Further we demand these limitations of the formulas form: 

bound variables are denoted by lower case characters x, 

y, 2; they can be indexed 

formulas do not contain free variables, i.e. for example 

expression p(x) can occur as subformula only in expressions 

all(x,p(x)) or ex(x,p(x)); but it is not necessary, that 

in the scope of quantifier the variable quantified by them 

occurs, for example in expressions all(x,A) or ex(x,A) the 

subformula A does not have to contain x 

constants are denoted by lower case characters a,b,...,o 

if given formula contains constants,, they occur there in 

above mentioned order form the left to the right beginning 

with the letter a 

- usage of constants in formulas is not limited, but it is 

recommended. 

Following logic program holds these conditions in its con

struction and function. 

II. Logic program 

/K Operations - logical connectives K/ 

- op(900,xfy,<=>) 

- op(800,xfy,=>) 

- op(700,xfy,*) 

- op(600,xfy, &) 

- op(500,fy,~) 

/K Regarding, testing and proving of formula K/ 

formula:- repeat,nl,nl,write( Formula: ),nl, 

read (F), (F = = stop; 

(testar(F),theorem(^F),fail)). 

/K equivalence K/ 

/K implication K/ 

/K disjunction K/ 

/K conjuction K/ 

/K negation K/ 
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/* Arity testing */ 

testar(F):- ((arity(F), ! ) ; 

(nl,write( formula is not monadic'),fail). 

arity(X):- functor(X,F,N),test(X,F,N). 

test(X,~,l):- arg(l,X,Y),arity(Y). 

test(X,Y,2):- ( Y = = &; Y = = *; Y = = =>;Y = =<=>), 

arg(l,X,Xl),arg(2,X,X2),arity(Xl),arity(X2). 

test(X,Y,2):- (Y== all;Y== ex),arg(l,X,X1),arg(2,X,X2), 

test(Xl,Xl,0),arity(X2). 

test(X,Y,l):- test(Y,Y,0). 

test(X,X,0). 

/* Control of proof */ 

•fcheorem(T) : - n l , w r i t e ( ' M a i n b r a n c h : ' ) , 

( a n a l ( [ T ] , [ T ] , a ) , ! , n l , n l , w r i t e ( ' f o r m u l a i s t h e o r e m ' ) ; 

n l , n l , w r i t e ( ' f o r m u l a i s not t heo rem ' ) ) . 

/ * C o n s t r u c t i o n of a n a l y t i c t a b l e * / 

ana l ( [ X I Y ] , Z , C ) : - n l , w r i t e ( X ) , f a i l . 

/ * Con junc t i ve r u l e s * / 

• a n a l ( [ ^ ^ 1 1 X 2 ] , Y , C ) : - append( [ X l ] , Y , T ) , 

a p p e n d ( X 2 , [ X l ] , Z ) , ! , 

anal (Z ,T , C ) . 

a n a l ( [ X l g , X2 1X3] , Y ,C) : - append( [X I ,X2] , Y , T ) , 

a p p e n d ( X 3 , [ X 1 , X 2 ] , Z ) , ! , 

ana l (Z ,T , C ) . 

a n a l ( [ ~ ( X l * • X2) |X3] , Y,C) : - append( [ "X l ,~X2] , Y , T ) , 

append(X3, [~X1 ~X2] , Z ) , ! , 

a n a l ( Z , T , C ) . / * R2 * / 

a n a l ( [ ~ ( X l => X2) |X3] , Y ,C) : - append( [XI ,~X2] , Y , T ) , 

append(X3, [X1,~X2] , Z ) , ! , 

a n a l ( Z , T , C ) . / * R3 * / 

ana l ( [ X l < = > X2 I X3] , Y ,C) : - append ( [X I => X2 ,X2 => X l ] , Y ,T) , 

append(X3, [X1=>X2,X2 = > X l ] , Z ) , ! 

a n a l ( Z , T , C ) . / * R5 * / 

a n a l ( [ ' v ( X U = >X2)|X3] , Y , C ) : - append( [~X1 => X2,X2 = > ~ X l ] , Y , T ) , 

append(X3, [ "X I =>X2,X2 =>~X l ] , Z ) , 

a n a l ( Z , T , C ) . / * R6 * / 

/ * D i s j u n c t i v e r u l e s * / 

a n a l ( [ ~ ( X l i X 2 ) I X 3 ] , Y , C ) : - append( [ ~ X l ] , Y , T 1 ) , 

a p p e n d ( [ ~ X 2 ] , Y , T 2 ) , ! , 

/ * R4 * / 

/ * R1 * / 
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v l , a n a l ( [ A / X l | X 3 ] , T l , C ) , ! , 
v 2 , a n a l ( [ ~ X 2 | X 3 ] , T 2 , C ) . / * R 8 H/ 

a n a l ( [ x i 4 = X 2 | X 3 ] , Y , C ) : - append( [ X l ] , Y , T 1 ) , 

a p p e n d ( [ X 2 ] , Y , T 2 ) , ! , 

v l , a n a l ( [ X l | X 3 ] , T 1 , C ) , ! , 

v 2 , a n a l ( [ X 2 1 X 3 j , T 2 , C ) . /* R7 */ 

n a l ( [ x i => X 2 I X 3 ] , Y , C ) : - append( [ ~ X l ] , Y , T l ) , 

a p p e n d ( [ X 2 ] , Y , T 2 ) , ! , 

v l , a n a l ( [ ~ X l | X 3 ] , T l , C ) , ! , 

v 2 , a n a l ( [ X 2 | X 3 ] , T 2 , C ) . /* R9 */ 

I* U n i v e r s a l r u l e s */ 

anaK [ a l l ( X , A) |Z ] , Y ,C) : - subs t (a ,X , A , U ) , 

a p p e n d ( [ u ] , Y , T ) , ! 

a n a l ( [ U | Z ] , T , C ) . /* R10 */ 

anaK [~ex(X, A) I Z] , Y , C ) : - subs t (a ,X ,^A , U ) , 

a p p e n d ( [ u ] , Y , T ) , ! , 

anal([U|Z],T,C). /* Rll */ 
I* Existential rules */ 
anal([~all(X,A)|z],Y,C):- subst(C,X,~A ,U), 

exch(C,K), 
append([u],Y,T),! 
a n a l ( [ U | Z ] , T , K ) . I* R13 */ 

anaK [ex (X, A) | Z] , Y , C ) : - subst(C , X , A , U ) , 

exch (C ,K) , 

a p p e n d ( [ u ] , Y , T ) , ! , 

anal([U!Z],T,K). I* R12 */ 
I* Atomic formula */ 
anal([_|X],Y,C):- anal(X,Y,C). 
/* End of analysis */ 
anal(["] ,X, ):- scontr(X,X). 
I* Substitution */ 
subst(N,P,P,N):- !. 

- a t o m i c ( H ) , ! . 

- H = . . [ F | A ] , s a r g ( N , P , A , B ) , D = . . [ F ! B ] . 

s a r g ) ) _ , _ , [ ] , [ ] ) : - ! . 

s a r g ( N , P , [ A I B ] , [ C | D ] ) : - s u b s t ( N , P , A , C ) , s a r g ( N , P , B , D ) . 

I* Exchange */ 

e x c h ( C , K ) : - c o n s t ( X ) , e x c ( C , K , X ) . 

exc(C,K, [ C , K | J ) . 

subs t (N ,P ,H,H) 

subs t (N ,P ,H,D) 

- 280 



exc(C,K,[_|X]):- exc(C,K,X). 

const( [a,b,c,d,e,f,g,h,i,j,k,l,m,n,o]). 

append([ ] ,L ,L) . 

append([HIT],L,[H|U]):- append(T,L,U). 

/x Searching of contradiction in actual branch x/ 

scontr([ ],_):- fail. 

scontr([XIY],Z):- (contr(X,Y),nl,write( branch closed')); 

scontr(Y,Z). 

contr(X, [~X|J). 

contrC^X, [Xlj). 

contr(X,LlY]:- contr(X,Y). 

vl:- nl,nl 

write( 1. branch ' ) . 

v2:- nl,nl 

write( 2. branch ' ) . 

IV. Execution examples 

Mentioned logic program can prove self-evidently any 

theorem of propositional calculus. Examples of such proofs can 

be seen in [2]. Here we show only the proofs of formulas of 

monadic predicate calculus. 

Formula: 

ex(y,ex(x,p(x)) =>p(y)). 

Main branch: 

~ex(y ,ex(x,p(x)) => p(y)) 

~(ex(x,p(x)) => p(a)) 

ex(x,p(x)) 

p(a) 

~p(a) 

branch closed 

formula is theorem 

Formula: 

(all(x,p(x))4=all(x,q(x))) => all(x,p(x)# q(x)). 

Main branch: 

'v((all(x,p(x)4=all(x,q(x))) => all(x,p(x)# q(x))) 

all(x,p(x» + all(x,q(x)) 
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1. branch 

all(x,p(x)) 

p(a) 

^all(x,p(x)*q(x)) 

*(p(a)+-q(a)) 
~p(a) 

^q(a) 

branch closed 

2. branch 

all(x,q(x)) 

q(a) 

~all(x,p(x) + q(x)) 
/ v (p(a ) -# - q(a)) 

^p(a) 

~q(a) 

branch closed 

formula is theorem * 

These examples demonstrate objectively the function of the 

program. Now let us show another usage of program as decision 

procedure by example of converse implication of last formula. 

Formula: 

all(x,p(x)4- q(x)) => (all(x,p(x))4 all(x ,q(x))) . 

Main branch: 
A/(all(x,p(x)+q(x)) =>(all(x,p(x))+-all(x,q(x)))) 

all(x,p(x)4i q(x)) 

p(a)4= q(a) 

1. branch 

p(a) 

~(all(x,p(x)-#=all(x,q(x))) 
/vall(x,p(x)) 

^p(a) 
/vall(x,q(x)) 

^q(b) 

branch closed 

2. branch 

q(a) 

~(all(x,p(x)) + all(x,q(x))) 
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~all(x,p(x)) 

~p(a) 

~all(x,q(x)) 

~q(b) 

formula is not theorem 

V. Evaluation of logic program 

Logic program can be used as standard decision procedure. 

In the majority of cases it is difficult to watch the proof 

protocol (i.e. analytical table). Proofs of more complicated 

formulas are rather long, so they exceed the range of the screen 

and the program operates fast. To make possible the watching of 

proof protocol we can use the interruption of execution or to 

print the protocol. As it is evident from program and from 

examples the branches in protocol are signed only as the first 

one and the second one and it is not possible to demonstrate 

the branching visually. Vie remind (for easier orientation in 

listing), that corresponding assignment is realized on the 

LIFO-principle. 
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