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Abstract: It is proven that if a varieta V with at least 

two binary idempotent operations f, g is permutable, then there 

exists a ternary term t(x,y,z) such that t(x,x,z) = f(x,z) and 

t(x,z,z) = g(x,z). If, moreover, reducts of algebras of V are 

lattices, this condition is necessary and sufficient for the 

permutability of V. 
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A variety of algebras V is called permutable if 

8 .(() = ()). 8 

holds for every two congruences 9, (|) € Con A and for each AeV. 

The well-known Mal'cev theorem [2] says that V is permutable if 

and only if there exist a terna-ry term p(x,y,z) such that 

p(x,z,z) = x and p(x,x,z) = z 

(the so called Mal'cev term). However, for some investigations 
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we often need other terms which satisfy suitable properties 

which can be different from those above. The aim of this short 

note is to give such terms in permutable varieties with idem-

potent operations, especially in varieties whose members have 

reducts in lattices. 

A binary operation f on an algebra A is called idempotent 

if f(x,x) = x for each xeA. 

Theorem 1. Let V be a variety of algebras with al least 

two binary idempotent operations f, g. If V is permutable, then 

there exists a ternary term t(x,y,z) such that 

t(x,x,z) = f(x,z) and t(x,z,z) = g(x,z) . 

P r o o f . If V is permutable, then (see [2]) there 

exists a Mal'cev term p(x,y,z), i.e. p(x,z,z) = x and p(x,x,z) = 

= z. Put t(x,y,z) = f(g(x ,y),g(p(x,y,z),z)). Then 

t(x,x,z) = f(g(x,x),g(p(x ,x,z) ,z) = f(x,g(z,z)) = f(x,z) and 

t(x,z,z) = f(g(x,z) ,g(p(x,z,z),z) = f(g(x,z),g(x,z)) = g(x,z). 

Example 1. Let B be a variety of Boolean algebras. Denote by 

x <S y = (x Ay) v(xAy'), the so called symmetrical difference. 

Evidentely, p(x,y,z) = x © y © z is a Mal'cev term and the 

ternary term 

t(x,y,z) = (xAy) V ((x © y © z)A z) 

satisfies t(x,x,z) = xvz and t(x,z,z) = xAz. 

Example 2. If R is a variety of Boolean rings, then the ternary 

term 

t(x,y,z) = x.y + (x+y+z).z 

satisfies 

t(x,x,z) = x + z and t(x,z,z) = x.z 

We will proceed to show that for lattice- type varieties 

the converse assertion holds. 

Lemma. Let L be a lattice and 0, ((JsCon L. Then 9 . $ = $ . 0 

if and only if for each a,b,ceL, a — b — c such that 

<a,b>€9, -<b,c>€(|) there exists an element d€L such that 

a - d - c and <a,d>£$ , <d,b>£9. 

For the p r o o f , see e.g. [l], III, §3, Example 13. 
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of A onto G. Let V be a variety of algebras of the similarity 

type T. We say that V is a variety of the lattice type, if CT* 

contains two binary operations, say V , A , such that the reduct 

of each A € V onto { v , A l is a lattice, and every operation of 

the similarity type J** is either isotone or antitone with respect 

to the order induced by v , A • Thus every variety of p-algebras, 

examples of lattice type varieties. 

to the order induced by v , A • 

double p-algebras etc. are e> 

Theorem 2. Let V be a lattice type variety. The following 

conditions are equivalent: 

(1) V is permutable; 

(2) there exists a ternary term t(x,y,z) such that 

t (x , x , y) = x v y aпd t(x,y,y) = x A y. 

P г o o f . (1) (2): by Theorem 1. Prove (2) ==>(!), u ; => \i)i oy ineorem i. rrove vi) ==>ki;. 

Let A€V, 9, (fee Con A. Since the reduct of A onto { v , A \ is 

a lattice, denote by Con. A the lattice of all lattice congruences 

on A. Clearly, 0, $6Con.A. Let a,b,c be elements of A and 

<a,b>€9 , <b,c>£(|) and a - b - c 

( f o r the induced order — i n A ) . Then 

< a , t ( a , b , c ) > = <aAb, t ( a , b , c ) > = < t ( a , b , b ) , t ( a , b , c ) > € (j) 

< t ( a , b , c ) , c > = < t ( a , b , c ) ,b v c > = < t ( a ,b , c ) , t ( b ,b ,c )> <£ 9 . 

Since every operation of V is either isotone or antitone with 

respect to — , then a — b — c implies either 

t(a,b,b) -* t(a,b,c) ^ t(b,b,c) or 

t(a,b,b) ^ t(a,b,c) ^ t(b,b,c) . 

which can be satisfied only The secondpossibility gives a — c, 

in the case a = b = c which is contained in the first one 

Hence, a = t(a,b,b) — t(a,b,c) — t(b,b,c) = c. By the Lemma 

9, $ are permutable (in Con. A and hence also 

ariety of the type T= {v, A , o.iţ 

Hence, a 

also in Con A) 

Example 3. Let V be a v _ 

such that A £ V is a bounded (with respect to 0,1) distributive 

lattice (with respect to V , A ) with a complementation ', i.e. 

V is a variety of all Boolean lattices. Then the term t(x,y,z) = 

= (xAy)v{([(xvy')Az]v[(zvy')Ax])Azj satisfies (2) of 

Theorem 2, since 
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t(x,x,z) = (xAx)v{([(xVx')Az]v,[(zVx')Ax])Azj = 

= x V{(z v[(z vx')A x] )Az] = xVz , 

t(x,z,z) = (xAz)v{([(xVz')Az]v[(zVz')Ax])Azj = 

= (x Az) v{( [(x Az) v(zAz)] Vx)A z] = 

= (x Az) V(x A z) = x Az . 

Remark. In the foregoing example of boolean lattices, we have 

put t(x,y,z) = (x A y) V (p(x , y , z) A z) , where p(x,y,z) was a Mal'-

cev term. However, we can easy to see that the Mal'cev term 

which was used satisfies one more condition, namely 

p(0,x,l) = x' . 

We proceed to show that this condition is essential also in the 

case V need not be a lattice type variety. 

Theorem 3. Let V be a variety of the similarity type 

3"= {v, A , ' , 0, l,...j* such that V , A are binary, 'is 

unary and 0,1 are nullary operations satisfying the following 

identities: 

xAx = x x v x = x 

(xAy)vx = x yv(yAx) = y 

(x v y) Az = (xAz) V(y Az) 

x Vx = 1 x A x = 0 

xV0 = 0Vx = x , l A x = x A1 = x 

0 = 0Ax = xA0 . 

The following conditions are equivalent: 

(1) there exists a ternary term p(x,y,z) such that 

p(x,x,z) = z, p(x,z,z) = x, p(0,x,l) = x' 

(2) there exists a ternary term t(x,y,z) such that 

t(x,x,z) = xvz, t(x,z,z) = X A Z , t(0,x,l) = x' 

P r o o f . (1) = > ( 2 ) : Put t(x,y,z) = (x A y) V (p(x , y , z) A 

Then, evidently, 

t(x,x,z) = (xAx)v(zAz) = xVz 

t(x,z,z) = (xAz)V(xAz) = xAz 

t(0,x,l) = (OAx)V(x'Al) = OVx' = x' . 

(2) =3> (1): Put 

p(x,y,z)=t(t(t(x,x,t(0,y,l)),z,z),t(t(x,x,t(0,y,l)),z,z), 

t(t(z,z,t(0,y,l)),x,x)) . 
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Then 

p(x,z,z) = [(x vz')A z] V[(z Vz')A x] = (xAz)Vx = x 

p(x,x,z) = [(x Vx')A z] V [(z vx')A x] = z V [(z A x) V (x 'A X)] = z 

p(0,y,l) = [(0 Vy')A l] V[(lVy')A 0] = y'vO = y' . 
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