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T.Evans and B.Ganter [1] gave a V3-term characterization 

of varieties of algebras having modular subalgebra lattices. 

The aim of this short note is to use a similar method to 

characterize varieties having distributive subalgebra lattices. 

Let A be an algebra. Denote by SubA the lattice of all 

subalgebras of A (orderer by set inclusion). The operation join 

(or meet) in SubA will be denoted by v (or A, respectively).A is 

said to have distributive subalgebra lattice if SubA is 

d i s t r i b u t i v e . A variety V is subalgebra distributive if each 

member A&V has distributive subalgebra lattice. 

If a ,...,a are elements of an algebra A, denote by 
1 n 

Gen(a ,...,a ) the subalgebra of A generated by the set 
1 n / 
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(a ,...,a }. If V is a variety of algebras, denote by F (V) the 
I n n 

free algebra of V generated by n free generators. 

An algebra A is hamiltonian (see [2]) if every subalgebra 

of A is a class of some congruence on A. A variety V is 

hamiltonian if each A V has this property. 

Proposition 1 (Theorem 1.4. in [3]). If B,C are subalgebras 

of an algebra A in a hamiltonian variety and x^Bvc , then there 

exist Jb ,Jb GB and c , c ec such that x^Gen(b ,b ,c ,c ) . 
l' 2 l' 2 l' 2' 1 2 

Proposition 2 (Theorem 1 in [1]). If the lattice of 

subalgebras of every free algebra in a variety V is modular, 

then V is hamiltonian. 

Now, we are ready to prove the following. 

Theorem. For a variety V, the following conditions are 

equivalent: 

(1) V is subalgebra distributive; 

(2) V is hamiltonian and for every 4-ary term p there exist a 

*k-ary term q and unary terms r , s (1 = 1,2,3,4) such that 

p(x ,x , x , x )=q(s (x ), s (x ) ,s(x), s (x )) 
1 2 3 4 1 1 2 2 3 3 4 4 

r (p(x ,x ,x ,x ))=s (x ) for i = l,2,3,4. 
i ^ 1' 2' 3' 4 1 i 

Proof. (l)-+(2): Let V be a subalgebra distributive variety 

and A**F (V), where x ,x ,x ,x are free generators of A. Let p 
4 1 2 3 4 

be a 4-ary term (over V). Let C be a subalgebra of A such that 

C=Cen(p(xi,x ,x ,x )) and B be a subalgebra of A such that 

B =^Gen(x ) for i = l,2,3,4. Then, evidently, 

By (1), we have 
p(xi,X2,X3,x4)€CA(BiVB2VB3VB4). 

p(x ,x ,x ,x )e(CAB )v(CAB )v(CAB )v(CAB ). 
1 2 3 4 1 2 3 4 

By Proposition 2, V is hamiltonian and , by Proposition 1, there 

exist elements b e(CAB ), i=l,2,3,4 such that 

p(xi,x2,x3,x4)€Oen(i>i,h2,D3,i>4), 

since every B as well as C is generated by the unique generator. 

Hence, there exists a 4-ary term g such that 

P(xi,x2,x3,x4)=g(l5i,b2,i>3,b4) 
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and b €CAB gives 
b=ri(p(xi,x2,x3,xA))**si(xi), 1 = 1,2,3,4 

for some unary terms r ,s . 
(2)=>(1): Let A&V and R,S,Q be subalgebras of A. Let 

ae^A(SvQ). Then aeR and, by Proposition 1, there exists a 4-ary 

term p and elements b ,b es, c , c eQ such that 
^ 1' 2 ' 1 2 

a=p(Jbi,b2,ci,c2). 

By (2), there exist a 4-ary term g and unary terms r , s 

(1=1,2,3,4) such that 

a=g(si (bt), s2(b2), s3(cj), -?4(c2)), 

where 

s^b^-r^a), s2(b2)=r2(a) 

s3(ca)=r3(a), s4(c2)=r4(a). 

Hence, 

s (b )eSAR , s ( b 2 ) eSAR , 

S 3 (C i ) €QAR , S 4 (C 2 )€QAR , 

thus a e ( S A R ) v ( Q A R ) , proving (1). m 

Example. Every at most unary variety is subalgebra 

distributive. 

It is evident that every at most unary variety is 

hamiltonian (see the V3-term characterization of hamiltonian 

varietis in [2]) and also the V3-term condition of (2) is 

clearly satisfied if p is at most unary. 
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