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Abstract 
Sufficient conditions for the existence of a solution to periodic 

and anti-periodic boundary value problems associated to nonlinear 
second-order differential equations are given by means of the Schau-
der fixed point theorem. The apporopriate Green functions are given 
explicitly. 
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Introduction 
This paper was stimulated by an earlier note [1] by G. G. Hamedani and B. 
Mehri, where the explicit construction of the appropriate Green function has 
been employed for the solution of the second-order periodic boundary value 
problem (BVP) 

x" + kx= f(t, x, xf), x(j\0) = a?W)(r), j = 0,1, T > 0, 

k > 0 is a suitable constant. 
Here, we would like to do the same for k < 0 at first, and then for an 

arbitrary real k, when 

xij\0) = -x(j)(T) for j = 0,1." 

The latter is called an anti-periodic (or half-periodic) BVP. 



Observe that if 

f(t)x,y) = f(t+T,x,y) or f(t)X,y) =-f(t+T,-x,-y), 

then the existence of T-periodic or 2T-periodic solutions is obtained at the same 
time as well. 

We are, unfortunately, not very familiar with the results concerning anti-
periodic BVPs except those considered in abstract spaces (see e.g. [2], [3], [4]) or 
those which can be deduced from the criteria to more general problems like semi-
periodic BVPs (see e.g. [5], [6]) or BVPs with nonlinear boundary conditions (see 
e.g. [8], [9]). Nevertheless, our related statements cannot be trivially deduced 
from the above quoted papers, either. 

Preliminaries 

Consider the BVP 

x" + kx = f(t, x, x'), f G C[(0,T) x M2], (1) 

x(0) + px(T) = 0, x'(0) + qx'(T) = 0, (2) 

where p,q £ { — 1,1}, k G M1. Besides (l)-(2), consider still the linear homoge­
neous BVP (3)-(2), where 

x" + kx = 0, k£Rl, (3) 

and p,q G {-1 ,1}. 
It is well-known (see e.g. [10]) that the solution of (1)~(2) is the same as the 

one of 

z(t) = / G(t, s)f[s, x(s), x'(s)]ds := F[z(t)] (4) 
Jo 

as far as Green's function G(t, s) to (3)-(2) exists. This is true if problem (3)-
(2) has only the trivial solution (see e. g. [10] again). Applying the Schauder 
fixed-point theorem (see e.g. [11, p.322]), it is sufficient to show that a closed 
convex subset § of Banach space M of all continuously differentiable functions 
on (0,T), with the norm 

\\x(t)\\:= max[\x(t)\+\x'(t)\],-
*fc \">-* / 

exists such that 
F(g) C S. (5) 

Indeed, it is namely well-known (see [11, p. 123]) that the integral operator 
F[x(t)] in (4) is completely continuous. 

Hence, our problem reduces, in this way, to two following questions: 
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I. nonexistence of any nontrivial solution to (3)-(2), 
II. validity of (5). 

Let us begin with I. Substituting 

x(t) = C\ cosh y—kt -f Ci sinh y—^kt, 

where k < 0 and Cj £ E1 (j = 1,2), into (2), we obtain the system the deter­
minant of which differs from zero iff 

PQ + (P + <l) COSfl v~kT -f 1 ^ 0 

i.e. 
(p + cosh V-kT)(q -f cosh V-kT) 7- sinh2 V-kT. 

Therefore, 
p ^ X sinh y—kT — cosh \/—kT 

and 

q ^ — sinh y—kT — cosh y^kT 
A 

must be simultaneously satisfied for all real A 7- 0. 

Lemma 1 Problem (3)-(2), where p<q & { — 1,1}, admits for k < 0 only the 
trivial solution iff 

p = q = 1 or p = g = — 1. 

Remark 1 For p = 1, q = — 1 (or p = — 1 , o=l) problem (3)-~(2) has infinitely 
many nontrivial solutions. 

Substituting 

x(t) = C\t + C2, Cj G E ( j = 1,2), 

into (2), we obtain the system the determinant of which differs from zero iff 

(P+1)(« + 1 ) # 0 . 

Hence, we can give 

Lemma 2 Problem (3)-(2) has for k = 0 only the trivial solution iff 

p ^ — 1 and a -̂  — 1. 

Remark 2 For p = — 1, q E M1 arbitrary (or q = — 1, p G K1 arbitrary) 
problem (3)-(2) has infinitely many nontrivial solutions. 



Substituting 

x(t) = Ci cos Vki + C2 sin Vkt, Cj G I 1 

(j = 1,2) and k > 0, into (2), we obtain the system the determinant of which 
differs from zero iff 

pq + (p+ q) cos Vkf + 1 ^ 0 

i.e. 
, 2 (p + cos VkT)(q + cos VkT) + sin2VkT ^ 0. 

Therefore, 
p / A sin VkT - cos \ /kT 

and 

q / ^ sin \ /kT - cos v'fcT 

must be simultaneously satisfied for all real A -̂  0. 

Lemma 3 Problem (3)-(2), where p, a G {—1,1}, admits for k > 0 only the 
trivial solution iff 

(2m + l)7r 
p — q = 1 and F ^t -= 

Vk 
or 

i ---. / 2 m 7 r 

p rr a = - 1 and T ^ —-=-
Vk 

where m = 0, ± 1 , ±2, 
Remark 3 For p = 1, q = — 1 (or p = — 1, q = 1) problem (3)-(2) has infinitely 
many nontrivial solutions. 

Let us go on to the verification of II. Defining (see above) 

S:={x(t)eB: \\ x(t) \\< D, D G R + } , 

it is clear that S is closed and convex. Therefore, it is enough to show that [see 

(4)] 

ii nm n< D, 
where D is a suitable positive constant, in order to prove (5). 

Assuming the existence of a piece-wise continuous function H(t, r) (with the 
finite number of the discontinuity points) on (0,T), r > 0, which is nondecrea-
sing in r for each fixed t e< 0, T > and such that 

f(tixiy)<H(tt\x\+\y\) fcrf€(0,T). [x)y]em2
) kem1 (6) 

is satisfied, we can give 
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Lemma 4 Let the assumptions of Lemma 1 or Lemma 2 or Lemma 3 be sa­
tisfied. If there is still a constant D > 0 such that 

max H(t,D)< —, 
ťe(o.т) ГG 

where 

G = max ( max [\G(t,s)\ + 1 ^ ' § ) \\ (> 0) 
te(o,r) Uelo.T)11 oť j 

(7) 

(8) 

G(t,s) is Green's function associated to (3)-(2), then 

|| F[x(t)] \\< D for all x(t) G §. 

For the proof see [12] (cf. also [13]). 

Remark 4 Conditions (6), (7) are obviously fulfilled, when constants Mo > 0, 
M > 0 exist such that 

\f(t,x,y)\ < M 0 + M ( | i | + |y|) for all ť Є (0,T), [x,y] Є 

where M < -Jj--. 

(0) 

Main results 

Now, let us define the appropriate Green functions to (3)-(2). 

1. p — q = — 1 and 

a) k > 0: 

G(t,s) = { 

cos y/kit — s — Ę ) 
for 0 < s < ť < T , 2vksin>/k ү 

cos \/k(ť - s + -£) 

2v^s in \ /k -£ 
for 0 < ť < s < T, 

where T 6 ( 0 , ^ ) , 
b) A; < 0: 

G(t,s)={ 

cosh y/—k(t — s — -•) 

2>/--^'sinhv/--I? 
for 0 < s < ť < T, 

COsh \J—k(t — S +%r) 
- ^ - f o r 0 < ť < s < T , 2л/~k sinh v—k 
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2. p = q = ì and 
c) k = 0: 

G(t}s)= < 

( 1 T 
õ(* ~ s ~ o") foг 0 < s < ť < T, z z 

5 ( s - ť - õ " ) foгO<< <s<T, 

d) * > 0: 

( sin \/k(l — s — ~) 
- ^ for 0 < s < t < T 

G(t,s) 

where T € (0, -Jy), 

e) fc < 0: 

G ( í , s ) = < 

2 \ /kcos \ /k y 

sin\/k(s — ť — y^ 

2\/kCOS\/k y 

sinh y/—~k(t — 5 — y) 

2y/—k cosh \/—k y 

for 0 < ť < s < T, 

for 0 < B < t < T, 

sinh y/—~k(s — t — Ęr) 
Ì~ for 0 < t < s < T, 2v—k cosh \Л-k 

Thus, we can give the principal result of the paper. 

Theorem Problem (l)-(2) admits a solution, provided (9) with M < T~lG~l 

[see (8)], where 

(0 o<^(l + v̂ ) [o<^(l + vђ] 

foг p = q = - 1 and k > 0, T Є (0, ÿ-), (cf. [1]), 
or 

1 COSҺ ҳ/—k Ђ- v 1 , 
o < 5 --*•) [GK-—І1 + V-Ç)] 

ïoт p = q = -ì and k < 0, 
or 

(iii) 

foт p = q = 1 and k = 0, 
or 

G<-A(T+2) 

(гv) Giw^7и{{+~к> [GÍ^(1+VÎ)1 
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for p = q = І and k > 0, T € (0, ^ - ) , 

or 

G < -j==(l + л/=I) (v) 

for p = g = 1 and Ar < 0. 

P r o o f — follows immediately from Lemma 4 and Remark 4, when taking into 
account the following inequalities: 
ad (i) 

\G(t,s)\< 
I 

2V~ sinV^f ~ 2VT £V*f _ 2*T 
1 < X * > 

<9G(ť,s) 
дť 

1 1 1 
< =r=- < 

2sinл/ibÇ ~ 2 IVÎЬŞ 2 л / ř Г Г 2 

1 

1 

ad (ii) 

.__ V1 cosh-v/^kÇ cosh\/--TŞ cosh >/—SbŞ-
|G(ť,в)| < - = v . Д - . ^ < 2 V ^ sinh v^-T Ş г^/11! x/1-̂ " Ç kт 2л/-* 

<9C7(*,B) 
дt < 

sinh V--É т 1 

2 s i n h v

/ = ~ f 2 ' 

ad (iii) 

ad (iv) 

\G(t,s)\< 

1 T T 

|o(.,.)l<__--T, 

< 

őG(ť,«) 
ðť 

2v /FcosV
/ífc? _ 2 V ^ ( l - f V ž f c ? ) 2y/k#[- i/kT) [ 2%/žfc 

ÔG(ť,s) 
őť 2 с о 8 л Д | - 2 ( 1 - | л / * | ) 2 ( х - л Д Т ) 

a d ( v ) 

\G(t,s)\< 
sinh л/—^ ү 1 cosh л/^k ~ 1 

2_ _ 

2y/~~k cosh V— ï т 2л/—k cosh л/— k y 2л/—к ' 

<9G(ť,B) 
ðl 

cosh V"-^" т 1 2_ __ 

cosh >/--* ү 2 
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Corollary 1 I//(i,.c,u) = f(t,x) or f(t,x,y) = f(i,y), then the assertion of 
Theorem can be obviously improved with respect to G as follows: 

ad (i) G< 
2kT 2VTJ 

7Г 1 
or G< — 7 — < 77, 

- 2лДF ~ 2' 

acř (п) G< 
cosh" 

kт < or G < ~ , 

acř (ťгi) 
T 1 

G<- or G=-, 

ad (iv) G< 
2y/k(ҡ-л/kT) 2y/k\ 

or G< 
2(ҡ-yДT) 

ad (v) G< 
SІnҺ \/—& ү 

2\f—k cosh 
-г G<-, 

respectively. 

Concluding remarks 

Remark 5 Under the slight modifications of the assumptions in Theorem, one 
can easily extend the above conclusions with respect to the nonhomogeneous 
boundary conditions, namely 

x(0) + px(T) = A, x'(0) + qx'(T) = I3, 

where p, q E { —1, 1} and A, H G R1. 

Remark 6 Another possible approach consists in the application of the a priori 
estimate technique. In this case the explicite construction of the appropriate 
Green functions is not necessary. 

Example The pendulum equation 

x" + ax' + b sin x = p(t) 

possesses, according to Theorem (iii), a 2T-periodic solution, provided 6 is an 
arbitrary real, a is a constant with \a\ < 4T~ 1 (T + 2 ) " 1 and p(t) = — p(t + T) 
is a continuous function. 
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