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THE ASYMPTOTIC PROPERTIES OF SOLUTIONS 
OF DIFFERENTIAL SYSTEM OF THE FORM 
gi(x)y[ = Ui(yi) + fi(x,yx,... ,yn) , i = i , 2 , . . . , n 

IN SOME NEIGHBOURHOOD 
OF A SINGULAR POINT 

MIHOSLAVA RUZICKOVA 

(Received May 4, 1992) 

Abstract 

The paper deals with asymptotic properties of solutions of non
linear differential system in some neighbourhood of the singular 
point. The paper contains sufficient conditions for existence of a 
solution which enter the singular point. 

Key words: non-linear differential system, singular point, point of 
exit (strict exit, input, strict input), scalar product, integral curve, 
normal vector, directional field, curve without contact. 

MS Classification: 34A34 

1 Introduction 
In the present paper we shall consider asymptotic properties of solutions of 
non-linear differential systems of the form 

( IT) 9i(x)y'i - Ui(yi) + fi(x,yu...,yn), i = l , 2 , . . . , n 

in some neighbourhood of the singular point 0 = ( 0 , 0 , . . . , 0) of the system 
(1.1). We intend to establish sufficient conditions for the functions gi(x), Ui(yi) 
and fi(x, y\,..., yn), i = 1,2,. . . , n that there exists on some interval (0, 6) 
at least one continuously differentiable solution Y(x) = [y\(x), y-2(x), . . . , yn(x)] 
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such that iirrL.._0+ yi(x) = 0. This is done in Section 3. The proof is based on 
the topological method of Wazewski, which is described e.g. in [2]. This method 
was used for example in [5], where is considered a system x/ = / (# , y) with the 
restriction f(x,y) > 0, what is not required in the present paper. 

The following notations will be used. Rn denotes the n-dimensional Eucli
dean space, Cm(I) denotes the space of m-times differentiable real functions on 
an interval I. Let Q be an open region, by Qe (Qse)} £2* ( 0 « ) we denote the 
points of exit (strict exit) from Q and input (strict input) to Q, (see e.g.[2]). If 
N and T are vectors, (N ,T ) means their scalar product. By proxN, pro N we 
denote a projection of vector N on the £-axis and on the y-axis. 

2 Auxiliary results 

In this section we state theorem on existence of a function given implicitly by 
the equation 

(2.1) (F(ziy)=)9(x) + 9(y) = Q 

on some domain D = Ix x Iy, where Ix = (x0,xo + Ax) , Iy = (yo,yo + A2) , 
0 < Afc =const., k = 1,2 and on existence its derivation. Because the proofs are 
similar to the proofs of Theorems L, II. from [1, pp. 447-453] we only state the 
results. 

T h e o r e m 2.1 Suppose 

(1) F : D —> R is continuous; 

(2) Fx, Fy exist and are continuous on D; 

(3) lim F(x,y) = 0; 
c+ 

y-*yt 
X-+XJ 
j-*-vt 

(4) V eue2 > 0 is Fx(x0 + £i,y0 + e2) • F^(x0 +euy0 + e2) < 0 on D. 

Then 

(a) there is determined uniquely on some domain D—Ixx Iy, where 
1= (xQjxo + 6), 0 < S < Ai , by (2.1) a function f : Ix —• R; 

(b) lim f(x) = y0; 

X-+X + 

(c) f is continuous; 

(d) f is monotonic and has a continuous derivative: ff(x) = —Fx • ( F ' ) _ 1 . 
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3 Main results 
Let us consider systems (1.1) on some domain Q = Ix x 1^ x . .. x Iyn, where 
h = (0,x0), IVt = (0,y^0)), i = 1,2, . . . , n , £0,y} ; . . . y n ° are positive 
constants, and the following conditions are assumed to hold without further 
mention: 

(3.2) gi£C2(Ix), UieC2(IyJ, 9i(x)>0t Ui(yi) > 0, i = l , 2 , . . . , n ; 

(3.3) fiEC^Q), i = l , 2 , . . . , n ; 

(3.4) l imyj(x) = 0, lim u{(#) = 0, i = l , 2 , . . . , n ; 
.r-*0+ y.-*0 + 

(3.5) there exists (finite or infinite) limit 

l™ 4 T 4 > z = l,2,...,n; 

V-0+ 

We remark that O = (0, 0,..., 0) is a point of the boundary Q and as it can 
be seen there are no conditions for this one. We shall see that there exists the 
integral curve of (LI) in a sufficiently small neighbourhood of the origin which 
enters this point. 

Definition 3.1 A curve jji = ipi(x), i = 1, 2 , . . . , n is said to be a curve without 
contact in view of the integral curves of (1.1) if all points 

(x,(pi(x),...,<pn(x)) E Q 
are points of strict exit (or strict input). 

Theorem 3.1 Suppose 
I 

(1) g'i(x) > 0, tfix) > 0 on / , ; 

(2) u'iiyi) < 0, < ( » ) < 0, (u{(w) > 0, u'/(yi) > 0) on /„,; 

f3j there exist 

lim ff{'(*)ft(x) = Mi > 0, lim u}'(ifc)«.(ifc) = JV. < 0 (> 0); 
x—+0+ y i _ f 0 + 

i = 1,2, . . . ,n , 

Then there exists on some interval (0,60) a/ /eas* one continuously differentiable 
solution Y(x) 

i - l , 2 , . . . , n . 

solution Y(x) = [yi(ж),y 2(ж),...,yn(ж)] sucA tòať Hm y,(æ) = 0, 
07—>-0 + 
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Proof It follows from (3.2) and (3.3) that trough the each point of Q there goes 
only one integral curve which is determined in a sufficiently small neighbourhood 
of the initial point. 

First, we want to establish, that there exist curves without contact in view 
of the projection of the integral curves on the .rt/i-planes, i = 1,2,... ,n. We 
prove, that there are curves 

(3.7) (Fki(x,yi)=)Akg
,

i(x) + u'i(yi) = 0, k=l,2 i=l,2,...,n, 

where Ai = 6 - <5, A2 = b + 6, 0 < 6 < b. 
From (3.2) and (3.7) it is clear that the supposition (1) of Theorem 2.1 holds 

for all functions Ffe,-, k = 1,2, i = 1, 2 , . . . , n. 
Let us calculate partial derivatives of functions Fki : 

dFki „ „,... »Fki (3.8) 
дx 

AkЌ'(i) 
дyi 

v!'(yi) k=\,2 ѓ = l , 2 , . . . , n . 

Hence and from (3.2) and the from assumptions of the theorem it followsthat 
the supposition (2) and (4) of Theorem 2A are held too. From (3.4) we have 
l im x _ + 0 + y ._ + 0 + Fki(x,yi) = 0 which shows that the supposition (3) of Theorem 
2.1 is held, too. 

Now we may conclude that equations (3.7) determine for all i = 1,2,..., n 
exactly two monotonic, continuously differentiable functions yi = <Pki(x), 
x £ (0,<$i), where 6\ < XQ. 

From (d) in view of (3.8) we have 

Ak9'{(x) 
<Pкi(x) = - : 

«.'(») 
к= 1,2 1,2,... 

hence and from the assumptions of the theorem it follows that functions (fki are 
increasing, and for all t = 1,2,.... n is function yi = <f2i(x) increasing quicker 
than function yi = <pu(x) (A2 > A\ > 0). From (3.5) it follows existence of 
derivative from the right of functions ipki in the point 0, too (fig.l). 

yi 1 ^A Vi = ?2i(x) 

Уi=z<pц(x) 



Our task is, further, to show that the curves yi — <Pki(x), k = 1,2, 
i = 1, 2 , . . . , n are curves without contact in view of the projection of the integral 
curves of (1.1) on xyz-planes for all i = 1, 2 , . . . , n. 

We find, therefore, the scalar product (Nki,Ti) where Nki is the normal 
vector of ipki and T» is the projection of the directional field on .Ti/j-plane, and 
we show that this one is unequal to zero. 

Using the relation for calculation a normal vector [1, p.524] and (3.8) we 
obtain 

tfU = {-(8-b)gi'(x), <(!/,)}, . = 1 2 

N2i = {-(6 + b)g?(x), -<(y,)}> 

Because 
prOxNn>0, p r O y . N H < 0 , p r 0 x N 2 , < 0, p r O y | N 2 i > 0 , i = l , 2 , . . . , n , 

direction of the vectors Nki is as we can see on fig.L 
First we find the scalar product (Nki,7}) for k = 1. Instead of the vector Ti 

we use the vector gi(x)Ti, i = 1, 2 , . . . , n, to make calculation more simple with 
no influence on sign of the one. We have 

(Nu,gi(x)fi) = (b - 6)g'i(x)gi(x) + u'/(yi)ui(yi) + u'/(yi) • f{(x9 t / i , . . . , yn). 

then for x —• Q+, yi —•• 0 + , i = 1,2, . . . , n and using (3.6) and suppose (3) of 
the theorem, the asymptotic equality is valid: 

(fiiu9i(x)%)*-(6-b)Mi + Ni. 

If we denote -jfe- = a,- > 0, i = 1, 2 , . . . , n, then we obtain 

(Nu,9i(x)fi) « -M t-[* - 6 + a,-] = -Mt-[« - (6 - a,)], i = 1,2, . . . , n. 

If we require that b > az-, 6 — a; < 6 < 6, which is possible to take, then the 
scalar product is negative. 

In the case of k = 2 we obtain analogously 

(N2,, a,(x)L1) « - ( 6 + 6)Mt- - Nt- = -Mi[6 + (b - a,-)], f = 1,2,.. . . n , 

which is negative too. 
So as in the both cases we have 

(Nkiy9i(x)fi)<0 * = 1,2, i = l , 2 , . . . , n , 

which denotes that angle of these vectors is obtuse. Because proxTi > 0, 
k = 1,2, i = 1,2, . . . , n, direction of the vector T% is as we can see on fig.l. Let 
us denote fi2- = {(x,y) G R2/0 < x < 60, y>i,-(.c) < 2/z < V?2z(^)}, i == 1,2, . . . ,n , 
where <5o = 4f. Now it is easy to see that the curves yt- = ^21(^)5 ^ — 1,2, 
i = 1, 2 , . . . , n, are curves without contact in view of the projection of the integral 
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curves of (1.1) on zt/i-planes for all i = 1, 2 , . . . , n, at which all points of these 
curves are points of strict input to Q,. 

The cartesian product of Qi, i = 1, 2 , . . . , n we denote 

tt° = {(x> yu • • •, yn) e Rn+l/0 <x<60i <pu(x) < y* < <p2i(x), « = 1,2, . . . , n} 

with boundary 

an0 = U{(^i>--->yn)efln+7o<*<£o, w = M * ) o r ^ ( * ) , 
i=o 
¥>ii(a) < y» < V>2i(*), « = l , 2 , . . . , j - l , j - f 1, . . . , n } 

From previous reasoning it is obviously that all points of dQ° are points of 
strict input to ft0. 

Further we make use of the topological method of Wazewski. It is easy to 
prove [2, Theorem 2.1, p.333] in the case if all points of dQ,0 are points of strict 
input to fi°. It is obviously that S D 30° is not a retract of S and is a retract 
of dQ°, where 

S = {(*, yu • • •, yn) € Rn+l/x = 8o, <pu(x) < yi <; (p2i(x), i = 1,2, . . . , n} . 

The conclusion now follows. 

Example 3.1 It is easy to verify that functions 

gi(x) = x2 + Cit C{ > 0, Ui(yi) = tt- 5-, ( u,-(y,-) = ki ) , * . • > 0, 
y* V y. / 

i = 1,2, . . . , n , 

satisfy the supposition of Theorem 3.L 

Remark 3.1 The conclusion of Theorem 3.1 remains valid in the case when 

(l)g'i(x)<Oi rf(x)<0ml9; 

(2) tij( t t) < 0 , < ( y t ) < 0, (ti{(») > 0 , < ( y t ) > 0) on Iy,; 

(3) there exist 

lira ff{'(.-)fir.(.-) = Mi < 0, lim <(j/ ,)« .(y,) = Nt < 0 (> 0); 
.c—>-0+ t / i — f 0 + 

i = l , 2 , . . . , n . 
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Now we shall consider systems (1.1) on Q and further we shall assume that 
the conditions (3.2), (3.3) are held and following conditions too: 

(3.4a) lim ~——— = 0, lim — — = 0, z = l , 2 , . . . , n ; 
x^o+gfa) y i -o+ ti{(#) 

there exists (finite or infinite) limit 

( 3 o ) i K W N W ' •-i,2,-.», 
y-o+ 

(3.6a) /<(-?.yi.--->y") = o ( [ ^ ) j ) . y.-+o+, i = i,2,...,-.. 

This problem in the scalar case was studied in [4]. Analogously the results may 
be proved in the vector case. Because the proofs are similar to the proof of 
Theorem 3.1 we shall not accomplish it. 

T h e o r e m 3.2 Suppose 

(J)g,
i(x)>0, g?(x)<0onlx; 

(2) Ufa) < 0,ti{'(v0 > 0, (u'i(yi) > 0,uf/(yi) < 0) on Iyt; 

(3) there exist 

h iM9M = Mi< u ^hM = Ni>0{<0). 
x_o+ [g[(x)Y yi-+o+ K-(Hi)]2 

i = l , 2 , . . . , n . 

Then there exists on some interval (0,60) at least one continuously differen-
tiable solution Y(x) = [y\(x),y2(x),. . . ,yn(x)] such that limrr_0+ yi(x) = 0. 
i = 1, 2 , . . . , n. 

Example 3.2 It is easy to verify that functions 

g{(x) = xa\ Ui(yi) = y^1 exp (A^yf') , 

where a*, /?,-, k2-, */2- are constants with the restrictions 0 < a; < 1, ft > 0, k; > 0, 
Vi > 0, i = 1, 2 , . . . , n, satisfy the suppose of Theorem 3.2. 

Remark 3.2 The conclusion of Theorem 3.2 remains valid in the case when 

(1)0{(*)<O, # ( * ) > 0 on I . ; 
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(2) VHJH) < 0 , < ( y , ) > 0, « ( y . ) > 0 , < ( w ) < 0) on /„,; 

(3) there exist 

lim g"(x)gi(x) = Mi > 0, lim «;'(tw)ti.(«.) = At; > 0 (< 0); 
.T-+0+ t/j~*0 + 

t = 1,2,...,n. 
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