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A b s t r a c t 

It was proven by O. M. Mamedov that a variety of algebras is 
congruence-regular if and only if it has n-transferable congruences 
for some natural number n. We show that in the case of lattices, 
this result is valid also for a single algebra and n = 2. If a lattice is 
relatively complementary, we can take n = 1. 

Key words: congruence regularity, n-transferable congruences, 
lattice, relatively complementary lattice. 

MS Classification: 06B10, 08A30 

The concept of transferable principal congruences was introduced in [1]: 
an algebra A has tranferable principal congruences if for each a,b ,c of A there 
exists an element d £ A with 0(a ,b ) = 0(c, d). As it was shown in [1], this 
condition implies regularity of A (recall that A is regular if 6 = $ for every two 
0,<X> E Con A whenever they have a congruence class in common). 

O.M.Mamedov [2] generalized the concept of transferability in this way: 

Definition 1 Let A be an algebra and a, b G A. A principal congruence 0(a , 6) 
is n-transferable if for any c & A there exist elements di, . . ., dn of A with 

0(a ,b ) = 0 ( c , J 1 , . . . , d n ) . (*) 

An algebra A has n-transferable principal congruences if for every a,b ,c of A 
there exist Ji, . . ., dn of A such that (*) holds. 

17 



It is easy to show that if 0(a ,6) (or an algebra) is n-transferable (has n-
transferable principal congruences), then 6(a ,6) (or A, respectively) has this 
property for each n' > n. 

The following generalization of our theorem of [1] was proven in [2]: 

Lemma 1 If an algebra A has n-transferable principal congruences for some 
integer n > 1, then A is regular. 

With a slight modification of Proposition 3 in [2], we obtain: 

Lemma 2 Let A be a regular algebra and a,6,c 6e elements of A. Then there 
exist an integer n > 1 and elements rfi,... ,dn of A such that 

0(a,6) = 0 ( c , d 1 , . . . , a ,
n ) . 

Proof The regularity of A implies 

0(a,6) = e([c]0(at6)), 

because both of these congruences have a common class [c]©(a)&). Hence 

(a, 6) G 0([c]0(a,6)), 

thus there exists a finite subset F C [c]0(a^) with (a, 6) G 0 ( F ) . We obtain 

0(a , 6) C 0(F ) C 0({c} U F) C 0([c]0 ( a ,6 )) = 0(a , 6) 

whence 
0(a ,6) = 0(c,c l i , . / : ,d„) 

for 
F = {dli...idn}. D 

Mamedov [2] has shown that for varieties of algebras, regularity is equivalent 
to n-transferability (for some n G N ) . We are going to show that for lattices, 
this result can be generalized also for a single algebra instead of a variety and, 
moreover, this n can be uniform: 

Theorem 1 For a lattice L, the following conditions are equivalent: 

(i) L is regular; 

(ii) L has 2-transferable principal congruences. 
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Proof The implication (ii) => (i) follows by Lemma 1. Prove (i) => (ii). Let L 
be a regular lattice and a,6,c G L. By Lemma 2, there exist an integer n and 
elements di,. . ., dn G L such that 

e(a,6) = e(c,rf1 , . . . ,dn). 

Put ei = di A . .. A fl?n, e2 = â  V . . . V Jn in the lattice L. Then ei < d{ < e2 for 
i = 1, 2, . . . , n, thus 

(di,di) G 6 (c , e i , e 2 ) (c,ei) G 0(c, ei ,e2) (c,e2) G 0(c, e i ,e 2) 

imply 
(c,flfc) = (cA(d,- Vc),e2 A((ft-Vei)) G9(e ,e 1 , e 2 ) 

for i = 1, 2 , . . . , n, whence 

0(a ,b ) = 6 ( e , d i , . . . ,dn) C 0 (c ,e i , e 2 ) . 

Conversely, 

(c,ei) = (c A . . . Ac, cli A . . . A dn) G 6 ( c , d i , . . .,dn) 

(c, e2) = (c V .. . V c, di V . . . V dn) e 6(e, Ji, . . . , dn), 

i.e. 
6(e, ei, e2) = e(c, e{) V 0(c, e2) C 0(e, dx,..., dn) = 0(a , b) 

proving 
0(a ,b ) = 0 (c ,e 1 , e 2 ) . • 

It is well-known that every boolean lattice is regular. However, there exist 
also non-distributive regular lattices, see e.g.: 

E x a m p l e The lattice L whose diagram is visualized in Fig.l is regular (it has 
only three congruences, namely the least cv, the greatest t = L x L and that 0 
given by congruence classes {0,&,c, x , r } , {a,p, q, 1}, see Fig.l). 

1 

Fig. 1 
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Theorem 2 Every relatively complementary lattice L has I-transferable prin
cipal congruences. 

P r o o f It is well-known that every relatively complementary lattice is regular. 
By Lemma 2, for each a, 6, c £ L there exist d\r..., dn with 

0(a ,6) = 9 ( c , d i , . . . , d n ) . 

Let d be a relative complement of c in the interval [x> y], where 

x = c A di A d2A . . . A dn 

y =- c V di V d2 V . . . V dn
 v ' 

Then cW d = y, and c Ad = x. 

Moreover, x < c < y, a: < d,- < y for t = 1, 2 , . . . , n, and x < d < y. Hence 

(c ,d i )ee (x ,y )=e(c ,d ) for i.= l ,2 , . . . ,n . 

thus 
6(c, d i , . . . , d„) = 6(c, di) V . . . V 0(c, dn) C 6(c, d). 

By (**), we obtain (x, u) G 0(c, d i , . . . , dn) proving 

e(a,6) = e(c ,d 1 , . . . ,d n ) = 0(c,d). n 
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