Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Jiří Kobza
 B-spline representation of interpolating and smoothing quadratic spline

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 32 (1993), No. 1, 69--79

Persistent URL: http://dml.cz/dmlcz/120300

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1993

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

B-SPLINE REPRESENTATION OF INTERPOLATING AND SMOOTHING QUADRATIC SPLINE

Jıı̌í KOBZA

(Received March 15, 1992)

Abstract

The algorithms for computation of the coefficients of the Bspline representation of quadratic splines interpolating derivatives, local mean-values and quadratic smoothing splines are given. The algorithms for piecewise polynomial representation were studied in [2]-[6]; the relation between these representations is mentioned.

Key words: splines, quadratic splines, B-splines, interpolating and smoothing splines

MS Classification: 41A.15, 65D05

1 Introduction

The problem of interpolation or smoothing of given values of the derivatives or mean-values by some quadratic spline was formulated and solved in [2][6]. It was proved there, that the solution of the smoothing problem is given through some "natural quadratic spline". The algorithm for computing of needed parameters for piecewise polynomial representation using the function values and the first derivatives at knots of spline was given in [5], [6].

The purpose of this contribution is to present the algorithm for computing the coefficients of the B-spline representation of interpolating and smoothing quadratic splines.

1.1 Quadratic B-splines

Let us have the mesh of spline knots

$$
a=x_{0}<x_{1}<\ldots<x_{n}<x_{n+1}=b
$$

Denote $S_{21}(\Delta x)$ the linear space of quadratic splines on the mesh (Δx). The dimension of $S_{21}(\Delta x)$ is

$$
\operatorname{dim} S_{21}(\Delta x)=3(n+1)-2 n=n+3
$$

As the basis in $\mathfrak{S}_{21}(\Delta x)$ we will use the system of quadratic B-splines, defined on the extended mesh (see [1])

$$
\begin{equation*}
x_{-2} \leq x_{-1} \leq x_{0}<x_{1}<\ldots<x_{n+1} \leq x_{n+2} \leq x_{n+3} . \tag{x}
\end{equation*}
$$

To each knot $x_{i}, i=-2(1) n$ there corresponds some quadratic B-spline $B_{i}(x) \in C^{1}\left[x_{-2}, x_{n+3}\right]$ with support $\left[x_{i}, x_{i+3}\right]$ defined by divided difference (see [1]).

$$
\begin{aligned}
& B_{i}(x)=\left(x_{i+3}-x_{i}\right)\left[x_{i}, x_{i+1}, x_{i+2}, x_{i+3}\right](t-x)_{+}^{2}= \\
&) \\
& = \begin{cases}\left(h_{i+1}+h_{i+2}\right)^{-1}\left\{h_{i+2}^{-1}\left[\left(x_{i+3}-x\right)^{2}-\left(x_{i+2}-x\right)^{2}\right]-\right. \\
\left.-h_{i+1}^{-1}\left[\left(x_{i+2}-x\right)^{2}-\left(x_{i+1}-x\right)^{2}\right]\right\}- \\
-\left(h_{i}+h_{i+1}\right)^{-1}\left\{h_{i+1}^{-1}\left[\left(x_{i+2}-x\right)^{2}-\left(x_{i+1}-x\right)^{2}\right]-\right. \\
\left.-h_{i}^{-1}\left[\left(x_{i+1}-x\right)^{2}\right]\right\} & \text { for } x \in\left[x_{i}, x_{i+1}\right] \\
\left(h_{i+1}+h_{i+2}\right)^{-1}\left\{h_{i+2}^{-1}\left[\left(x_{i+3}-x\right)^{2}-\left(x_{i+2}-x\right)^{2}\right]-\right. \\
\left.-\left[\left(h_{i}+h_{i+1}\right)\right] h_{i+1}\right]^{-1}\left(x_{i+2}-x\right)^{2} & \text { for } x \in\left[x_{i+1}, x_{i+2}\right] \\
\left.\left[\left(h_{i+1}+h_{i+2}\right)\right] h_{i+2}\right]^{-1}\left(x_{i+3}-x\right)^{2} & \text { for } x \in\left[x_{i+2}, x_{i+3}\right]\end{cases}
\end{aligned}
$$

Let us mention that in practical computations the values of $B_{i}(x)$ are more frequently computed by some simple recursive formulas.

For every spline $s(x) \in S_{21}(\Delta x)$ we have then representation

$$
\begin{equation*}
s(x)=\sum_{j=-2}^{n} b_{j} B_{j}(x) \quad \text { with some coefficients } b_{j} . \tag{2}
\end{equation*}
$$

The values of B_{i} and B_{i}^{\prime} at the knots x_{j} are given in Table 1.

mesh	equidistant			general		
knot	$B_{i}(x)$	$B_{i}^{\prime}(x)$	$B_{i}(x)$	$B_{i}^{\prime}(x)$		
x_{i}	0	0	0	0		
x_{i+1}	$\frac{1}{2}$	$\frac{1}{h}$	$\frac{h_{i}}{\left(h_{i}+h_{i+1}\right)}$	$\frac{2}{\left(h_{i}+h_{i+1}\right)}$		
	$\frac{1}{2}$	$-\frac{1}{h}$	$\frac{h_{i+2}}{\left(h_{i+1}+h_{i+2}\right)}$	$-\frac{2}{\left(h_{i+1}+h_{i+2}\right)}$		
x_{i+2}	$\frac{2}{2}$	0	0	0		
$x_{i 3}$	0	0				

The graph of $B_{i}(x)$ we can see on Fig. 1.

Fig. 1

2 Interpolation of function values and mean-values

2.1 Function values interpolation

Let us have the points of interpolation $t_{i} \in[a, b]$ with prescribed values y_{i}. The general problem of existence of interpolating spline $s(x) \in \mathscr{S}_{21}(\Delta x)$ with $s\left(t_{i}\right)=y_{i}$ is solved for example in ([1], Theorem of Scnoenberg-Whitney). The coefficients of the B-spline representation (2) of such spline can be found through solution of the system

$$
y_{i}=\sum_{j} b_{j} B_{j}\left(t_{i}\right) \quad \begin{aligned}
& \text { with } n+3 \text { points of interpolation } \\
& (\text { or some boundary conditions })
\end{aligned}
$$

The algorithms for computing local parameters of quadratic interpolating splines are studied in [2].

2.2 Mean-values interpolation

The problem of the existence of the quadratic spline interpolating the given local mean values

$$
\begin{equation*}
g_{i}=\frac{1}{h_{i}} \int_{x_{i}}^{x_{i+1}} s(x) d x, \quad i=0(1) n \quad \text { on the mesh }(\Delta x) \tag{3}
\end{equation*}
$$

is solved in [6], where also the algorithm for computing of parameters for the piecewise polynomial representation of $s(x)$ is given.

Now, let us search the solution of this problem in the B-spline representation (2). Denoting

$$
\begin{equation*}
c_{j}^{i}=\int_{x_{i}}^{x_{i+1}} B_{j}(x) d x \tag{4}
\end{equation*}
$$

we have

$$
\begin{align*}
c_{j}^{i} & =0 \quad \text { for } j \notin\{i-2, i-1, i\} \\
c_{i-2}^{i} & =\int_{x_{i}}^{x_{i+1}} B_{i-2}(x) d x=\frac{1}{3} h_{i}^{2} /\left(h_{i-1}+h_{i}\right) \\
c_{i-1}^{i} & =\int_{x_{i}}^{x_{i+1}} B_{i-1}(x) d x= \tag{5}\\
& =\frac{1}{2} h_{i}\left[\frac{h_{i-1}}{h_{i-1}+h_{i}}+\frac{h_{i}}{h_{i}+h_{i+1}}+\frac{1}{3} h_{i}\left[\frac{1}{h_{i-1}+h_{i}}+\frac{1}{h_{i}+h_{i+1}}\right)\right] \\
& =\int_{x_{i}}^{x_{i+1}} B_{i}(x) d x=\frac{1}{3} h_{i}^{2} /\left(h_{i}+h_{i+1}\right) .
\end{align*}
$$

The conditions of interpolation (3) can be written now as

$$
\begin{align*}
& \int_{x_{i}}^{x_{i+1}} s(x) d x=\int_{x_{i}}^{x_{i+1}} \sum_{j=-2}^{n} b_{j} B_{j}(x)= \tag{6}\\
& \quad=\sum_{j=-2}^{n} b_{j} \int_{x_{i}}^{x_{i+1}} B_{j}(x) d x=b_{i-2} c_{i-2}^{i}+b_{i-1} c_{i-1}^{i}+b_{i} c_{i}^{i}
\end{align*}
$$

To define the spline $s(x)$ uniquely, we can prescribe e.g. the boundary conditions (see [6])

$$
\begin{equation*}
s_{0}=s\left(x_{0}\right), \quad s_{n+1}=s\left(x_{n+1}\right) . \tag{7}
\end{equation*}
$$

The relations (6),(7) form the system of equations

$$
\begin{align*}
b_{-2} B_{-2}\left(x_{0}\right)+b_{-1} B_{-1}\left(x_{0}\right) & =s_{0} \\
b_{-2} c_{-2}^{0}+b_{-1} c_{-1}^{0}+b_{0} c_{0}^{0} & =h_{0} g_{0}
\end{align*}
$$

$$
\begin{aligned}
b_{n-2} c_{n-2}^{n}+b_{n-1} c_{n-1}^{n}+b_{n} c_{n}^{n} & =h_{n} g_{n} \\
b_{n-1} B_{n-1}\left(x_{n+1}\right)+b_{n} B_{n}\left(x_{n+1}\right) & =s_{n+1} .
\end{aligned}
$$

Theorem 1 For the mesh (Δx) with given mean values g_{i} and

$$
\begin{equation*}
h_{i+1} \geq h_{i}\left(2 h_{i}-h_{i-1}\right) /\left(6 h_{i-1}+3 h_{i}\right), \quad h_{-1} \leq h_{0}, \quad h_{n} \geq h_{n+1} \tag{9}
\end{equation*}
$$

the B-spline coefficients b_{j} of the unique quadratic spline interpolating this meanvalues are determined by the system of equations (8) with the coefficients c_{j}^{i} given in (5).

The proof follows from the fact that the matrix of the system (8) is irreducibly diagonally dominant under conditions (9) and with respect to (5).

Remark 1 In the case of equidistant mesh (Δx) with $h_{i}=h$ the system (8) can be written as

$$
\left[\begin{array}{ccccc}
1, & 1, & & & \tag{10}\\
1, & 4, & 1, & & \\
& \cdots & \ldots & \cdots & \\
& & 1, & 4, & 1, \\
& & & 1, & 1,
\end{array}\right]\left[\begin{array}{l}
b_{-2} \\
b_{-1} \\
\cdots \\
b_{n-1} \\
b_{n}
\end{array}\right]=\left[\begin{array}{l}
2 s_{0} \\
g_{0} \\
\cdots \\
g_{n} \\
2 s_{n+\dot{+1}}
\end{array}\right]
$$

3 Interpolation of the derivatives

The problem of interpolation of the first derivatives prescribed at the knots of the quadratic spline was discussed in [4] and solved with respect to the piecewise polynomial representation of the spline. For the extended knot set $(\Delta \bar{x})$ with prescribed values $m_{i}=s^{\prime}\left(x_{i}\right)$ let us search now for the interpolating spline in its B -spline representation (2). The conditions of interpolation and the initial value $s_{0}=s\left(x_{0}\right)$ determine uniquely the spline (see [4]). For the coefficients b_{i} we obtain the relations

$$
\begin{align*}
& s_{0}=\sum_{j=-2}^{n} b_{j} B_{j}\left(x_{0}\right), \tag{11}\\
& m_{i}=\sum_{j=-2}^{n} b_{j} B_{j}^{\prime}\left(x_{i}\right), \quad i=0(1) n+1 .
\end{align*}
$$

This system of $n+3$ linear equations with the special band matrix can be solved (using the values given in the Table 1) by recursion.

Theorem 2 The B-spline coefficients of the quadratic spline $s(x)$ interpolating the given values $m_{i}=s^{\prime}\left(x_{i}\right), i=0(1) n+1$ and $s_{0}=s\left(x_{0}\right)$ are given uniquely by the recurrence formula

$$
\begin{align*}
& b_{-2}=s_{0}-\frac{1}{2} h_{-1} m_{0} \tag{12}\\
& b_{i-1}=\frac{1}{2} m_{i}\left(h_{i-1}+h_{i}\right)+b_{i-2}, \quad i=0(1) n+1
\end{align*}
$$

Remark 2 More generally, we can determine uniquely the quadratic spline interpolating given values $m_{i}=s^{\prime}\left(x_{i}\right), \quad i=0(1) n+1$ and one function value s_{k}. By elimination of b_{k-1}, b_{k-2} from the equations with s_{k}, m_{k} we can write forward and backward recurrence relations for the calculation of remaining coefficients b_{i}.

4 Quadratic smoothing spline

4.1 Statement of the problem

Let us have the local mean-values

$$
g_{i}=\frac{1}{h_{i}} \int_{x_{i}}^{x_{i+1}} f(x) d x, \quad h_{i}=x_{i+1}-x_{i}
$$

prescribed for each interval $\left[x_{i}, x_{i+1}\right], i=0(1) n$ of the mesh (Δx). We can define the functional

$$
\begin{align*}
& J(f)=\int_{a}^{b}\left[f^{\prime}(x)\right]^{2} d x+\alpha \sum_{i=0}^{n} w_{i}\left[h_{i} g_{i}-\int_{x_{i}}^{x_{i+1}} f(x) d x\right] \tag{13}\\
& \quad \text { for } f \in V=W_{2}^{1}(a, b), \quad \alpha \geq 0
\end{align*}
$$

which represents some compromise between different quantitative measures of the function $f(x)$
a) the measure of the speed of the changes in the process described by the function f (the first part with f^{\prime});
b) the least-square deviation between the data g_{i} and the local mean-values of the process described by the function $f(x)$ (with the weight coefficients w_{i} the second part). The balance between these two parts can be regulated by the parameter α. It is proved in [5] that the function minimizing $J(f)$ on the class V is some quadratic spline $s(x)$ with "natural" boundary conditions

$$
\begin{equation*}
s^{\prime}\left(x_{0}\right)=s^{\prime}\left(x_{n+1}\right)=0 \tag{14}
\end{equation*}
$$

There is also given the algorithm for computation of the local parameters of such spline in piecewise polynomial representation.

4.2 B-spline representation of the smoothing spline

The aim of this contribution is to present the algorithm for computing the global coefficients of the smoothing spline in the B-spline representation (2). Writting

$$
\begin{equation*}
s(x)=\sum_{j=-2}^{n} b_{j} B_{j}(x), \quad \text { we have } \quad s^{\prime}(x)=\sum_{j=-2}^{n} b_{j} B^{\prime}(x) \tag{15}
\end{equation*}
$$

The boundary conditions (14) could be written now as

$$
\begin{aligned}
& b_{-2} B_{-2}^{\prime}\left(x_{0}\right)+b_{-1} B_{-1}^{\prime}\left(x_{0}\right)=0 \\
& b_{n-1} B_{n-1}^{\prime}\left(x_{n+1}\right)+b_{n} B_{n}^{\prime}\left(x_{n+1}\right)=0
\end{aligned}
$$

When we use the values $B^{\prime}\left(x_{0}\right), B^{\prime}\left(x_{n+1}\right), j=-2,-1, n-1, n$ from the Table 1, we obtain

$$
\begin{align*}
& b_{-2}=-\left[B_{1}^{\prime}\left(x_{0}\right) / B_{-2}^{\prime}\left(x_{0}\right)\right] b_{-1}=b_{-1} \\
& b_{n}=-\left[B_{n-1}^{\prime}\left(x_{n+1}\right) / B_{n}^{\prime}\left(x_{n+1}\right)\right] b_{n-1}=b_{n-1} \tag{16}
\end{align*}
$$

We have

$$
\left[s^{\prime}(x)\right]^{2}=\sum_{i=-2}^{n} b_{i} B_{i}^{\prime}(x) \sum_{j=-2}^{n} b_{j} B_{j}^{\prime}(x)=\sum_{i, j=-2}^{n} b_{i} b_{j} B_{i}^{\prime}(x) B_{j}^{\prime}(x)=\boldsymbol{b}^{T} \boldsymbol{D}_{1} \boldsymbol{b}
$$

with pentadiagonal matrix

$$
\boldsymbol{D}_{1}=\left[B_{i}^{\prime}(x) \cdot B_{j}^{\prime}(x)\right]=\left[d_{i j}^{1}(x)\right], d_{i j}^{1}(x) \equiv 0 \quad \text { for }|i-j| \geq 3
$$

For the first part of the functional (13) we have then

$$
\begin{equation*}
\int_{a}^{b}\left[s^{\prime}(x)\right]^{2} d x=\boldsymbol{b}^{T} \quad\left[\int_{a}^{b} B_{i}^{\prime}(x) B_{j}^{\prime}(x) d x\right] \boldsymbol{b}=\boldsymbol{b}^{T} \boldsymbol{D} \boldsymbol{b} \tag{17}
\end{equation*}
$$

with

$$
\begin{equation*}
\boldsymbol{D}=\left[d_{i j}\right]=\left[\int_{a}^{b} B_{i}^{\prime}(x) B_{j}^{\prime}(x) d x\right] \tag{18}
\end{equation*}
$$

The value of the functional $J(s)$ can be written now as the function of the coefficients $\left[b_{-2}, b_{-1}, \ldots, b_{n}\right]$:

$$
\begin{align*}
J(s) & =\int_{a}^{b}\left[s^{\prime}(x)\right]^{2} d x+\alpha \sum_{i=0}^{n} w_{i}\left[h_{i} g_{i}-\int_{x_{i}}^{x_{i+1}} s(x) d x\right]= \\
& =\sum_{i, j=-2}^{n} b_{i} d_{i j} b_{j}+\alpha \sum_{i=0}^{n} w_{i}\left[h_{i} g_{i}-\left(b_{i-2} c_{i-2}^{i}+b_{i-1} c_{i-1}^{i}+b_{i} c_{i}^{i}\right)\right]^{2} \tag{19}
\end{align*}
$$

The coefficients $d_{i j}$ can be determined by the relations

$$
\begin{align*}
d_{i j}= & \int_{a}^{b} B_{i}^{\prime}(x) B_{j}^{\prime}(x) d x=\int_{x_{i}}^{x_{i+1}} B_{i}^{\prime}(x) B_{j}^{\prime}(x)= \\
= & \sum_{k=i}^{i+2}\left[\left.B_{k}^{\prime}(x) B_{j}(x)\right|_{x_{k}} ^{x_{k+1}}-\int_{x_{k}}^{x_{k+1}} B_{k}^{\prime \prime}\left(x_{k}+0\right) B_{j}(x)\right]= \tag{20}\\
= & -B_{i}^{\prime \prime}\left(x_{i}+0\right) \int_{x_{i}}^{x_{i+1}} B_{j}(x) d x-B_{i+1}^{\prime \prime}\left(x_{i+1}+0\right) \int_{x_{i+1}}^{x_{i+2}} B_{j}(x)- \\
& -B_{i+2}^{\prime \prime}\left(x_{i+2}+0\right) \int_{x_{i+2}}^{x_{i+3}} B_{j}(x) d x=\beta_{i} c_{j}^{i}+\beta_{i+1} c_{j}^{i+1}+\beta_{i+2} c_{j}^{i+2} .
\end{align*}
$$

The coefficients c_{j}^{i} are given by (8); for the coefficients β_{j} we obtain (using the values from Table 1)

$$
\begin{align*}
& \beta_{i}=-2 /\left[h_{i}\left(h_{i}+h_{i+1}\right)\right] \\
& \beta_{i+2}=-2 /\left[h_{i+2}\left(h_{i+1}+h_{i+2}\right)\right] \tag{21}\\
& \beta_{i+1}=-\left(2 / h_{i+1}\right)\left[\left(h_{i}+h_{i+1}\right)^{-1}+\left(h_{i+1}+h_{i+2}\right)^{-1}\right] .
\end{align*}
$$

Let us denote

$$
\begin{align*}
& \boldsymbol{c}^{i}=\left[0, \ldots, c_{i-2}^{i}, c_{i-1}^{i}, c_{i}^{i}, 0, \ldots\right]^{T}, \quad i=0(1) n \\
& \boldsymbol{b}=\left[b_{-2}, b_{-1}, \ldots, b_{n}\right]^{T}=\left[b_{-1}, b_{-1}, b_{0}, \ldots, b_{n-1}, b_{n-1}\right]^{T} . \tag{22}
\end{align*}
$$

We can write then (19) as

$$
\begin{align*}
& J(s):=F(\boldsymbol{b})=\sum_{i, j=-2}^{n} b_{i} d_{i j} b_{j}+ \\
& \quad+\alpha \sum_{i=0}^{n} w_{i}\left[h_{i} g_{i}-\left(b_{i-2} c_{i-2}^{i}+b_{i-1} c_{i-1}^{i}+b_{i} c_{i}^{i}\right)\right]^{2}= \tag{23}\\
& = \\
& \boldsymbol{b}^{T} \boldsymbol{D} \boldsymbol{b}+\alpha\left\{\sum_{i=0}^{n} w_{i} h_{i}^{2} g_{i}^{2}+\sum_{i=0}^{n}\left\{\left(\boldsymbol{b}^{T} \boldsymbol{c}^{i}\right)^{2}-2 h_{i} g_{i}\left(\boldsymbol{b}^{T} \boldsymbol{c}^{i}\right)\right]\right\}
\end{align*}
$$

with the function $F(\boldsymbol{b})$ of $n+1$ parameters $b_{j}, j=-1(1) n-1$. Following the chain rule of differentiation,

$$
\begin{align*}
\frac{\partial F}{\partial b_{-1}}= & \sum_{j=-2}^{n}\left(d_{-2, j}+d_{-1, j}+d_{j,-1}+d_{j,-2}\right) b_{j}+ \tag{24}\\
& +2 \alpha \sum_{j=-2}^{n} b_{j} \sum_{i=0}^{n} w_{i} c_{j}^{i}\left(c_{-1}^{i}+c_{-2}^{i}\right)-2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i}\left(c_{-1}^{i}+c_{-2}^{i}\right), \\
\frac{\partial F}{\partial b_{k}}= & \sum_{j=-2}^{n} b_{j}\left(d_{k j}+d_{j k}\right)+2 \alpha \sum_{j=-2}^{n} b_{j} \sum_{i=0}^{n} w_{i} c_{k}^{i} c_{j}^{i}-2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i} c_{k}^{i}, \\
\frac{\partial F}{\partial b_{n-1}}= & \sum_{j=-2}^{n} b_{j}\left(d_{n-1, j}+d_{j, n-1}+d_{n j}+d_{j n}\right)+\quad n-2 ; \\
& +2 \alpha \sum_{j=-2}^{n} b_{j} \sum_{i=0}^{n} w_{i} c_{j}^{i}\left(c_{n-1}^{i}+c_{n}^{i}\right)-2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i}\left(c_{n-1}^{i}+c_{n}^{i}\right)
\end{align*}
$$

The necessary conditions for the extremum, $\frac{F}{b_{i}}=0$, can be written now as the system of equations

$$
\begin{equation*}
\sum_{j=-1}^{n-1} a_{i j} b_{j}=r_{i}, \quad i=-1(1) n-1 \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{-1,-1}= 2\left(d_{-2,-2}+d_{-2,-1}+d_{-1,-2}+d_{-1,-1}\right)+2 \alpha \sum_{i=0}^{n} w_{i}\left(c_{-1}^{i}+c_{-2}^{i}\right)^{2} ; \\
& a_{-1, j}= a_{j,-1}=d_{-2, j}+d_{-1, j}+d_{j,-1}+d_{j,-2}+ \\
&+2 \alpha \sum_{i=0}^{n} w_{i} c_{j}^{i}\left(c_{-2}^{i}+c_{-1}^{i}\right), \\
& a_{-1, n-1}= a_{n-1,-1}=d_{-2, n-1}+d_{-1, n-1}+d_{n-1,-2}+d_{n-1,-1}+ \\
&+d_{-2, n}+d_{-1, n}+d_{n,-2}+d_{n,-1}+2 \alpha \sum_{i=0}^{n} w_{i}\left(c_{-2}^{i}+c_{-1}^{i}\right)\left(c_{n-1}^{i}+c_{n}^{i}\right) ; \\
& a_{k j}=a_{j k}= d_{k j}+d_{j k}+2 \alpha \sum_{i=0}^{n} w_{i} c_{k}^{i} c_{j}^{i}, \quad j=0(1) n-2, \quad k=0(1) n-2 ; \\
& a_{k, n-1}=a_{n-1, k}=d_{k, n-1}+d_{n-1, k}+d_{k, n}+d_{n, k}+ \\
&+2 \alpha \sum_{i=0}^{n} w_{i} c_{k}^{i}\left(c_{n-1}^{i}+c_{n}^{i}\right), \\
& a_{n-1, n-1}= 2\left(d_{n-1, n-1}+d_{n-1, n}+d_{n, n-1}+d_{n, n}\right)+2 \alpha \sum_{i=0}^{n} w\left(c_{n-1}^{i}+c_{n}^{i}\right)^{2} ; \\
& r= 2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i}\left(c_{-2}^{i}+c_{-1}^{i}\right)=2 \alpha \sum_{i=0}^{1} w_{i} h_{i} g_{i}\left(c_{-2}^{i}+c_{-1}^{i}\right) ; \\
& r_{-1}= \\
& r_{j}= 2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i} c_{j}^{i}=2 \alpha \sum_{i=j}^{j+2} w_{i} h_{i} g_{i} c_{j}^{i}, \\
& r_{n-1}= 2 \alpha \sum_{i=0}^{n} w_{i} h_{i} g_{i}\left(c_{n-1}^{i}+c_{n}^{i}\right)=2 \alpha \sum_{i=n-1}^{n} w_{i} h_{i} g_{i}\left(c_{n-1}^{i}+c_{n}^{i}\right) .
\end{aligned}
$$

The matrix $\mathbf{A}=\left[a_{i j}\right]$ of the system (25) is symmetric,

$$
a_{i j}=0 \quad \text { for } \quad|j-i|>2 \quad \text { (pentadiagonal) }
$$

as can be seen from its construction.

Theorem 3 The B-spline coefficients of the quadratic spline minimizing the functional $J(f)$ given in (13) can be computed from the symmetric pentadiagonal system of linear equations (25).

4.3 Conversion from local to B-spline representation

We have seen in part 4.2 that the computation of the B-spline coefficients of the smoothing spline from the system (25) requires considerable amount of operations(the calculation of the coefficients $a_{i j}, d_{i}$, solving pentadiagonal system) in comparision to the case of local piecewise polynomial (PP) representation (see [5]). In some cases it can be more advantegeous to calculate the parameters of PP representation and then use the transformation of PP - to B-spline representation described below (see also [1]).

Let us suppose that we have calculated the coefficients

$$
s_{k}=s\left(x_{k}\right), \quad s_{k}^{\prime}=s^{\prime}\left(x_{k}\right), \quad k=0(1) n+1
$$

of the PP-representation of some $s \in S_{21}(\Delta \bar{x})$. To determine the coefficients b_{k} of the B -spline representation (2), we use the conditions

$$
\begin{align*}
& s\left(x_{k}\right)=s_{k}=b_{k-2} B_{k-2}\left(x_{k}\right)+b_{k-1} B_{k-1}\left(x_{k}\right), \\
& s^{\prime}\left(x_{k}\right)=s_{k}^{\prime}=b_{k-2} B_{k-2}^{\prime}\left(x_{k}\right)+b_{k-1} B_{k-1}^{\prime}\left(x_{k}\right) \tag{26}
\end{align*}
$$

with the values $B_{i}^{(j)}(x)$ given in the Table 1. We obtain

$$
\begin{equation*}
b_{k-2}=s_{k}-\frac{1}{2} h_{k-1} s_{k}^{\prime}, \quad b_{k-1}=s_{k}+\frac{1}{2} h_{k} s_{k}^{\prime} \tag{27}
\end{equation*}
$$

The condition

$$
s\left(x_{k+1}\right)=s_{k+1}=b_{k-1} B_{k-1}\left(x_{k+1}\right)+b_{k} B_{k}\left(x_{k+1}\right)
$$

enables us to calculate then

$$
\begin{equation*}
b_{k}=s_{k+1}+b_{k+1}\left[\left(s_{k+1}-s_{k}\right) / h_{k}-s_{k}^{\prime} / 2\right] \tag{28}
\end{equation*}
$$

Theorem 4 Given the local parameters $s_{k}, s_{k}^{\prime}, k=0(1) n+1$ of the spline $s \in \mathcal{S}_{21}(\Delta \bar{x})$, we can determine its B-spline coefficients $b_{k}, \quad k=-2(1) n$ according to the relations (27), (28).

References

[1] Boor C. de, A Practical Guide to Splines. Springer Verlag, 1978
[2] Kobza J., On algorithms for parabolic splines. Acta UPO, Fac. Rer. Nat., Math. XXVI, Vol. 88(1987), 169-185
[3] Kobza J., Some properties of interpolating quadratic spline. Acta UPO, Fac. Rer. Nat., Math. XXIX, Vol. 97(1990), 45-63
[4] Kobza J., Quadratic spline interpolating derivatives. Acta UPO, Fac. Rer. Nat., Math. XXX, Vol. 100(1991), 219-233
[5] Kobza J., Quadratic splines smoothing the first derivatives. Appl. of Mathematics 37 (1992), 2, 149-156
[6] Kobza J., Zápalka D., Natural and smoothing quadratic spline. Appl. of Mathematics 36 (1991), 3, 187-204

Author's address: | Department of Mathematical Analysis |
| :--- |
| Faculty of Science |
| Palacký University |
| Tomkova 38, Hejčín |
| |
| |
| |
| |
| Czech 00 Olomouc Republic |

