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Abstract 
It is shown that for every finite algebra A of a finite similarity type 

there exists a finite algebra 6 of type (2,1,1) such that the lattices of 
tolerances (congruences) on A and 6 are isomorphic. 
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In [1] I. Chajda proved that for every algebra A of a finite similarity type 
there exists an algebra _8 of type (2,1,1) such that Tol A == Tol fB. 

Recall that A =? (A, F) is of a finite similarity type if F is a finite set. By 
Tol A we shall mean the lattice of all tolerances on an algebra A with respect to 
set inclusion and a tolerance on A is a binary reflexive and symmetric relation 
on A which is a subalgebra of the direct product Ax A. See [2]. 

Unfortunately, if an algebra A is finite and nontrivial, then Chajda's algebra 
'£ of type (2,1,1) satisfying Tol A S Tol '£ is not finite. In this note we shall 
show the following: 

Theorem For every finite algebra A of a finite similarity type there exists a 
finite algebra 6 of type (2,1,1) such that Tol A ~ Tol 6 . 

Proof Let A = (A}F) be a finite algebra of finite similarity type. Choose a 
positive integer n > 2 such that card F < n and arity / < n for all / G F. 
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We can write a finite sequence / i , / 2 , . . . , / n , where {/i, / 2 , . . . , /n} = F and 
consider every /• as an n-ary operation on A. 

Introduce one binary and two unary operations on C = An as follows: 

x-y = ( # i , u i , u 2 , . . . , y n _ i ) , 

9(x) = (h(x)J2(x),...Jn(x)\ (1) 

h(x) = (a?2,*3,-. . ,*n,3 ' l) . 

Then 6 = (C, {., #, /i}) is a finite algebra of type (2,1,1). For x^\ x^2\ . . . , Z W G 
C (k > 2) we can put inductively 

xW.x(2K..x^ = x^.(xW-xW...x^). (2) 

Define the map <p : Tol A -> Tol 6. Let T € Tol A We put 

((a?i, 32,. • •, s n ) , (j/i,y2, • • •, 2/n)) G <p(T) (3) 

if and only if (xi,yi) G T for i = 1, 2 , . . . , n. 

Clearly <p(T) is a reflexive and symmetric binary relation on C and from (1) it 
is easy to show that <p(T) G Tol G. 

Evidently, for S,T G Tol Jl we have 5 C T if and only if <p(S) C <p(T) and 
so <p is an injection. Now, it remains to prove that <p is a surjection. For every 
x = (a?i,a?2,... , # n ) G C we put I(#) = x i . Suppose that # E Tol 6. Let 
T C Ax A such that 

(«, v) E T if and only if there is (#,y) E I£ and I(#) = u, I(y) = v. (4) 

Clearly T is a reflexive and symmetric binary relation on A. 
First we shall show that 

((xx, x2,..., xn), (yuy2)..., yn)) E R (5) 

whenever (#;, yz) £T for all i = 1,2, . . . , n. 

Assume that (a?»,y,-) E T . Then there exist x^l\ y^ E C such that 
( x « , y « ) E I?, I(z(i)) = ^ and I(t/«) = y . . It follows from (1) and (2) that 
x = (xux2,...,xn) = x^ -xW ...x(n\ y=(y i ,2 / 2 , . . . , .yn) = y ( 1 ) - t / ( 2 ) . . . y ( n ) 
and so (x, y) E R. 

Now we shall show that T E Tol A Let (xit y{) E T for t = 1,2, . . . , n. It 
follows from (5) that (x,y) E IZ, where # = (#i ,a? 2 , . . . , # n ) , 2/ == (2/1,2/2, ••. ,2/n). 
According to (1), we obtain (g(x),g(y)) E It! and so (fi(x)>fi(y)) E T. For 
k = 1,2,. . . , n - 1 we have (hkg(x), hkg(y)) E I? and so (/,•(*), /*(y)) G T for 
; = 2 , 3 , . . . , n . Thus T E Tol A 

Finally we shall show that R = <p(T). Let 

(x,y) = ((a?i,aj2 , , . . ,xn) , (yi,!/2,-.-,J/n)) € # , 

then according to (1), we have (hk(x),hk(y)) G -R for * = 1,2,.. . ,n - 1 and 
so (a?t-,ys-) G T for f = 1,2, . . . , n. This means that (x,y) G p(T) . Therefore 
A C 9?(T). 
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Assume that (#, y) G <p(T)} then by (3) we have (xi,yi) G T for i = 1,2,.. . n, 
where x = (a?i,&2> • • • >#n) and y = (y1} j / 2 , . . . , y n ) . According to (5), we have 
(xy y) G R- Consequently we obtain (p(T) C 1? and so It = y?(T). 

N o t e It is well known that the set Con Jl of all congruences on an algebra 
A is a subset of Tol Jl (the set of all transitive tolerances on Jl). From (3) it 
follows that the map <p has the property: 

<p(Con A) C Con 6. 

Now, we shall prove that 

<p(Con A) = Con 6. 

It suffices to show that T defined by (4) is a congruence on A, whenever R G 

Con e. 
Suppose that (i/,v), (v, w) G T and R G Con 6. According to (4), there 

ex is t s , y ( 1 ) ,y ( 2 ) , ze C such that (;r,y(1)), (y ( 2 ) ,z) G R and I(x) = u, I(y^) = 
v = I(y(2'), I(z) = w. It is easy to show that by (1) and (2) we have 
xn = x - x...x = ( « , « , . . . , « ) . Analogously we can obtain that ( y ^ ) n = 
= (v,v, . . . , v ) = (y(2))n and zn = (w,w,...,w). We have (xn ,(y(1)) f l), 
((y ( 2))n ,*n) G iJ and so ( z n , z n ) G IJ and I(zn) = u,I(zn) = ID. Hence, by 
(4), we get (i/, ID) G T. Consequently T G Con A. 

Corollary For every finite algebra A of a finite similarity type there exists a 
finite algebra C of type (2,1,1) such that Con Jl = Con C. 

References 
[1] Chajda, L: Tolerance lattice of algebras with restricted similarity type. Acta Univ. Palac-

ki. O l o m u c , Fac. rer. nat . , Ma th . 34 (1995), 59-62. 

[2] Chajda, I.: Algebraic Theory of Tolerance Relations. Monograph Series of Palacky Uni­
versity Olomouc, 1991. 


		webmaster@dml.cz
	2012-05-03T22:26:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




