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Abstract 

It is shown that for any algebra A of a finite similarity type there 
exists an algebra B of type (2,1,1) such that the lattices of all tolerance 
relations on A and on B are isomorphic. 
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By a tolerance on an algebra A — (A, F) is meant a binary reflexive and 
symmetric relation on A having the substitution property with respect to F , i.e. 
it is a subalgebra of the direct product A x A. The set Tol ,4 of all tolerances 
on an algebra A forms an algebraic lattice with respect to set inclusion, see [1] 
for some details. Hence, there is a natural question whether also the converse 
statement is valid, i.e.: given an algebraic lattice L, can be found an algebra A 
with L = Tol A ? A similar problem for congruence lattice Con A was solved by 
G. Gratzer and E. T. Schmidt [3]. For Tol A, it has been solved in positive by 
the author and G. Czedli [2] by using of methods involved in [3] and also in [4] 
by A. A. Iskander. Hence, the algebra A in question has an infinite number of 
(at most binary) operations. 

There is a question whether the number of operations of this A can be 
restricted at least in some special cases. The aim of this note is to give a partial 
answer similarly as it was done for congruence lattice in [5]. Our result is the 
following: 
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Theorem For every algebra A of a finite similarity type there exists an algebra 
B of type (2,1,1) such that Tol A =*TolB. 

Recall that A = (A,F) is of a finite similarity type if F is a finite set. 
Since every n-ary operation / £ F can be consider as an m-ary operation 
for m > n (where we can put / * ( # i , . . . ,xn]..., xm) = f(x1,...,xn))) take 
n = m a x ( n i , . . . , n m ) where n i , . . . , n m are arities of f \ , . . . , fm for finite (m 
elemented) F and all / i , . . . , / m can be consider as n-ary operations, i.e. of the 
same arity. 

In what follows we essentially use the original Jonsson's proof [5] for con­
gruences. Namely, it works also for other relations than congruences, e.g. for 
tolerances. However, for the reader convenience we repeat the most important 
parts to make it self contained. 

Proof of the Theorem: Let A = (A, F) be an algebra of finite similarity type, 
say F = {/i, . . . , / m } . Consider every / £ F as an n-ary operation (where n is 
the maximal arity of f 1 , . . . , / m ) . Denote by B the set of all (infinite) sequences 

u = ( a i , a 2 , a 3 , . . . ) 

of elements a,j £ A such that there exists a natural number k with a; = aj for 
each i}j > k; we will say that u is a constant sequence for i > k. 

Introduce one binary and two unary operations on B as follows: 
if u = (xi,x2, •• •), v = (2/1,2/2, • • ) are of B then 

d(u, v) = ( / i ( y i , . . . , j / n ) , . . . , fm(yi,..., yn), a?i, 2/i, 2/2, . . . , ) , 

9i(u) = (a?i,a?i,*!,...), 92(u) = (x2lx3lx4l.. .)• 

Then B = (B, {d,gi,^2}) is an algebra of type (2,1,1). 
For every natural number p we put 

hp(u^\...,u(p\v) = (x[1\x{2\...,x(f\y1,y2,...) 

where i*M — (x\\x^\ . . . ) , v = (yi,H2 , . . .) are elements of H for i = 1 , . . . , P + 1 . 
Hence, every hp is a (p + l)-ary operation in H. Moreover, it is a term operation 
since 

hi(u,v) = g^(d(u,v)), 

V i ^ 1 ) , . . . , * ^ 

for p £ N, where inductively, (/^(x) = ^( . r ) and gm(x) = ^ 2 ( a m _ 1 (x ) ) for 
m > 1. 

Now, let T £ T o l A Let <p be a mapping of T o M into the set of all binary 
relations on H, where <p(T) = T*, and for u,v E B, u = (xllx2i...), v = 
(yi,y2,---) we put 

(ti, v) E T* if (**, y*) £ T for each fc £ N. 
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Clearly T is a reflexive and symmetric binary relation and for 5, T £ Tol.4, 
S C T if and only if 5* C T*. Evidently, <p is an injection. 

(a) Prove the substitution property of T* with respect to operations of B. 
Let u = (# i ,#2 , . . . ) , v = (2/1,2/2,...) be elements of H and (ti,t>) G T*. Then 
(xk,yk) G T for each k E N, whence simply 

(0i(t.),ffi(»)) € T* and (</2(u), </2(t>)) G T*. 

Analogously, if also uj,l G I? and (iv,tf) G T*, we can immediately show 

(d(u,w),d(v,t)) GT* 

thus T* G TolB, i.e. <p:To\A-> TolB. 

(b) It remains to show that (p is a surjection. Suppose It G Tol/?. Let 

T = {(a?,y);a:,y€-4,(x,i/) G I?} , 

where £ = (# ,# , . . . ) , 2/ = (2/, 2/, - • •) a r e constant sequences. Evidently, T is 
a reflexive and symmetric binary relation on A. Suppose now (u,v) G R for 
u = (#1, £2,. • •), v = (2/1,2/2, • • •) G -B. Since It G TolS, we have 

((xk,xk,...),(yk,yk,...)) = ( f f i a * - 1 ^ ) , ^ - 1 ^ ) ) G It, 

thus also (xk,yk) G T for each k G N. 
Conversely, let u = (a?i,a,2, •••), u = (2/1,2/2, •• •) belong to H and (xk,yk) £T 

for each k G N. Let p G N be such a number that for each i > p are both of 
these u,v constant sequences. For k = l , , 2 , . . . , p put 

xik) = (a:*,**,.. .), u(*) = (ufc,u*,...). 

Then (x(k\i/^) G It for t = 1,2,.. . ,p and 

u - M * ( 1 ) > . . . , ^ + 1 ) ) , v = bp(u
(1\ . . . , u^1)) 

whence (u,v) G It. We conclude <p(T) = I?. It remains to prove the sub­
stitution property of T. Suppose (#1,2/1) G T , . . . , (xn,yn) G T and put u = 
(a?i,.. . , z n , a , a , . . . ) , v = (2/1,... , u n , a , a , . . . ) , where a G A is arbitrary. Then 
u,v G B and (ti, v) G -ft, i.e. also (d(u,u),d(v,v)) G I£, whence 

(d(u,u)k,d(v,v)k) £T for each & G N 

(where d(u,u)k denotes the k-th member of the sequence J(u,u), analogously 
for o1^, *;)&). However, the foregoing is properly 

(fk(x1,...,xn)Jk(yi,...,yn)) eT 

by the definition of operation d, i.e. T has the substitution property. Hence 
T G T o l A Altogether, <£> is a bijection of TolA onto TolZ? finishing the proof. 
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