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Abstract 

The effective asymptotic estimates of derivatives of solutions to dis-
sipative nonhomogeneous linear ordinary differential equations with con
stant coefficients are shown to be available by means of the technique due 
to E. Esclangon [E]. Establishing this procedure, We compare the appro
priate results with those obtained by different methods. 

Key words: Esclangon's method, asymptotic estimates, nonhomo
geneous equations, comparison of results. 
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1 Introduction 

In 1915, E. Esclangon published the well-know theorem (see e.g. [E], [L], 
[KBK]) for the linear ordinary differential equations with constant coefficients 
and a bounded (on the half-line) continuous nonhomogenity. This theorem says 
that the boundedness of solutions implies the same for their derivatives up to 
the order of the given equation. As we will show, the basic idea of the proof 
can be used, under the slight modification, as a method for the asymptotic 
estimates of such derivatives, provided additionally that the associated charac
teristic polynomial is asymptotically stable. 

Under these assumptions, all the solutions of the nth-order equations, as 
well as their derivatives up to the nth-order, are known (see e.g. [Al], [AT], 

Supported by grant No. 311 03 001 of Palacky University, Olomouc. 



Jan ANDRES, Tomáš TURSKÝ 

[BVGN]) to be uniformly ultimately bounded by the common constants. Hence, 
the problem consists in the estimation of these constants; for the related results 
see e.g. [Al], [AT], [AV] and the references therein. 

Although the obtained estimates here will be shown better than their known 
analogies in particular situations, they are suitable only for lower-order equa
tions. The reason consists in a cumbersome calculation of the appropriate re
current formulas. 

Our paper is organized as follows. In Part II, Esclangon's method is pre
sented for a general nth-order equation. Part III is devoted to its application 
for n < 5. The comparison with the known analogies is done in Part IV. The 
last Part V consists of the concludings remarks. Two supplementary sections 
are added not to break the context. 

2 Esclangon's method 
Consider the equation 

n 

^(n) + E a ^ ( n " i ) = ^) C1) 
i=i 

with positive constant coeficients a,-, j = 1 , . . . , n, where p(t) is a continuous 
function on the positive half-line, by which all solutions of (1), as well as their 
derivatives up to the nth-order, exist for all future times (see e.g. [C]). 

Assume, furthermore, that the associated characteristic polynomial, namely 

A« + f > ; A ^ , , ( 2 ) 

j = l ; : - • • 

is asymptotically stable, i.e. ReA^ < 0, j = l . . . . , n , where Xj are the roots 
of (2). This is well-known to be expressed explicitly in terms of coefficients by 
means of the necessary and sufficient conditions of the Routh-Hurwitz type (see 
e.g. [C]). 

At last, let a positive constant P exist such that 

l imsup|p(t) | <P. (3) 
t-+oo 

Under the above assumptions, all solutions of (1) as well as their derivatives 
up to the nth-order are uniformly ultimately bounded (see e.g. [BVGN]). We 
also know (see [AT]) that every solution x(t) satisfies 

P 
limsup|;r(t) | <. '—. lmy (4) 

Hence, let x(t) be a solution of (1). The following identity obviously takes 
place for an arbitrary positive number a{\u- J *; 

±e-^[x(n-l){t) + A u a 8 (n-a) ( t ) + . . . + Xln_1±(i)]= (5) 

= e~ait[x(nHt) + alX(n-V(t) +••.•:. + anx(t) + Ul(t)}, 
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where 
An = a i + Gl, 

Ai,»+i = Ai|tO-i + a l + i for % = 1 , . . . , n - 2, 

t-i(<) = -(QfiAi,n-i + an)x(t). 

Because of (4) and Ai,n_i being a constant, ui(t) is bounded as well. There
fore, integrating (5) from T to oo, we get 

- e - ^ V - ^ C O + AU_("-2)(T) + ... + \hn-ix(T)} = (6) 
/»0O 

= / e-a»*[p(*) + _i(*)]* , 
JT 

when using the identity „ » ( _ ) + £ " = 1 aj~ (n~ j )(*) = P M a n d t n e f a c t t h a t 

e~aitx(k'(t) vanishes at infinity for k = 0 , 1 , . . . , n — 1. 
Applying the well-known second mean value theorem to the right-hand side 

of (6), we arrive at 

-e-a*T[zln~l\T) + A u a > - 2 ) ( T ) + • •. + Ai,n__„(T)] = 
e ~ « i T 

= [p(6) + «i (6) ] , where 6 G (T,oo). 
a i 

Multiplying the last relation by e^1*, we obtain 

,(—>.)(_-, + A„_("-2)(T) + . . . + A ^ ^ T ) = _ £ _ _ + _ _ _ . . 
Of . 

Since this equation holds for each sufficiently big T, we can rewrite it into the 
form 

x^1) + A n ^ " 2 ) + •. • + A1)n__z = p i ( - ) , 

where P l f t ) _ _ - ^ ^ W H ^ W ) . 
Now, repeating the same manner as above to this equation, we can get the 

equation of the (n — 2)th order. Hence, starting with the identity 

£_e-«3t[x(n-2){t) + A a l _ ( » - - ) W + . . . + Aa,n_._(*)] = 

= _-«-'[x(B-1>(«) + AUx(n-2>(i) + • • • + \hn-ix(t) + __(*)], 

where 

A21 = » 2 + A u , 

A2,t+i = A2,»c-2 + Ai,2+i for i = 1 , . . . , n - 3, 

U2[t) = -(c-2A2,n~2 + Ai | n_i)_(t) , 
we come to 

- e - a 2 T [ x ( " - 2 ) ( T ) + A21x("-3)(T) + • • • + A.,-_a«(T)] = 
e - _ 3 r 

= |> i (6) + «_(„)] , where t*- € (T, oo). . 
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Thus, the desired equation reads 

a,(»--) + . . . + A2>n_2_ _ p2{t), 

where p2(t) = - _ _ _ _ _ _ % _ _ _ • . 

Proceeding analogously, we receive after (n — 1) steps the equation 

- ' + An-i^x = p n - iC0 , 

where p- . - .W = - _ _ _ _ _ _ _ _ _ 1 ^ ^ ^ 

Applying (4), we have therefore 

p 
limsup|.r '(t) | < l imsup|pn_i(f) | + A n _i ( i— , 

t—>oo t-¥oo an 

where p n - i (z) and An_i}i can be derived recurrently from the above formulas. 
One can also obtain recurrently the asymptotic estimates for |a?W(_)|, where 
/ = 2 , . . . , n — 1, when coming back to the higher-order equations. 

The above procedure can be described in form of the following algorithm, 
when considering the coeficients aj as a vector (c*i,..., an) and Ay as a matrix 
(ay). 

Oth step: 

AO.І := aг, i = 1,.. .Зn, 

P 
po := -P, Уo : = — , 

an 

l s t step: 

FOR i FROM 1 TO n - 1 DO 

A.,i : = Aj-l,i + O J , 

FOR j FROM 2 TO n - i DO A*_ := A,,j-i * a . + A,_i j OD, 

w,- := (a,- * A i |n_i + Aj_1|n_,+i) * j/o, 

p . : = _ _ _ i t î _ 

OD, 

2nd step: 

FOR t FROM 1 TO n DO 

-« :=Pn-», 

FOR j FROM 1 TO . DO J/< := y. + A„-»j * yt-j OD, 

OD, 
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In the vector (3/1,.. . ,2/n), yk denotes the asymptotic estimate of |ar'*)(2)|, 
k = 1 , . . . , n, obtained by Esclangon's method. 

Since all such estimates depend on the real parameters a,-.,,,,, a n _ i , it is 
very useful to give 

Lemma 1 Each component y / - (a i , . . . , a n - i ) k = 1 , . . . , n. in £be above vector 
attains its minimum on (R+)n~l. 

Proof Since all the functions y/c(«i, • • •, »n - i ) , & "̂  1 , . . . , n, are obviously 
continuous on ( i ? + ) n _ 1 , it is enough to show that the values of each yk are 
outside some closed parallepiped bigger than the value at a certain point inside 
it. This is because of the well-known Weierstrass theorem implying the global 
maximum on the compact set. 

Hence, let us construct such a parallepiped and find the desired internal 
point. For y\, one could see that the term =~^— is involved in Pn_i and that 

u i _ i aj 

n - l 

An_,ifi = ai -f y] Q-j , 
j = i 

which yields 
n - l 

2/1 гř^V + ^ ' < 

Since An_.fc>iy(n fe ^ belongs to y&, while \n~k,i includes ai, we have fur
thermore 

n - l 

<yk , k = l , . . . , n . 

Taking 
c : = min Pa* = P m i n ( l , a " L) , 

fc=l,...,n 

we get 
n - 1 

which leads for 

п n - L + _ C a j l < « « " fe = l , . . . , П , 
и j = i a i J=l / 

/ := max y * ( l , . . . , l ) 
fe—.1.....П 

to the inequality / > c, i.e. g :=_ £ > 1. 

( \ n —1 
( g ) n ~ \ < n , w e wm* show that for 

each external point we arrive at 

Vk>f, * = ! , . . . , n - l . 
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This is indeed true because of the two following implications: 

(») 3i G { 1 , . . . ,n - 1} : a . > q =>• yk > one > qc = f, 

(H) V i 6 { l J . . . , n - l } : a, < g, 3j G { 1 , . . . , n - 1} : 

* \ n —1 

« , < y ^ » > = 3 ( i F x = / . 
which completes the proof. 

3 Applications for n < 5 
Although Lemma 1 affirms the solvability of the minimum problem in (i?"*")""""1, 
it is rather difficult even for n < 5. Letting d : = a i = . . . = a n _ i (n < 5), 
the optimality question for a has still some meaning. Since a is positive, yk E 
C°°(IT!+), for k = 1, . . . , n. Thus, the problem is related to finding the critical 
points of yk(ot) on (0,oo). 

Below, we introduce at first all the possible cases solvable analytically, where 
x(t) denotes again the solution of nth-order equation (1); observe that n < 4. 

n = 2: 

n = 3: 

lim sup \x'{t) | < 2 P ( - J = + — J 
t-*oo Vv°2 a2/ 

l imsup |x ' ( t ) | < ( ( P + M - » + M - i + «)) + «a)PN . 1 + 

ř-+oo \ V a 3 - ' 

( a , ( a 1 + 2 , a ) + a 2 + a , ( a 1 + a ) ) P \ __ ( a i + 2 , a ) P 
+ ) <^ H 

a 3 ,, / «3 

where 

a = 
(9, a3 + i Z - a i + S 1 ^ ! ) 3 + a 2 

3, Y / M 3 + \ / - a f + 81,a§ 

P 4- (^(Q24-^(Дi+Q))+aэ)P 

limвup|*"(ť)l < ľ ^ + 

P ^ g ^ g ^ ( a ( a i + 2 a ) + a2 + a ( a i + a ) ) P V 

+(-! + «) I ã + £ Г 
^ (oi + 2 a ) i Л j (aз + a ^ a ^ + t t ) ) ^ 

ßз / aз 
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where 

a = - i - a i + ^VZVB— (-(-W2al\/AVB + 24VBAÍ + 432v /Ia?a2-
16 48 48 V v 

-3744v/Baia3 - 1152>/3^Aaia2 - 2304\/3^_4a3 + 4 8 6 V ^ ^ a ? ) / ( ^ / ^ ) ) 2 

A = 108a?a^ + 432aia2a3 + 432a3
í-972a?a3 + 

- + 6(-162a?a23 - 1620a?a^a3 - 59832a^a2a^ + 82128a?a| + 324a?a\ + 

+ 2592a?a^a3 + 7776a?a^ + 10368aia2a§ + 5184a| + 26244a?a|) * , 

_ 27a? \/A + 8AÍ + 144a?a2 - 1248aia3 

n = 4: 

limsupjx^t)! < 
t—foo 

/ P _i_ ( » ( a 3 + ^ ( Q 2 + « ( q i + Q í ) ) ) + a 4 ) P / / , \ , / , o \ \ n . 

< / / ^ + 1~A- a4 _ (a2 + a(ai + a) + a(ai + 2a))P\ 
~ \\ a a4 / 

+((ai + 3a)a + a2 + a(ax + a) + a(ax + 2a))P/a4 )/a + -1— 
/ a4 

where 

a = )~VŽQVB + j-</^(-(-Sa2\/AV^y/B -SaxVÁV^VB ^ 
60 60 V 

•• + VŠQy/BAi - 720V^0\/Ba4 + ^^y/Ba\ + Sy/ŽttV~Ba2a1 + 

+ 4v/3O\/0a] - 360v/4a3 - 360a2\/A) / (</IVBÝ) * , 

A = -4320a4a2 - 4320a4ai + 540a| + 1080a3a2 + 540a| - 8a| - 24a^ai -

- 24a2a? - 8a? + 12^172800ala2ai + 2880a4a^ai + 4320a4a|ai2 + 

+ 2880a4a2a? - 32400a4a2a| - 64800a4a^a3 - 32400a4aia^ -

- 32400a4aia^ - 180aí^ai - 180a^a2a? - 360a3a|ai - 360a3a|a? -

- 120a3a2a? + 86400atal + 86400a|ai2 + 720a4a| + 720a4a? + 

+ 8100ala2 + 12150a| - a\ - 60ala23 - 60a!ai3 + 8100a3al -

- 120a3a| + 2025a^ - 32400a4a^ + 2592000a^ + 2025a| - 60a^ -

- 64800a4aia3a2 - 180a^ai - 180a^ai - 180afa? - 60a|a?) 2, 

B = Í 4 a 2 ^ + 4a1^+A*-720a4 + 4â  + 8a2ai+4a?)/\/4. 
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Now, let us complete the remaining estimates for n = 4,5, when putting 
a = 1. 

n = 4: 

I H M I y 2(3a4 + 18ai + 18 + 6a2 + 3a3 + axa4 + 4a? + 2axa2 + aia 3) _ 
kmsup |ar ( t ) | < f -P, 

t-rOO a4 

lims\ip\x'"(t)\ < 2(5a4 + 48ai + 16a2 + 5a3 + 26a? + a\a4 + 4a? + a2a4 + 2a^+ 

+ 26 + 2a?a2 + a?a3 + 5aia4 + 14aia2 + 5aia3 + a2a3)P/a4 . 

n = 5: 

. . , 2(a5 + 8ai + 15 + 4 a 2 + 2 a 3 + a 4 ) D 

_->oo a 5 

l imsup|x"(i) | < 2(4a5 + 46ai + 56 + 16a2 + 8a3 + 4a 4 + 

+ axa5 + 8a\ + 4a2a2 + 2aia3 + a i a 4 ) P / a 5 , 

limsup|a?'''(*)| < 2(4a?a2 + 12a4 + 12a5 + 2a?a3 + a\a4 + 8axa5 + 40aia 2 + 

+ 16a!a3 + 8aia4 + 2a2a3 + a2a4 + 162 + 206ai + 62a2+ 

+ 24a3 + 78a? + a\as + 8a? + a2a^ + 4a | )F / a 5 , 

l imsup|^( / v)(r) | < 2(18a5 + 4a?a2 + 2a?a3 + a?a4 + 10a?a 5 +56a?a 2 + 
t—^OO O O 

+ 20axa3 + 10a2a4 + 16a2a3 + Qa2a4 + 26aia4 + 26aias + 

+ 180ai a2 + 60aia3 + 2axa2a5 + 8aia2 + 6a2a^ + a3a4 + 24a^+ 

+ a3a^ + 2a| + 4aia2a3 + 2aia2a4 + 494ai + 154a2 + 50a3+ 

+ 18a4 + 346a? + 94a? + a\a5 + 8a? + 234)P/a5 . 

4 Comparison with the analogies 

The folloving analogical theorems have been obtained, under the above assump
tions, for the asymptotic estimates of solutions of (1) and thier derivatives up 
to the (n - l ) th order. 

T h e o r e m 1 [Al] Every solution x(t) of (1) satisfies 

l i m s U pg|_C) W |<pgHMi (7) 

with \\A\\ = max(l + <*i,. •. , 1 + a n _i , an) and X = min,-—i,.. n |iieAj|, where Xj 
are the roots of (2)-
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Theorem 2 [AT] Every solution x(t) of (1) safistfies 

<yk p 
limeup|ar<*)(t)|< A*, k = 0,1,. ..,n - 1, (8) 

t—>-oo an 

with A = maxj-it.m.tn \Xj\, where Xj are the roots of (2). 

R e m a r k 1 The spectral radius A in (8) satisfies (see [P, pp. 30-33]) A < 
min[max(a1 + l , . . . , a n _ i + l , a n ) , m a x ( l , a i + --- + a n ) , m a x ( a i , ^ , . . . , ^ - - ) ] . 

Theorem 3 [AT] Assume additionally that all the roots Aj, j = 1 , . . . , n, of 
(2) are real (and subsequently negative). Then every solution x(t) of (1) satisfies 
(ao = 1) 

limsup \x^(t)\ < %^- , k = 0 , 1 , . . . , n ~ 1. (9) 

Theorem 4 [AT] For n > 5, assume additionally that the coefficients aj in 
the polynomials 

n-~p 

Xn~P + ] T aj\
n~j-p , where p = 1 , . . . , n - - 4 , (10) 

i=i 

Obey successively the Routh-Hurwitz conditions. Then every solution x(t) of (1) 
satisfies 

limmp\xW(t)\< 5 k = 0 , l , . . . , n - l . (11) 
t—>oo an—k 

Lemma 2 [AT] If a// the roots of (2) are negative, then (cf. (9) and (11) 

(ao = i ; ; 
2fcF 2fca/cP 

< T ^ ; for k - 0, 1, . . ., n - 1. 
a " - * U) a n 

In view of Lemma 2, Theorem 3 becomes actual only for n > 5, because 
then the Routh-Hurwitz structure of coefficients in polynomials (10) is not 
anymore invariant, in general (see Appendix I and [A2]), under the "shift" for 
p= l , . . . , n - 4 . 

Lemma 3 [K] The whole family of necessary and sufficient conditions for the 
negativity of all the roots of the polynomial 

A5 + E a ; A 5 ~ j 

j-=i 

reads as follows: 

aia4 — 25a5 > 0, Aa\ — 10a2 > 0, 
(12) 

A0 > 0, A2> 0, B0 > 0, 5 i > 0, Co > 0, 

where the constants AQ,A2,B0,BI,C0 are defined in Appendix II. 



16 Jan ANDRES, Tomáš TURSKÝ 

For higher-degree polynomials, the situation becomes much worse. 

Theorem 5 [C, Chapter II, Th. 3.11.1] Assuming additionally that 

lim p(ł) = P, 
ŕ-+oo 

every solution x(t) of (1) satisfies 

P 
lim x(t) = and lim a?(/)(t) = 0 for l = 1,...,n - 1. 

Remark 2 In view of Theorem 5, the estimates (8), (9) and (11) are sharpest 
for Ar = 0. 

Now, let us demonstrate the power of the foregoing theorems in two exam
ples. 

Example 1 Consider 

x( y ) + 15z( / y ) + 85* '" + 225z" + 274*' + 120ar = p(t), (13) 

where p(t) fulfils (3). The roots of the associated characteristic polynomial 
are: — 1, — 2, — 3, — 4, — 5. One can check (see Appendix I) that the additional 
assumptions of Theorem 4 are satisfied. 

Denoting the constants estimating the kth-order derivatives of solutions to 
(1) by Dky k = 0 , 1 , . . . ,4, respectively, we have the following table: 

without factoг P D0 
Dг D2 Dъ D4 

(11) in Th. 4 ì 
120 

0.00730 0.01778 0.09412 1.06667 

(9) in Th. 3 1 
120 0.05000 0.28333 1.50000 7.30667 

(8) in Th. 2 1 
120 0.08333 0.83333 8.33333 83.33333 

Chapter 3 *) 1 
120 4.6748 149.84 4340.9 100682 

(7) in Th. 1 D0 + Di + D2 + D3 + D4 = 9.1673 1010 

*) a := ai = . , . . . = a.4 has been optimalized numerically 

Although the results obtained by means of the Esclangon method are for 
(13) the second worst,the next example says something different. 

Example 2 Consider 

x" + 0.2x' + 9Mx = p{t), (14) 

where p(t) again fulfils (3). The roots of the associated characteristic polynomial 
are: — 0.1 + 32', —0.1 — 3z. The following table shows that the Esclangon method 
gives here the second best estimates. 



On the Method of Esclangon 17 

without factor P D0 oi 

(11) inTҺ. 4 0.11098 10 

(8) in Th. 2 0.11098 0.66962 

Chapter 3 0.11098 1.37699 

(7) inTҺ. 1 
......., 

00 + 0 ! = 1812 

Without an explicit knowlege of the spectral radius A (i.e. when applying the 
inequalities in Remark 1), the result obtained by means of Esclangon's method 
is, however, the best of all. 

5 Conclusion 

In spite of difficulties related to applications of Esclangon's method, we could 
see that it can give comparatively very good estimates, especially at presence 
of complex roots of (2). The algorithm presented in the second chapter can be 
employed numerically in general, when putting e.g. (as in the original paper [E]) 
Q/1 ; — . . . — a n _ i = 1. Thus, we have to our disposal at least the complementary 
tool to those introduced in form of theorems in Part IV. 

Appendix I 

The Routh-Hurwitz conditions for the coefficients of (2) take the following form, 
when n = 3, 4, 5. 

n = 3: 

n = 4: 

n = 5: 

a i a 2 — a 3 > 0 , 

fli^2^3 — a 2 a 4 — a\ > 0 . 

0304 — a 2a5 > 0, a 4 (a 2 a3 + a$ — 0104) — a\a$ > 0, 

a4(aia 2 a3 + aias — a\a4 — a\) — a^aia^ — a 2 a3 + 05 — 0104) > 0. 

One can therefore easily check that the asymptotic stability of the associated 
characterictic polynomial to (13) in Example 1 implies the same for the "shifted" 
one, namely 

A4 + 15A3 + 85A2 + 225A + 274 . (15) 

Indeed. The appropriate inequalities for (15) read 15015 > 0 and 174600 > 0. 
One the other hand, the asymptotic stability of, for example, the polynomial 

Л5 + Л4 + 4Л3 + ЗЛ2 + 3.5Л + 1 (16) 
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does not imply the same for 

A4 + A3 + 4A2 + 3A + 3 .5. (17) 

Indeed. The appropriate inequalities for (16) are 

6.5 > 0 , 17.25 > 0 , 0.25 > 0, 
.; i 

while the one for (17), —0.5 > 0, is false. 
For n < 4, the Routh-Hurwitz structure of coefficients in polynomials (10) 

can be shown invariant under the "shift" for p = 1 , . . . , n — 1 (see [A2]). 

Appendix II 

For n=5, the negativity (and so reality) of all the roots of the characteristic 
polynomial (2) can be obtained (see e.g. (12) in Lemma 3), on the basis of the 
well-known Sturm theorem (see e.g. [HM]), by means of the following Sturmian 
functions: 

F0(A) = A5 + aiA4 + a2A3 + a3A2 + a4A + a 5 ) 

Fi(A) = 5A4 + 4aiA3 + 3a2A2 + 2a3A + a 4 , 

F2(A) = (4a\- 10a2)A3 + (3a i a 2 -15a 3 )A 2 + ( 2 a i a 3 - 2 0 a 4 ) A + 

+ a i a 4 — 25a5 , 

F3(A) = AQ\2 + A1\ + A2, 

F4(A) = BQ\ + B1, 

P5(A) = Co, 

where 

A0 = 3a
2a2 - \2a\ - %a\a3 + 38aia2a3 - 45a| - 16a

2a4 + 40a2a4 , 

Ali = 2a\a2a3 — 8a2a3 + 6aia| — 12afa4 + 42axa2a4 — 60a3a4 — 

— 20a2a5 + 50a2a5 , 

A2 = a\a2a4 — 4a2a4 + 3axa3a4 — 16af
as + 55aia2a5 — 75a3a5 , 

Bo = 2(-2a\ + 5a2)
2(a\alal - Aa\a\ - 4a?a| + 18aia2a| - 27a|-

— 3a2a3a4 + 12a
4a4 + 14a

3a2a3a4 — 62aia2a3a4 — 6a
2aga4+ 

+ 117a2a§a4 - 18a^a| + 97a\a2a\ - 88a^a| - 132aia3a|+ 

+ 160a| - 66a\a2a3a5 - 40a2a3a5 + 120aia|a5 - 28afa4a5+ 

+ 130aia2a4a5 — 300a3a4a5 — 50a
2a5 + 125a2a5), 
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Bi - (-2a? 4 5a2)
2(afa^a3a4 - 4afa3a4 - 4afa|a4 4 18aia2a|a4 - 27a^a44 

+ ia\a2a\ - 12axa\a\ - la\a3a\ + 48a2a3a| - 16axa\ - 9afa^a54 

4 360^5 4 32afa2a3a5 - 146aia^a3a5 4 4afaga5 4 195a2a^a5-

- 48a4a4a5 4 266afa2a4a5 - 260a^a4a5 - 290aia3a4a5 4 400a4a5-

- 80afag 4 275aia2ag - 375a3ag), 

Co = (-2a? 4 5a2)
4(3af a\ - 12a| - 8afa3 4 38aia2a3 - 45a^-

- 16afa4 4 40a2a4)
2(af a\a\a\ - 4a2a3a| - 4afa|a

2 4 18aia2a3a4-

- 27a4a^ - 4af a\a\ + 16a\a\ + 18a?a2a3a\ - 80aia|a3a^ - 6af a|a^4 

4 144a2a|af - 27a
4a4 4 144af a2a

4 - 128a^a4 - 192aia3a|4 

4 256a4 - 4a\a\a\a*> + 16a\a\a*> + 16a?a\a$ - 12aia2a\a*> + 108a|a54 

4l8afa|a3a4a5—72a2a3a4a5—80afa2a|a4a54356aia|a|a4a5424afa3a4a5 — 

- 630a2a3a4a5 - 6afa\a\a$ + 24axa2a4a5 4144a
4a3a4a5 - 746afa2a3a

2a54 

4 560a|a3a
2a5 4 1020aia|a|a5 - 36afa4a5 4 160aia2a4*a5 - 1600a3a4a5-

- 21a\a\a\ + 108a^a^ 4 144a?a^a3a§ - 630aia|a3a^ - 128a
4a^4 

4 560af a2a\a\ + 825a2a|a5 - 900aia|a5 - 192a
4a2a4a5 4 1020af a

2a4a5-

- 900a2a4ag 4 160af a3a4a
2 - 2050aia2a3a4a5 4 2250a3a4a;? - 50af a

2ag4 

4 2000a2alaj? 4 256a?ag - 1600a?a2aij 4 2250aia^af 4 2000afa3af-

- 3750a2a3a| - 2500aia4af 4 3125a
4). 
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