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Abstract 
Homomorphisms of contexts induce maps on corresponding concept 

lattices. We are studying a relationship between these homomorphisms 
and maps. 
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Definition 1 Let G and M be a nonempty sets and I C G x M. Then the 
triple J = (G, M, I) is called a context. 

Definition 2 Let A C G, B C M be a nonempty sets. Then we denote: 

A* = {m £ M\ glm \/g £ A}, Bl = {g £ G; glm, Vm £ B}, 

0t = M. 0̂  = G. 

Denotat ion 1 Let A C G, B C M. We denote A* := (Aty and B# := (J3^)t, 
respectively. And moreover, for g € G, m £ M, we denote ^ :== |^j.t a n c j 
m -̂ := {m}^-. 
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122 František MACHALA, Marek POMP 

Remark 1 Let A, C C G and B,D C M. Then A C C implies C* C A* 
and H C D implies D^ C ^ . Moreover, A® = A*, B*& = Hk And finally 
fl A] = ( U Atf for A- C G, i € J and, similarly, n 5 | = ( U Bi)^ holds for 

i6J «6J »6J *GJ 
Bf C M i£j. (See [3]). 

Lemma 1 Let J = (G, M, I) be a context, and let us consider the set Q defined 
by 

Q = {ACG] A = A^}. 

Then the (partially) ordered set (Q, C) is a complete lattice. The operations A, 
V on this lattice are defined as follows: 

A Ai = n Ai, V Ai = ( n Ah1 

i€J ieJ ieJ »eJ 

/Or _4» £ Q. (See proof in [3]). 

Definition 3 The complete lattice (Q, A, V) from the previous lemma is called 
a concept lattice. We denote it K(J). The maximal element or the minimal 
element in K(J) are denoted by 1, or 0 respectively. 

Remark 2 If Gj = {gn\ 9 S G} and A4j- = {m+; m £ M } , then GJMJ C 

Q. In what follows we denote £/ / = GjV {0} and Vj- — JVfjr U {1}. 

Definition 4 A context J" = (G, M, 7) is called faithful, if 

(1) <7Ti = . A * = > $ = A, 

(2) m^ = n^ = > m = n 

for every g,h £ G and every m,n £ M, respectively. 

Example 1 Let (L, A, V) be a complete lattice and < be the ordering of L 
defined by the operations A, V. Then JL = (L, L, <) is a, context. Let U(A) 
or L(A) be the upper bound and the lower bound of a set ACL, respectively. 
Then A* = U(A) and A± = L(A). Hence A* = LU(A) = L(x), where x = WA 
for every ACL and, particularly, x^ = L(x) = x^ for x £ L, with regard to 
x = Vx. If K(JL) = (0 , C) is a corresponding concept lattice, then A £ Q if 
and only if A = F(x) for a some element x £ L. The elements of lattice K(JL) 
are lower bounds of elements of lattice L and ( / ^ = MjL = Q. Evidently 
XU = ^t4 = .£,(#) = F(u) which implies that x = y for x, y £ L. And similarly, 
^4 __ ^4 i m pi i e s x = y. Then the context J7L is faithful. 

Definition 5 Let &/ and V be subsets of a complete lattice L. Then we call 
them supremal and infimal dense sets in L if there exists subsets N C U and 
P CV such that x = VN and # = AP for every x £ L, respectively. 

Theorem 1 Let L be a complete lattice and < a corresponding ordering of L. 
Let U or V be a supremal and an infimal dense subset of L, respectively. Then 
the context J = (U, V, <) is faithful. 
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Proof 1. First we proof that x = V(L(x) C\U) for arbitrary x G L. Evidently, 
VL(x) = x and L(x) 0U C L(x). Then V(L(x) DU) < VL(x) = x. There exists 
N C U such that x = VN. Since N C L(x), then N C L(x) flW. Subsequently, 
ar = VN < V(L(x)nU) and x = V(L(.r) n£/) . Similarly x = A(U(ar) n V). 

2. Let J7 = (£/, V, <) and .J/7/, = (L, L, <) be contexts. In order to distinguish 
between these two contexts, we will write the arrows at the context JL on the 
right hand side and at J on the left hand side. Now, ^ = { i G V; g < x} = 
U(g) n V and % = {x € U\ x <y\/y E U(g) n V} for every g £U. According 
to 1, g = A(U(g) n V) which implies % = L(g) HU = g^r\U. 

Similarly ^m = L(m) C\U = m^ f)U holds for m £ V. 

3. Let %/ = % for g,heU. Then £(#) n # = L(/i) PiU and g = A according 
to 1. Similarly ^m = ^n implies m = n holds. • 

Definition 6 Let J = (G, M, I) be a context, and let G\ C G, Mi C M be 
nonempty subsets and Ii C G\ x Mi. 

1. If Ii C I , then the context J\ = (Gi, Mi, Ii) is said to be an embedded 
context into J. 

2. If Ii = I n (Gi x Mi), then the context J\ = (Gi, Mx, Ii) is said to be a 
subcontext of the context J = (G, M, I). 

Remark 3 Let L be a complete lattice. Then the context J = (£/, V, <) from 
Theorem 1 is the subcontext of the context JL . 

Definition 7 Let J = (G, M, I), J i = (Gi, Mi, Ii) be contexts. Then a map 
<p: G U M ~> Gi U Mi satisfying the conditions 

(1) v ( G ) C G i , ^ ( M ) C M i , 

(2) glm = > 9?(#) Ii v?(ra) 

is said to be a homomorphism of the context J into the context J\. 

Definition 8 Let <p be a homomorphism of a context J = (G, M, I) into a 
context J i = (Gi, Mi, Ii). We define the incidence rela/ion 1^ C <p(G) x <p(M) 
on the context <£>(</) = (<p(G), <p(M), 1^) by 

r v a ; ^ r v ; 3n £ M <p(m) = <p(n), 

Remark 4 In what follows, we will consider homomorphisms <p satisfying one 
of the following conditions: 

<p(g)I\<p(m) = > glm, (HI) 

-MM-., - g u | £ $ r ; $ - Hi (H2> 
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Remark 5 Evidently, (HI) = > (H2) = > (H3). 

Definition 9 A homomorphism <p satisfying (HI) is called an I-homomorphism. 
If <p is an I-homomorphism, <p(G) = Gi, <p(M) = Mi, and <p induces a bijective 
maps of sets G, G\ and M, Mi, then <p is an isomorphism. If <p is an isomor
phism of the context J onto the context J\, then J", ^ are called isomorphic 
contexts and we denote them J ~ J\. 

Theorem 2 Let J = (G, M, I), J i = ( G i , M i , I i ) , J2 = (G 2 ) M 2 , I 2 ) be 
contexts and <p : J ~+ J\ and a : J\ ~* J2 respectively be surjective homomor-
phisms. Then £ = a<p is a surjective homomorphism of the context J onto J2 

and following conditions are fulfilled. 

1. £ is an I-homomorphism if and only if a and <p are I-homomorphisms. 

2. (a) If a and <p satisfy (H3), then £ satisfies (H3). 

(b) If £ satisfies (H3), then a satisfies (H3). In addition let a be a 
bijective map, then <p satisfies (H3). 

3. Condition 2 is valid for (H2), too. 

Proof 1. Immediately, the map £ is a surjective homomorphism. Let a, <p 
be an I-homomorphisms and let us suppose £(#)I2£(m)- Then a<p(g) I2 a<p(m). 
With regard to the fact that a is an I-homomorphism we obtain <p(g)I\<p(m), 
and moreover, glm because <p is an I-homomorphism, too. 

Let £ be an I-homomorphism and <p(g)I\<p(m). Then £(#)I2£(m) and conse
quently glm, hence <p is an I-homomorphism. Let be a(g\)I2a(m\) for gi £ G\, 
m\ £ M\. Because <p is a map onto J\, there exist g G G, m G M such that 
<p(g) = gi} <p(m) = mi . Hence £(#)I2£(m) and thus glm and <p(g)I\<p(m) which 
imply g\I\m\ and a is an I-homomorphism. 

2. (a) Let us assume that a, <p satisfy (H3). Let f (g)I2£(m). 
Then a(<p(g))I2a(<p(m)) and there are gx € G\, m\ G Mx such that a(g\) = 
a(<p(g))} a(m\) = a(<p(m)) and g\I\m\. Certainly there exist h' G G, n' EM 
such that l/?(A') = gXi <p(nf) = mi , then <p(h')I\(p(nf). Because <p satisfies (H3), 
there are A G G, n G M such that <p(h) = <£>(A'), </>(n) = <p(n() and AIn. 
Evidently £(A) = a(!^(A)) = a(^(A')) = a(g\) = a(<p(g)) = Z(g). Similarly 
£ ( n ) = £ ( m ) . 

(b) Let £ satisfy (H3). Let us assume a(# i ) I 2 a(mi) for gx G Gi , mi G Mi . 
There are g G G, m G M such that y?(#) = #i, <p(m) = m 1 - We obtain 
€(9)h€(m)- Then A G G, n 6 M exist such that a(y?(A)) = a(y>(< )̂.), a(!y?(n)) = 
a ^ ( m ) ) and AIn. Subsequently, <p(h)I\<p(n) and a(<p(h)) = a(<p((/)) = a(g\), 
a(<p(n)) = a (mi) and a satisfies (H3). 

Let us assume, that a is a bijective map onto J2. Let <p(g)I\<p(m). Then 
a(<p(g))I2cx(p(m)) and £(g)h£(m). Then A G G, m G M exist such that 
«(<£>(#)) = a(<p(h)), a(<p(m)) = a(<^>(n)) and AIn. Therefore <p(g) = <£>(A) 
and <p(m) = ^(n) . Hence <p satisfies (H3). 

3. Proof is similar to the previous one. 
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Theorem 3 Let <p : J = (G, M, I) -> J i = (Gi ,Mi , Ji) be a homomorphism. 
Then the context <p{J) is embedded into J\ and <p is a homomorphism onto 
<p{J)- The context <p{J) is a subcontext of J\ if and only if <p satisfies (US). 

Proof It is evident, that <p is a homomorphism of J onto <p{ J). And moreover, 
<p{g) 1^ <p{m) implies that there exist h £ G, n £ M such that <p{g) = <p{h), 
<p{m) = <p{n) and hln. This implies that <p{g)Ii<p{m)y and hence 1^ C Ii. If 
<p satisfies (H3), then the converse implications hold and <p{J) is a subcontext 
of J\. Let <p{J) be a subcontext of J\. Then <p{g)Ii<p{m) implies ^ ( ^ ^ ( m ) 
and, according to the definition of the relation 1^, <p satisfies (H3). D 

Remark 6 The following lemmas are proved in [1] and [2]. 

Lemma 2 Let J = (G, M, I) be a context. Then the map a defined by 

a: #i-» gn Vg EG, 

m^ m^ Vm E M 

is an I-homomorphism of the context J into the context JK(J), and the sets 
Uj and Vj are supremal or infimal dense in K{J), respectively. 

Remark 7 The map a from Lemma 2 satisfies (H3) and, therefore, the context 
a{J) = {Gj, Mj,C) is a subcontext of JK(J)- The context <p{J) = {UJ,VJ,<Z) 

is faithful according to Theorem 1. 

Lemma 3 Let J = (G, M, I) be a context, L be a complete lattice and <p 
be an I-homomorphism of the context J into JL such that U = <p{G) U {0} 
and V = <p{M) U {1} are dense sets in L. There exists an isomorphism tp of 
(complete) lattices K{J) and L, which induces bijective maps of sets Qj, <p{G) 
respectively Mj, <p{M) such that 

(1) i>{gn) = <p{g) VgeG, 

(2) ^(m4-) = <p{m) Vm E M. 

Remark 8 Let a, <p be maps according to Lemma 2 and Lemma 3. Then the 
contexts a{J) = {Gj,Mj,<) and <p{J) = {<p{G),<p{M),<) are subcontexts 
of the contexts JK(J) and JL. The isomorphism tjj : K{J) —> L, described 
in Lemma 3, induces a map ip : a{J) —> <p{J)- With regard to a, <p are 
I-homomorphisrns, equivalences a{g) < a{m) iff gn C m^ iff glm iff <p{g) < 
<p{m) hold for all g € G, m E M. Then x < y iff I/J{X) < ip{y) for x,y E &{J) 
and tp is an isomorphism of contexts a (J7), <p{J)-

Remark 9 Let L be a complete lattice and JL = (L, F, <) the corresponding 
context. The identity map <p: L —r F satisfies the conditions from Lemma 3. 
The map £ defined by £{L>{X)) = x Va? E L, is an isomorphism of the lattices 
K(Ji) and F. 
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Remark 10 Let <p: J -> J1 be a homomorphism onto the context J\. Then ip 
induce the map £ of the concept lattices K(J) = (Q, A, V), K(*7i) == (<9i, A, V), 
£ : K(J) --> K(Ji) such that ((A) = {<p{A))fl for every A G Q. With regard 
to A C G implies p(A) C ^(G) implies (p(-4)) t t C (y>(C))* for A , C G Q, £ is 
a homomorphism of the context JK(J) = : (Q?Q>C) into the context JK(JX) = 
(<5i, Qi, C). But £ need not to be a map onto i^ (J i ) and £ need not to be a 
homomorphism of the lattice K(J) into the lattice K(J\). 

Theorem 4 Le£ J = (G, M, I) be a context, L be a complete lattice, and <p be 
an I-homomorphism of the context J into JL • If there exist an isomorphism xjj 
of the complete lattices K(J), L and ifip induces a bijective map of the sets Qj, 
(p(G) and Mj, p(M), respectively, such that tjj(g^) = <p(g), for every g £ G, 
ijj(m^) = ip(m), for every m G M, then the setsU = <p(G)U{0}, V = <p(M)U{l} 
are dense in the lattice L. 

Proof Immediately from the assumption of our theorem we have 0 = VO, 
1 = Al and 0 G U, 1 G V. If x G L, x £ {0,1}, then there exists an element 
A G K(J), A is not the minimal or maximal element in K(J), such that 
tp(A) = x. According to Lemma 1, A C G and A = A&. Furthermore, A& = 
( U {a})t+ = (( u {a})tU = ( n at)± = ( n a^U = ( n (att)tU = v att 
a£A a£A a£A a£A a£A a£A 

We obtain x = i/>(A) = ip( V d&) = V tp(a^) = V <p(a) = V<p(A). Since 
a£A a£A a£A 

ACG, then (p(A) C <p(G). The set U is supremal dense in L. 
Subsequently An = (A*)* = B± = ( U {b})± = 0 b± = A b±. Then z = 

6£B b£B 6GB 
ib(A) - ib(fll\ - ib( A lrh = A <d}(b±) = A m(h\ = A ^ m Since B C M then 

r v ' r V6GB 6GB ' 6 G B r v ' r v ~ 
<p(J3) C </?(M). The set V is innmal dense in L. • 

Remark 11 Let L be a complete lattice and G, M be nonempty subsets of 
L such that J = (G,M,<) is a subcontext of the context JL = (L,L,<). 
According to Lemma 3 aiid Theorem 4 and since the map (p : g —> g Vg G G, 
m -± m Vm G M is an I-homomorphism of the context ^7 into the context JL 
we obtain that the following conditions are equivalent. 

1. The sets U = GU {0}, V = M U {1} are dense in L. 

2. There exists an isomorphism i> of lattices K(J), L which induces bijective 
maps of the sets Qj, G or Mj, M, respectively and 4>(g^) = g Vg G G, 
ij)(m^) = m Vm G M. 

Denotat ion 2 1. Let A\ = {a; a G 4K'.?42 = (55 a ^ ^ } b e decompositions 
of the set A. If a C a, for any a G A, then the decomposition Ai is so-called 
covering of the decomposition A2 and we denote it A2 < Ai. 

2. Let J = (G, M, I) be a context and Q = {</; # G G}, -M = {m; m G M } 
be decompositions of the sets G, M. Let us denote the corresponding de
composition of the set G x M by TZ = (5, .M). We have the new context 
*7rc = (G^M^n)) where glnm iff 3^ G g, n £fh and Wn. We define the map 
^ 7 ^ : G U M - > c 7 U A i b y ^ ( 0 ) =gVg £G, <pn(m) =mVm£M. 
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3. Let <p: J -» J\ be a homomorphism. We denote g = {h £ G; <p(h) = 
<P(9)}> Q<P = {3\ 9 € G}, m = {n £ M; <p(n) = p(m)}, JV^ = {m; m € M } , 
and 72.<p = (Gy^M^) 

4. Let */ = (G, M, I) be a context. We denote <f = {ft £ G; hf = ^ } , m = 
{n £ M; n^ = m+}, and G = {<?; g £ G}, M = {m; m £ M } , 7 ^ = (G, M) , 
a n d F ^ - ^ J ^ . 

R e m a r k 12 The map .p^, according to 2, is a homomorphism of the context 
J onto the context Jn- The context F(J), according to 4, is faithful. If the 
context J is faithful, then F(J) = J. 

Theorem 5 Let <p: J = (G, M, I) -> *7i = (Gi, Mi , Ii) be a homomorphism 
onto J\ and let us consider a map f̂  o/ £fte context J into the lattice K(J\) 
such that 

(1) <7->M<7/)t4 V ^ £ G , 

(2) m .-» (^(m))4- Vm€M. 

Then the following statements hold. 

1. £v is a homomorphism of the context J into the context JK(JI) and the 
sets ^ ( G ) U{0} and ^ ( M ) U{1} are dense in K(J\). 

2. The decomposition 71^ is covering of the decomposition TZ^, and 
IZ^ = IZip if and only if the context J\ is faithful. 

3. ^ is an I-homomorpmsm if and only if ip is an I-homomorphism. 

4- If <p satisfies (H3), then £v satisfies (H3). If £v satisfies (H3) and if the 
context J\ is faithful, then <p satisfies (H3). 

5. Condition 4 is valid for (H2), too. 

6. If <p satisfies (H3), then Jn^ — F(J\). If <p is an I-homomorphism, then 
Jitiv=F(J). 

P r o o f 1. The map a\ ; g\ *-> gn Vgi £ Gn m\ «-> m\ Vmi £ M\ is 
an 1-homomorphism of the context J\ into the context JK{JI) according to 
Lemma 2. Moreover, ^(g) = (<p(g)Yl = ax(<p(g)) Vg £ G and ^ ( m ) = 
(<p(m))^ = a\(<p(m)) Vm £ M, hence ^ = a\<p. With regard to ip is a 
map onto the context J\ and a i is a map onto the context (Gj1,Mjl, < ) , 
£<p(G) ' = Gjx> £y(M) = Mjx and £v is a homomorphism onto the context 
^(J) = ( ^ ( G ) , ^ ( M ) , < ) according to Theorem 3. According to Lemma 2, 
the sets ^ ( G ) U {0}, £<p(M) U {0} are dense in K(J\). 

2. If <p(g) = <p(h) implies (<p(g))n = (<p(h))n for g,h £ G and t.p(m) = <p(n) 
implies (<p(m))^ = (<p(n))^ for m, n E M} then 72^ < 71% . Furthermore, the 
equality 7̂ V3 = 72^ holds if and only if (?($))* = (vH'O) > then <p(#) = <p(h), 
(<p(m))^ = (<p(n))^ then <p(m) = ^>(n). With regard to ^ is a map onto J i , this 
equality holds if and only if the context J\ is faithful. 
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3 . We have the I-homomorphism a\ such that £^ = a\<p. Theorem 2 yields, 
that £ip is an I-homomorphism if and only if (p is an I-homomorphism. 

4. The map a\ is an I-homomorphism, then (H3) is valid for it. It follows, 
according to Theorem 2, if (p satisfies (H3), then ^ satisfies (H3), too. Let J\ 
be a faithful context. For g\, g2 £ G\, a\(g\) = a\(g2) implies (g\)^ = (#2)^ 
implies g\ = g2. Similarly a\(m\) = a\(m2) implies (m\)^ = (m2)^ implies 
m\ = m2 for mi , m2 £ M. Hence a\ is a bijective map onto the context £tp(J). 
According to Theorem 2, (p satisfies (H3). 

5. Proof is similar to the previous one. 

6. The map ^ is a homomorphism of the context J onto the context 
£<p(J) — (QJ^MJ^,^). Let (p satisfies (H3). Subsequently, according to Con
dition 4 £tp satisfies (H3) too, and £<p(J) is a subcontext of JK{JX)- The sets 
Qjx U{0}, Mjx U{1} are dense in K(J\). According to Remark 11, there exists 
the isomorphism ib of the lattices K(^ip(J))) K(J\), which induces bijective 
maps of sets Q^{j), G\7i> a n d M^{j), Mjx. According to Lemma 2 from [1], 
F(£<p(J)) ~ F(J\). According to Theorem 1, the context £y(J) is faithful and 
according to Remark 12, F(^(J)) = £<p(J). Hence F(J\) ~ ^(J). According 
to Theorem 2 from [2], f̂ , induces an isomorphism of the contexts Jnitp, £v(J), 
and then Jne — F(J\). 

Let (p is an I-homomorphism. According to Theorem 16 from [2], F(J) ~ 
F ( J 0 and then Jniv ~ F(J). Then ^{g))t = (v,(/,))t iff «?t = fct, (^(m))4 = 

(<£>(n))̂  iff m^ = TTK Let us denote #, h,... respectively m, n , . . . elements 
of the decomposition 1Z^ and #, b,,... respectively m, n , . . . elements of the 
decomposition 71 j . For g £G, h £g iff £V(A) = £</>(#) in° ^T = # r i ff ^ - ? , then 
(/ = g. Similarly m = m for every m £ M. • 

Theorem 6 Let (p be a homomorphism of a context J = (G,M,I) onto J\ = 
(Gi, Mi , Ii). T/ie following conditions are equivalent. 

1. (p is an I-homomorphism. 

2. (p satisfies (H3) and there exists an isomorphism ift of lattices K(J), 
K(Ji) which induces a bijective map of the setsQj, Qj1 respectively A4 j , 
Mjx, such that i/>(gK) = (<p(g))n Vg £ G, ijj(m^) = (<p(rn))± Vm £ M. 

P r o o f (1) ===> (2). The homomorphism (p satisfies (HI), and this implies that 
(p satisfies (H2). According to Condition 3 from Theorem 5, the map ^ is an 
I-homomorphism of the context J into the context JK{JX)> With regard to the 
sets £ip(G) U {0}, £<p(M) U {1} are dense in K(J\), then according to Lemma 3, 
there is an isomorphism ip from Condition 2. 

(2) => (1). According to Theorem 1 from [1], F( J) ~ F(Jr-).; With regard 
to (p satisfies (H3), we obtain Condition 2 from Theorem 16 from [2]. D 

R e m a r k 13 Theorem 17 from [2] introduces a lot of characterization of the 
I-homomorphism and Theorem 6 introduces other. 
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Theorem 7 Let <p be a homomorphism of a context J = (G, M, I) onto a 
context Ji = (Gi, Mi, Ii). We denote by gji,... £ Gy, m}hy... £ -M^, £/ie 
elements of the context Jn^ = (Gip,M(p,Inv)- Then following conditions are 
equivalent. 

1. <p satisfies (H3). 

2. There is an isomorphism ip of lattices K(Jnv)} K(Ji) which induces a 
bijective map of sets Gjn i Gj1} or Mjn , Mjlf respectively, such that 

4>(gn) = (<p(g))n V# e G*ip(m±) = (<p(m)Y Vm e M. 

Proof (1) =-> (2). According to Theorem 2 from [2], with regard to <p satisfies 
(H3), the map <p: g H-> <p(g) V# € G<p, m »-> <p(m) Vm £ JVf^ is an isomorphism 
of contexts Jnv, *7i. Let £<?:§*-> (<p(g))n V</ £ ^ , m H> (£(m))* Vm £ JVt^ 
be a map of the context J ^ into JK(JI)- With regard to ^ is an isomorphism 
and according to Theorem 5, Condition 3, £<-, is an I-homomorphism. Because 
c^(C^) = 0 ^ , ^ ( M v ) = Mjx) the sets ^ ( ^ ) U {0}, ^(M^) U {1} are dense 
in K(Ji) and we obtain our Condition 2 from Lemma 3. 

(2) = > (1) According to Lemma 1, the map g h-> g& Mg EG?, m »-> m^ Vm £ 
JVi^ is an I-homomorphism of the context Jnv into the context JK{JU^)' Then 
gin*™ iff <1̂  C m*\ Similarly the map <p(g) »-> (^(g))^ Vjf/ £ G, ^(m) •->• 
(<p(m))^ Vm £ M is an I-homomorphism of J\ into JK(JI) a n d then <p(g)h<p(m) 
iff (<£>(#))̂  ^ (<r:,(m)),l'• With regard to ip in an isomorphism of K^n^) o n t o 

K(Ji), we o b t a i n ^ C m^ iff (<£>(#) ̂  C (<p(m))^. Then <p(g)Ii<p(m) iff gln^m. 
From the definition of relation / ^ we obtain <p(g)Ii<p(m) implies glft^m implies 
3h £ G, n £ M, b = #, n = m, /iIn, which means that <p(/i) = </>(#), <p(n) = 
<£>(m), ZiIn and <p satisfies (H3). D 
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