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Abstract 

In this work the existence of an automorphism of the lattice (semi­
group) of quasivarieties of lattice-ordered groups A is established. 
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In the paper of Huss M. E. and Reilly N. R. [1] a nor-trivial automorphism 
0 of the lattice (semigroup) of varieties of lattice-ordered groups (l-groups) L of 
order 2 was discovered. Also it is known ([2], [3]) that the lattice (semigroup) 
L is a sublattice (subsemigroup) of the lattice (semigroup) of quasivarieties of 
l-groups A. 

The purpose of this work is to prove that this automorphism 9 of the lattice 
(semigroup) L can be extended to an automorphism of the lattice (semigroup) 
of quasivarieties of l-groups A. 

For the background necessary for this paper, the reader is referred to [4], [5]. 

For any /-group G = (G, <) , let GR = {GR, <R) denote the l-group obtained 
from G by reversing the order; thus a<Rb in GR if and only if b < a in G. 
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As usual, Y[ Gi denotes the Cartesian product of/-groups {G% \i'> £ I}. If T 
i£l 

is an ultrafilter over I then by Yl G%/T we denote the ultraproduct of /-groups 
iGI 

{d \i£ 1} by the ultrafilter T. 

Lemma 1 

c1) (fiG) =nG?> (2) ( n <*/-*) = i i G ? / ^ 
\i£l / i£l \i£l ) iel 

Proo f is straightforward. 

Now for any /-group word 

w(Xl,...,Xn) = y A I K i f ^ 
i€lj€Jk£K 

where index sets I, J, K" are finite and e(ijk) = ± 1 for all i £ I, j £ J, k £ K 
let 

w«(X1,...,Xn)=v A f n 'gr)"'1=v A n'^f 1 . 
ieijeJ \keK J ieijeJkeK 

where Yl keKVk denotes the product taken in the reverse order. 
For any quasiidentity 

Y — f \ X i , . . • , ^n; 

= (Vxi,. . .yxn) (wi(xu . ..,xn) = e& .. .kwm(xu . ..,xn) = e 

=> w0(xi). . . , x n ) = e) 

^ . = ^ ( * l , . - . , * n ) 

= (Va?i,...-,a?„) (w?(z1y.:;;ix-ri) = ek...kwR(x1,...:xn) = e 

.=> uv^(^i, . . . ,a?n) = e) 

As in [1] we denote the lattice operations in GR by VR,AR and write for 
x £ G, as usual 

a r + = 2 r V e , z + / i = zV^e, a?" = (a? A e)* 1 , x~R = (xARe)~1. 

It is clear that for all .r, y £ G is valid xV^Ly = x Ay and .rA^u = a: V H. 

let 
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Lemma 2 The equality 

^,..,5n)=vAn4 jk)=e 

izijeJkeK 

is valid in the group G if and only if the equality 
-\/R A f i T T ' „ - * W f c ) -

iЄІ jЄJ kЄK 

is valid in GR. 

Proof It is clear that 

%,..,í») = VAn4 i f t )=e 

ičijeJkeK 

w І9i>- -,9n) 

1=(v A n 4KT ] 

\£lj£Jk£K J 

A v n '^ijk)=v* A" n '^m - ^ 
itijeJkeK ÍEI jeJ fc€K 

•,9n 

Lemma 3 For any l-group G and any quasiidentity <p = <p(x\,. . . , xn) the fol­
lowing statements are equivalent. 

i 1 j Tli»o rfunQtirlprt+itii in hnlrlc in CI 

(2) The quasiidentity <pR holds in GR. 

Proof Let us assume that <pR holds in GR and <p is violated in G. Then there 
are elements glt... tgn E G such that wi(gi,... tgn) = e , . . . , ivm(.9i> • • •,tfn) = 
e and tDo(<7ij • • • j<7n) ^ e in G. Then by Lemma 2 in /-group GR is valid 
u>i(gi,-->9n) = et...yw

R(git...tgn) = e and wf(gl,...)gn) ^ e. A con­
tradiction with our assumption. The converse statement is proved by similar 
arguments. 

Now for any quasivariety of /-groups K we will write KR = {GR | G E K}. 

Corollary 1 For any quasivariety ofl-groups K, Kn is a quasivariety. More­
over•, the following are equivalent. 

(1) K has a basis of quasiidentities {<pt \t E A}. 
(2) KR has a basis of quasiidentities {<pR \t E A}. 

In [1] it is shown that there exist varieties of/-groups V such that V ^ V71. 
Thus, the mapping 6 : A —•> A defined by the rule KO = KR is not identical. 

Theorem 1 The mapping 6 is a lattice automorphism with the following prop­
erties: 

(1) 62 is the identity mapping; 
(2) 6 preserves arbitrary joins and meets. 
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Proof For any /-group word w it is clear that (wR)R = w) so by Corollary 1 of 
Lemma 3 we have K92 = K for any K G A . Therefore, the property (1) holds 
and hence 6 is a one-to-one mapping. 

Clearly, for any /-group G it is true G G KB <̂ => G* G KO2 = K. 
Hence, for any family {/Ca | a: G -A} C A the following relations hold: 

Ge(f\Ka)6 <=> GR€ /\Ka <=> GReKa for all a£A 

<=> G e C* for all a £ A «=» o G / \ £* = / \ /CQ0. 

Hence, # preserves arbitrary meets. 

Now suppose that G G (V<*GA £«)#• Then GR G VaeA ^ « a nd by Theo­

rem 2 of Chapter 14 from the book [4] GR < \[ Vp where Vp is an ultraproduct 
PeB 

of /-groups {Xi | i G I(P)} from quasivarieties Ka ( a G ^ ) - Then by Lemma 1 

G < n v* and ^ - n **/?*> e v*«*• 
/?GB «€/(/?) «G>-

The converse statement is similar. Thus, <9 is an automorphism of the lat­
tice A. 

Now let us consider in A the subset T = {K G A | KR = K}. It is obvious 
that if any quasivariety Q is defined by quasiidentities of the signature of the 
group theory then Q G T . 

The proof of the following statement follows immediately from Theorem 1. 

Corollary 2 
(1) T is a complete sublqttice of A. 
(2) For any quasivariety K G A, K V KR G T . 

As usual (cf. [3])', for /C, V G A let K V be the class of all /-groups G for 
which there exists an /-ideal H such that H G K and G/H £ V. It is known 
(cf. [3], [5]) that K • P is a quasivariety. This quasivariety is called a product of 
quasivarieties K and V. In [3] it is shown that A is a semigroup with respect to 
the above-defined product of quasivarieties. 

T h e o r e m 2 The mapping 6 is an automorphism of the semigroup A. 

Proof Since 0 is one-to-one, it suffices to show that 9 is a semigroup homomor-
phism. Let K,V G A. Then G G (K • V)$'-<-=> GR eKV <=> there exists an 
/-ideal II of GR with H G K such that G^/II G P <=> there exists an /-ideal 
K of G (K = IYH) with K G K0 such that G/K (E* (GR/H)R by Lemma 2.7 
from [1]) £V6<=>Ge (K)0 • (V)0. 
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