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Abstract

In this work the existence of an automorphism of the lattice {semi-
group) of quasivarieties of lattice-ordered groups A is established.
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In the paper of Huss M. E. and Reilly N. R. [1] a nop-trivial automorphism
6 of the lattice (semigroup) of varieties of lattice-ordered groups (I-groups) L of
order 2 was discovered. Also it is known ([2], [3]) that the lattice (semigroup)
L is a sublattice (subsemigroup) of the lattice (semigroup) of quasivarieties of
l-groups A.

The purpose of this work is to prove that this automorphism 6 of the lattice
(semigroup) L can be extended to an automorphism of the lattice (semigroup)
of quasivarieties of I-groups A.

For the background necessary for this paper, the reader is referred to [4], [5].

For any l-group G = (G, <), let GF = (G®, <F) denote the l-group obtained
from G by reversing the order; thus a<®b in G¥ if and only if b< a in G.
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As usual, H G; denotes the Cartesian product of I-groups {G;|i € I}. If F
is an ultraﬁlter over I then by H Gi/F we denote the ultraproduct of I-groups

i€l
{Gi|i € I} by the ultrafilter F.

Lemma 1
- R - - R -
(1) (HG,-) =T[¢®&,  © (HG,-/T—) =]Ict/7.
i€l i€l i€l iel

Proof is straightforward.

Now for any I-group word
e(ijk
w(zy,...,2n) = \/ /\ H xi}k] ),
ieljeJkeK

where index sets I, J, K are finite and ¢(ijk) = +1forallie€ I, j€ J, k€ K

let
wh(zy,. .., 2n) = \/ /\ (H zj}zjk)) v /\ H z (i),

ieljeJ \keK i€l jeJ keK

where Hlke kYr denotes the product taken in the reverse order.
For any quasiidentity

w = > Tn )
= PZiy - &)
= (Vz1,...,z,) (wi(z1,...,2n) = & ... &wn(z1,...,2,) =€
= wo(z1,...,2n) =€)

let
off = oR(zy,...,2n)
= (Vz1,...,2,) (wl(z1, ..., 2,) =e&.. . &wl(zy,...,2,) =€
= wl(z1,...,z,) =€)

As in [1] we denote the lattice operations in G® by V& AR and write for
z € G, as usual

tt=zVve, zth=zvRe, 27 =(zne)™, & B =(zARe)™L.

It is clear that for all z,y € G is valid zv’_‘y =zAyand zABy=zVvy.
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Lemma 2 The equality

w(g1,..-,9n) = \//\ H fj(;c’k)_

i€l jeJkeK

is valid in the group G if and only if the equality

wi(g1,...,90) = \/ /\ H g = e

i€l jeJ keK
is valid in GE.

Proof It is clear that

w(gl,-..,gn):v /\ Hgfj(;]k)-—€<:>

iel jeJkeK
k
'U)(glw- ,gn (\/ /\ Hgfj(,? )> ==
1€l jEJ kEK
— - k ~e(ijk) _ R _
= AV o5 = VN T i = wor, . gn) =e.
i€l jeJkeK i€l jeJ k€K

Lemma 3 For any l-group G and any quasiidentity ¢ = ¢(z1,...,z,) the fol-
lowing statements are equivalent

(2) The quasndentzty <pR holds mn G’H:

Proof Let us assume that ©F holds in G and g is violated in G. Then there
are elements g1, ..., gn € G such that wi(g1,...,9n) =¢€,...,Wm(91,...,9n) =
e and wo(g1,...,9n) # € in G. Then by Lemma 2 in l-group G® is valid
wl(g1,...,0n) = €...,wE(g1,...,9,) = e and w¥(g1,...,9,) # e. A con-
tradiction with our assumption. The converse statement is proved by similar
arguments.

Now for any quasivariety of I-groups K we will write K = {GR|G € K}.

Corollary 1 For any quasivariety of I-groups K, K® is a quasivariety. More-
over, the following are equivalent.

(1) K has a basis of quasiidentities {p; |t € A}

(2) KR has a basis of quasiidentities {pf |t € A}.

In [1] it is shown that there exist varieties of l-groups V such that V # VR,
Thus, the mapping 6 : A — A defined by the rule K = K is not identical.

Theorem 1 The mapping 0 is a lattice automorphzsm with the following prop-
erties:

(1) 62 is the identity mapping; .

(2) 6 preserves arbitrary joins and meets.



134 o Nikolai Ya. MEDVEDEV

Proof For any [-group word w it is clear that (wf)F = w, so by Corollary 1 of
Lemma 3 we have K92 = K for any K € A. Therefore, the property (1) holds
and hence 0 is a one-to-one mapping.

Clearly, for any l-group G it is true G € K < GR e K’ =K.
Hence, for any family {K«|a € A} C A the following relations hold:

Ge(\ Ka)b <= GRe \ Ko = GReKa forall aca
a€A ‘ a€cA

&> GekE forallac A < Ge \ K= )\ Kab.
a€EA a€A

Hence, 6 preserves arbitrary meets.
Now suppose that G € (V44 Ka)f. Then GE € V4ea Ko and by Theo-

rem 2 of Chapter 14 from the book [4] G® < [] Vj where Vj is an ultraproduct
BeB
of l-groups {X; |7 € I(8)} from quasivarieties K, (@ € A). Then by Lemma 1

G<JIVE and V=[] xF/Fse \/ Kab.

BeB ieI(B) a€A

The converse statement is similar. Thus, @ is an automorphism of the lat-
tice A.

Now let us consider in A the subset ¥ = {K € A | K¥ = K}. It is obvious
that if any quasivariety Q is defined by quasiidentities of the signature of the
group theory then Q@ € Y.

The proof of the following statement follows immediately from Theorem 1.

Corollary 2 ‘
(1) Y is a complete sublattice of A.
(2) For any quasivariety K€ A, KVKR € Y.

As usual (cf. [3]), for £, P € A let K - P be the class of all I-groups G for
which there exists an /-ideal H such that H € K and G/H € P. It is known
(cf. [3], [5]) that K - P is a quasivariety. This quasivariety is called a product of
quasivarieties X and P. In [3] it is shown that A is a semigroup with respect to
the above-defined product of quasivarieties.

Theorem 2 The mapping 6 is an automorphism of the semigroup A.

Proof Since 6 is one-to-one, it suffices to show that  is a semigroup homomor-
phism. Let K;P € A. Then G € (K - P)§'<=> GF € K - P <= there exists an
l-ideal H of GE with H € K such that GR/H € P <= there exists an l-ideal
K of G (K = HE) with K € K0 such that G/K (= (G®/H)E by Lemma 2.7
from [1]) € P8 <= G € (K)8 - (P)b. :
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