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Abstract 

The analytical expression for a density function of the minimum norm 
quadratic unbiased estimator (MINQUE) or of the locally minimum vari­
ance quadratic unbiased invariant estimator (LMVQUIE) of the variance 
components in the mixed linear model is unknown even if the observation 
vector is normally distributed. In comparison with the LMVQUIE which 
requires the knowledge of the third and fourth moments of the observation 
vector, the MINQUE not requiring it seems to be more suitable for prac­
tical purposes. Density functions induced by MINQUE and LMVQUIE 
from several basic distributions and differences between them are analyzed 
by the simulations. The theoretical variances of the LMVQUIE and the 
MINQUE are compared as well. 

K e y w o r d s : M I N Q U E , L M V Q U I E , s imulat ion. 

1991 M a t h e m a t i c s Sub ject Classification: 62F10, 62E25 

Supported by the internal grant No. 311 03 001 of Palacký University, Olomouc and by 
the grant No. 2/1226/95 of the Grant Agency for Science of Slovak Republic 

25 



26 Marta BOGNÁROVÁ, Lubomír KUBÁČEK, Julia VOLAUFOVÁ 

Introduction 
Consider a general linear model in commonly used form Y = X/3 -f £, where 
Y is an n-dimensional random vector, X is a known n x k matrix with the 
rank r(X) = k < n, ft is an unknown parameter, /? G ..ft* (Ar-dimensional 
Euclidean space) [3], [8]. The error vector e has the mean value E(e) = 0 and 
the covariance matrix Var(£) = zCf=i^*'^»- The symmetric nx n matrices 
Vi, i — 1 , . . . , p, are known and the p-dimensional vector tf = ( tf j , . . ., i?p)' of 
the variance components is unknown, $ G # (open set) C RP'. The MINQUE 
of a linear function #($) = c/'?/, $ G i?, g = (<7i,... , <7P)' being known, coincides 
with the LMVQUIE provided Y is normally distributed (cf. [10]). 

The aim of the paper is to compare these two types of estimators under 
different distributions of the observation vector Y, characterized by their third 
and fourth moments. 

1 Preliminaries 

We shall use the results stated in [3] and [5]. 
Denote E = £(#) = Y%-i ^M, M = / - X(X'X)~lX' (I being identical 

matrix), and consider an estimator of the function g($) = </'$, $ G #, in the 
form Yl AY', where A is a symmetric matrix. 

The estimator Y'AY is unbiased iff X'AX = 0, Tr(AK') = 9i, « = 1, • •. ,P, 
(cf. [10]) and is regression invariant, i.e. 

V{<$ G ^ fe}(Y + X(J)',4(Y + XS) = Y',4Y 

iff^K = 0 (cf. [10]). 
As unbiasedness and invariance are preferable from the practical point of 

view, the class of estimators for the function g($) = g'ti, $ G j?, is considered 
in the form 

Ag = {Y'AY :A = A', AX = 0, Tr(AV{) = gii i = 1 , . . . , p } . 

The class .4g is not empty if g G jW(C^) (the column space of the matrix 
C ^ ) , where 

{CW}ij = Tr(MViMVj), ij = 1,... ,p. 

If C^7) is regular, then there exists an unbiased invariant quadratic estimator 
for given g G RP, i.e., for each variance component. In this case the matrix 
S(MY;M)+ defined by 

{ W M ) + k ; = Tr [ (MEM)+K' (MEM) + l / i ] , i,j = 1 , . . . ,p , 

is regular and the ^0-MINQUE of the vector tf is 
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Here 

* = ( ic i , . . . ,« ,) ' , ««• = y ^ y - [ ^ c ( A j M ) ] ' y 2 ® , 

where vec(AifM) — (ai> • • • > a^)', a^ is the jith column of the matrix A^M, 
i = 1, . . . , n, y 2 ® means y ® y , eg) denotes the Kronecker multiplication (e.g. 
(1,2) '® (a, 6)' = (o,6, 2a, 26)'), 

A , M = ( M E 0 M ) + V - ( M E 0 M ) + , t = l , . . . , p , 

(MEnM)+ is the Moore-Penrose ^-inverse (a matrix .4+ is the Moore-Penrose 
^-inverse of a matrix ,4 iff A A M = A, A+AA+ = A+, (AA+)' = _>L4+, 
(yl+Ai)' = A+A; cf. [9]) of the matrix M E 0 M . (The following relationship 

( M E 0 M ) + = SQ : - ^^{Х'Е^ХУ^'Е 1 үł^л-l 

can be proved.) 
Further 

Eo = / ^flojVi, 
i = i 

i?o is an a priori chosen parameter (as near to the actual value of d as possible). 
If y is normally distributed, then tf0-MINQUE coincides with ?VLMVQUIE 

of *?, i.e. with the quadratic unbiased and invariant estimator which possesses 
the smallest variance at tf o in the class of all unbiased and invariant quadratic 
estimators. 

To find an efficient procedure of numerical evaluation of the LMVQUIE 
when the assumption of normality is not fulfilled, the following operations are 
introduced. 

Let T be a symmetric n x n matrix whose ( i, j)th element is tij. Then 

vech(T) — (tfi.i, • • . ,2l,n5^2,2, • • • ,^2,n; • • • j ^n-l.n-lj ^n-l.n, tn.n) 

is an n(rz-hl)/2-dimensional vector formed by the parts of the columns beginning 
at the main diagonal of the matrix T (i.e. the first dement of the column is the 
diagonal element of the matrix T) and continued under the main diagonal of 
the matrix T. 

Let A be a p x m 2 matrix divided into m blocks. The first block is created 
by the first m columns, the second block by the followning m columns, etc. The 
jth column in the ith block is denoted as a , j , i.e. 

A = ( o ^ i , . . . , o i j m ; 02,i, •.., 0 2 j m ; . . . ; a m , i , • • •, a m . m ) . 

Then p x [m(m + l)/2] matrix (cC)(A) is defined as follows: 

(cC)(A) ~ (01,1,01,2 + G2,i, •• • , a i . m + a m ) i ; a 2 , 2 , 

02,3 + 03,2) • ' • , 02,m + O m ? 2 ; • • • J O m _ l . m - l , 

om—i,m + a m , m —i; a m ) m j 
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and analogously for an m2 x p matrix B the operation (cR)(-) is denned as 
(cR)(B) = [(cC)(B')]'. 

Let S& denote the matrix of the fourth moments (cf. [3]) 

# = E[(ee') <g> (ee')\ and V = [vec(Vi),..., vec(V^)]. 

The following statement is valid [4], [5]: 
If C*(J) is regular, then the tf0-LMVQUIE of the vector ti is given by 

m = {[(cfi)(x®/)(cc)(x'®/) + (cii)(v)(cc)(v')];[(cC)(ciJ)iJ«] 

x (ci?)(Vr)}'(CjR)(Y2®) 

Y'AltLY \ ( (vech(AliL))' \ 

/here 

Y'AP,LY ) 

l(-> -

(aR)(Y2®) (2) 

V (uecЛ(Ą,,L))' У 

£>$ = * - t;ec[E(^0)]{«ec[S(i?o)]}' = * - VŮ0ď0V. 

The symbol Bm,N\ denotes the minimum N-seminorm g-inverse of the matrix 
B- cf. [9]. 

In the following two symbols for an n x n matrix A will be used, i.e. 
diag(A) and Diag(A). The first one means the vector created by the diago­
nal of the matrix A and the other one means the matrix with the same diagonal 
as the diagonal of A and with other elements equals to zero. The notation 
Diag(aiti,..., a n j n ) means the diagonal matrix with the diagonal given by the 
elements a^i , . . ., a n > n . 

Let p — 1 and Vj = I, i.e. £ = a"2I. Then the following statement is due to 
Hsu [2]: 

Proposit ion 1 Let Y{ = {Y}Z)i, i = l , . . . ,7z, be independent components of 
the observation vector Y, 72,2 = [E(ef)/a4] — 3 and T2 = Diag(^2,i > • • •, 72,n)-

(i) The estimator Y 'MY/Tr (M) is F2-LMVQUIE of the parameter a2 iff 

(M * M)diag(M) = {[o ,ia^(M)] /r2a ,ia^(M)/Tr(M)}a7ia^(M), 

where C * D denotes the Hadamard product of the matrices C and D, i.e. 

{ C * D } * j = {C}ij{U}i i i . 
(ii) If Y i , . . . , Yn are i.i.d. random variables, i.e. T2 = 72I, then Y ' M Y / T r ( M ) 
is uniformly minimum variance quadratic unbiased invariant estimator of a2 iff 

(M * M)diag(M) = {[dia^(M)] /a ,m<7(M)/Tr(M)}a ,fa^(M). • 

In the following the quantity 

S2 = [(M * M)diag(M) - AA'a^(M)]/[(M * M)diag(M) - Xdiag(M)]1 (3) 
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(where A = [diag(M)\'[diag(M)]/Tr(M)) is used as a measure of a nonfulfilling 
the Hsu condition in the case (ii). 

For several 5 x 1 design matrices X the corresponding values of S2 are given 
in Table 1.1. 

Table 1.1 
Values of S2 (measure of nonfulfilling the Hsu condition) 

for different design matrices X 

X' S2 

(1. 5, 30, 90, 100) . .. 0.095613 

(1- 2, 3, 4, 5) . .. 0.044313 
(10, 20, 30, 40, 50) . .. 0.044313 

(2, 4, 8, 16, 32) . .. 0.040692 

(1, 1, 1, 1, 1) • .. 0.000000 

2 Solution 

Let the approximate density function of a random variable e be given by the 
formula (Edgeworth series [1]): 

/ (* ;7 i ,72) - ^ ; 0 ; l ) [ l - ( 7 i / 6 ) ( a : 3 - 3 x ) + ( 7 / 2 4 ) ( x 4 - 6 x 2 + 3) + 

+ (7?/72)(x6 - Ibx4 + 45z2 - 15)] (4) 

where <£(z;0,l) = (l/y/2n)exp(--x2/2), x € R1 and 71 = E(e3)/a3, cr2 = 
Var(e) = l^2 = [E(e4)/<r4}-3. 

This density is chosen from the following reason. The aim of the paper is to 
study the statistical behaviour of the mentioned quadratic estimators for differ­
ent distributions. The most important among them is the normal distribution. 
The class of distributons given by (4) and parametrized by 71 and 72 contains 
the normal distributon (for 71 = 0 and 72 = 0) and thus it seems to be the most 
suitable for the first investigation. 

Other distributions considered bellow (which di Ter essentially from the nor­
mal distribution) are: 

the uniform distribution on the interval [—V3, VS] with density 

*>-{ mTh:;itt v 
i.e. <T2 = 1, 71 = 0, 72 = -1 .2 ; 
and the U-distribution with density 

Jjgft, ,€ H/578.vm (6) 
0, X^[-y/b/Z,y/b/Z), 

i.e. <r2 = 1, 71 = 0, 72 = -1.80952. 
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2.1 Case 1 

Let £ i , . . . , £5 be i.i.d. random variables with E(ei) — 0, Var(ei) = 1, i = 
1 , . . . ,5 and Y = X/3 + e. In this case the MINQUE from (1) is given by 
Y'MY/Tr(M) (i.e. MINQUE is uniform with respect to 72) and 

^«K^MlNQUEk2
572) - [2cr4/Tr(M)]-f 7 2 ^ X ] [ { M / T r ( M ) } M ] 2 . (7) 

The 7<0)-LMVQUIE is Y'AhLY, where Al%L from (2) is (cf. [7]) 

AXyL = kM- (~fi0)/2)MBiag(AliL)M, (8) 

k = 1/{1'[J + ( 7 f ) / 2 ) (M * M)]-1diag(M), 

diag(A1>L) = k[I + (7<0}/2)(M * M)]" 1 Aa^(M) 

and 1 = diag(I). The variance of the 7^-LMVQUIE is 

5 

Var(&lMVQVlE\cr\l2) = 2rr4Tr(y1?)L) + 72o-4 ^ [ { A ^ L } ^ , - ] 2 . (9) 
i=i 

For the greatest value J2 = 0.095613 from Table 1.1. the variances (7), for 
different values 72 G [-2, 3] and the variances (9) of the 72°}-LMVQUIEs with 
matrices A\iL from (8) for the same different values 72 are compared in Table 
2,1 

Table 2.1 
Vaгiances of 7 f }-LMVQUIE and MINQUE in Case 1 

LMVQUIE 

(òľv\ľ2 
-2.00 -1.00 0.00 1.00 2.00 3.00 

-2 0.000 0.923 1.845 2.768 3.690 4.613 
-1.80952 0.012 0.314 0.617 0.919 1.221 1.524 

-1.2 0.037 0.278 0.518 0.759 0.999 1.240 
0 0.068 0.284 0.500 0.716 0.932 1.149 
1 0.083 0.293 0.503 0.713 0.922 1.132 
2 0.094 0.301 0.507 0.714 0.921 1.127 
3 0.102 0.307 0.512 0.717 0.921 1.126 
4 0.108 0.312 0.515 0.719 0.923 1.127 
5 0.113 0.316 0.519 0.722 0.925 1.128 
6 0.116 0.319 0.522 0.724 0.927 l . Ш 
7 0.120 0.322 0.524 0.726 0.928 1.131 
8 0.122 0.324 0.526 0.728 0.930 1.132 
9 0.125 0.326 0.528 0.730 0.931 1.133 
10 0.127 0.328 0.530 0.731 0.933 1.134 
100 0.164 0.364 0.564 0.765 0.965 1.165 

MINQUE 0.068 0.284 0.500 0.716 0.932 1.149 
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It is of some interest 
(i) to compare the strong dependence of variances of 7J, -LMVQUIE on 72 

with a relatively weak dependence of variances of MINQUE on 72 and 

(ii) a striking increase of the variance of 73 -LMVQUIE at large values of 72 

(72 > 0) is caused by a choice of 72 different significantly from 72 (72 < 0)-

The values 7 ^ are chosen from interval [-2; 100]. The value of o~2 is 1 for 
both estimators and for all cases. 

Fig. 2A illustrates the dependence of variances on the choice of 7 2 and on 
the actual values of 72 as given in Table 2.L 

Fig. 2.1 

The dependence of variances of 72 -LMVQUIE on 72 

If X' = (1,1,1,1,1), (classical location model) and S2 = 0, i.e. if the H-
su condition is fulfilled [2], then <r2 = Y'MY/Tr(M) is uniformly minimum 
variance quadratic unbiased and invariant estimaf or of u2 and its variance is 

For <т2 = 1 and 72 = 

Var(&2 \<r2,72) 

-1.80952; 

2<ŕ 
+ 

72 cr 

5 - 1 5 

1.2; 0; 1, the values of variances are 

0.13810; 0.26000; 0.5; 0.7. 

A comparison of empirical densities of MINQUE and LMVQUIE obtained 
by simulation for X = (1,2,3,4,5)', (simple linear regression model passing 
through origin) 71 = 0 and for different 72 is given in Figs. 2.2b)-2.5b). 

Data were simulated as follows. From 500 independently generated values 
e from considered distributions ((6), (5), normal and (4) each with c2 = 1) 
hundred 5-dimensional vectors were created as a basis for the calculation of 100 
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estimates of both types. Due to the in variance of the considered estimators it 
was sufficient to simulate the data from the centered distributions. 

Fig. 2.2 
a) density function of Y according to (6); normal density 

b) empirical density of 7;; -LMVQUIE; empirical density of MINQUE 
(K = (1,2,3,4,5)0 

0.5 

Fig. 2.3 
a) density function of Y according to (5); normal density 

b) empirical density of 7 ^ -LMVQUIE; empirical density of MINQUE 

0.4 
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Fig. 2.4 
a ) normal density function, b) empirical density of 7^ -LMVQUIE 1 

Fig. 2.5 
a ) density function of Y according to (4) with 71 = 0, 72 = 1; normal density 

b) empirical density of 7^0) -LMVQUIE; empirical density of MINQUE 

0.2 

In the last case the reader can conclude that differences between distributions 
of MINQUE and LMVQUIE are (practically) negligible. It may be caused by 
the fact that the parameter 71 is equal to 0 in each of considered distributions. 

2.2 Case 2 

Let y = X/3 -f £, Var(e) = #1 Vi + #2^2. The variance of a random variable 
Y'AiY, where A4 = J4J, A4X = 0, E(YlAiY\d) = <du i = 1,2, is 

Var(У'i4łУ|ø,*) = Гr[(Л®Л)*]-ø?. (10) 

x I t is the same as MINQUE in this case 
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Let X = (1,2,3,4,5)', Vi = and øi = 1, I3.3, 03,2 \ y _ ( 03,3, 03}2 
02,3, 02,2 / \ 02,3, I2,2 

$2 — 4. The dependence of the variances (10) on the parameter 72 is illustrated 
in Table 2.2. 

Table 2.2 
Variances of LMVQUIE and MINQUE for dl and d2 in Case 2 

7?' 
-1.2 0 1 MINQUE 

72 
-1.2 

0 
1 

01 02 
0.408 23.577 
0.964 24.677 
1.361 25.593 

ůx 0 2 

0.504 23.683 
0.937 24.503 
1.298 25.196 

01 02 
0.521 23.788 
0.942 24.531 
1.292 25.180 

01 02 
0.504 23.683 
0.937 24.503 
1.298 25.196 

-4»,M) -4i,z,, 2 = 1,2) accordnig to (1) and (2) were calculated for d\' = 1, 
0 (0) 1. 

three different values 

of 72°} (i-e 

As the matrix AitL according to (2) depends on 72 , 
1.2,0,1) are considered. 

In the following a comparison of empirical densities of LMVQUIE and MIN-
QUE is made. Even if the distribution of Y is not normal, the distribution of 
considered estimators seems to differ unsubstiantially as illustrated in Fig. 2.6 
and Fig. 2.7 (it is obvious that a shape of the empirical densities in c) differ 
from that in b) according to $2 ^> $i (cf. (10)). The number of simulated data 
was the same as in Case 1. 

Fig. 2.6 
a) density function of Y according to (4) with 71 = 1, 72 = —1-2; normal density 

b) empirical density of LMVQUIE for $1; empirical density of MINQUE for tf 1 
c) — empirical density of LMVQUIE for $2; empirical density of MINQUE for $2 

0.4 

0.2 

0 1 2 3 4 5 
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Fig. 2.7 
a ) densi ty function of Y accordnig to (4) with 71 = — 1, 72 =-= 1; normal density 
b) empirical density of LMVQUIE for # 1 ; empirical density of MINQUE for di 
c) empirical density of LMVQUIE for d2; empirical density of MINQUE for d2 

0 1 2 3 4 5 

c) 
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2.3 Case 3 

The two-stage regression model [6], [11], [12] (occurring frequntly in metrology, 
geodesy e tc) is considered in the following. Let 

x = 

( L o, 
0, 2, 

- L L 

o\ 
0 
0 

- L L 
\ 0, 2, 

-2 
i 2/ 

(11) 

The matrices Vi, V2 are the same as in Case 2. The parameters #1, #2 chosen for 
simulation are t?i = 1, tf2 = 4. A comparison of 7^'-LMVQUIE and MINQUE 
is given in Table 2.3. 

v(°) 
Table 2.3 

Comparison of 7^-LMVQUIE and MINQUE in Case 3 

72 
-1.2 0 1 MINQUE 

72 
-1.2 

0 
1 

01 02 
1.508 49.554 
2.002 50.685 
2.414 51.627 

01 02 
1.511 49.560 
2.000 50.679 
2.407 51.611 

01 02 
1.516 49.572 
2.002 50.682 
2.406 51.608 

01 02 
1.511 49.560 
2.000 50.679 
2.407 51.611 

An analogy of Figures 2.2-2.5 for Case 3 is Fig. 2.8. 

Fig. 2.8 2 

a) density function of Y according to (4) with 71 = — 1, 72 = 1j normal density 
b) — empirical density of LMVQUIE for #1; empirical density of MINQUE for $1 
c) empirical density of LMVQUIE for $2; empirical density of MINQUE for $2 

2X is given by (11) 
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c) 

3 General conclusions 

It is to be said that MINQUE approach is preferred by many statisticians at least 
from two reasons. This approach need not use the higher statistical moments 
and the procedure is relatively simple. Nevertheless, it is of general interest 
to know something about the statistical behaviour of MINQUE in a situation 
when the distribution of errors is known. Thus a comparison with a locally or 
uniformly best estimator must be made. Linear models, where the conditons 
for the existence of the uniformly best estimators are fulfilled, occur rarely in 
a practice; thus the comparison with the locally best estimators seems to be 
reasonable and sufficient. The simplest way how to do such a comparison is via 
simulations. Despite the fact that the experience attained in this way cannot 
be generalized on other situations and models, at least the following is obvious. 

The MINQUE procedure is much less sensitive on the a priori information 
on d than LMVQUIE. Thus, if we know nothing on the values of the variance 
components in advance, then it is quite reasonable to use MINQUE. 

On the other hand, if we know the distribution of errors (i.e. we have some 
a priori information on the third and fourth statistical moments) and we know 
an approximate value of the vector #, then it is necessary to use LMVQUIE. 

F ina l r e m a r k MINQUE and LMVQUIE are the same in the case of normally 
distributed errors. MINQUE is less sensitive on the a priori information about 
d than LMVQUIE. Thus the MINQUE is to be preferred to LMVQUIE also in 
the case the non-normality of errors when the deviations from normality are not 
too significant. 

Ackowledgement s The authors thank to the reviewer for thorough reading 
the manuscript, many helpful comments and corrections of formulations. 
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