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Abstract 

An algebra A has n-transferable tolerances if for any a}b,c £ A there 
exist di,..., dn £ A such that T(a, b) = T(c, di) V.. . VT(c, dn) in the tol
erance lattice Tol A. We prove that a variety V is regular and permutable 
if and only if each A £ V has n-transferable tolerances. Analogously we 
characterize varieties with 0-regular and permutable congruences. 

Key words: Tolerance relation, transferable tolerances, regularity, 
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Recall that an algebra A is regular if 6 = $ for 6 , $ 6 Con A whenever 
they have a congruence class in common, i.e. if [a]© = [a]$ for some a £ A. A is 
permutable if 6 • <K> = $ • © for every two 9 , $ £ Con A. A variety V is regular 
(permutable) if each A £ V has this property. 

Suppose that a variety V has a constant 0, i.e. 0 is either a miliary operation 
in type of V or an equation ally defined miliary term. An algebra A £ V is 
0-regular if 0 = $ for ©,<!> £ Con A whenever [0]© = [0]$; V is 0-regular if 
each A £ V has this property. 

Let A — (A, F) be an algebra. By a tolerance ori A is meant a reflexive 
and symmetric binary relation on A which has the substitution property with 
respect to every operation of F. Denote by Tol A the set of all tolerances on A. 
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It is well-known (see e.g. [3]) that Tol A is an algebraic lattice with respect to 
set inclusion. Hence, for each subset M C Ax A there exists the least tolerance 
on A containing M; denote it by T(M). If M = {(a, b)}, T(M) will be denoted 
simply by T(a, 6). It si easy to check that for p, (ft , . . . , qn of A we have 

T ({(p, gi>- • • •, (P, gn>}) = T(p, q{j V . . . V T(p, gn)) 

in Tol A For T G Tol A and a G A we denote by [a]T = {x G A; (a, x ) E T } . 

The concept of transferable tolerance was firstly introduced in [2] and used 
for a characterization of tolerance regular lattices, see also [1] for the general 
case. Now, we introduce a bit more general concepts: 

Definition 1 An algebra A = (A, F) has n-transferable tolerances if for any 
a, 6, c G A there exist d\\., .,dn E A such that 

T(a,6) = T ( c , d ! ) V . . . V T ( c , d n ) 

in Tol A. 
An algebra A with a constant 0 has n-transferable tolerances at 0 if for any 

a, b G A there exist d i , . . . , dn G A such that 

T(a,6) = T ( 0 , d x ) V . . . V T ( 0 , d n ) 

in Tol A. 
A variety V (with 0) has n-transferable tolerances (at 0, respectively) if every 

A of V has this property. 

Theorem 1 For a variety V, the following conditions are equivalent: 

(1) V has n-transferable tolerances for some integer n > 0; 

(2) V is regular and permutable. 

P r o o f (1) => (2): Let A G V, T, S G Tol A and a be an element of A. Suppose 
[O]T = [a]s- Let (x,y) G T. By (1), there exist elements d i , . . . ,d n G -A such 
that 

T(a^u) = T ( a , d i ) V . . . V T ( a , d n ) . 

From T(#, y) C T we have (a, d i ) , . . . , (a, dn) G T, i.e. d i , . . . , dn G [a]r = [a]5, 
whence (a, d i ) , . . . , (a, dn) G 5 . It implies 

T(x, y) = T(a, dx) V . . . V T(a, dn) C 5 , 

thus (x,y) G 5 and T C 5, Analogously it can be shown S C T, i. e. T = S. 
In the terminology of [3], [4], 4̂ and hence also V is tolerance regular. By [4] it 
is equivalent with regularity and permutability of V. 

(2) => (1): By [5], permutability of V implies Tol A = Con A for any A of 
V. Hence, it remains to show that for every a, 6, c of A there exist d i , . . . , dn of 
A such that 

G(a, 6) = 0(c , di) V . . . V 0(c, d n ) . (*) 
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Put 0 = 0 (a , b). Applying regularity of V we infer 

0(a,6) = 6 ( { c } x [ c ] e ) . 

Since Con A is compactly generated, there exists a finite subset { d i , . . . , dn} C 
[c]e with' 

0(a ,6) = 0 ( { c } x { d i , . . . , d n } ) 

which is equivalent to (*). • 

Theorem 2 Let V be a variety with 0. The following conditions are equivalent: 

(1) V has n-transferable tolerances at 0 for some integer n > 0; 

(2) V is permutable and Q-regular. 

P r o o f (1) =--> (2): analogously as in the proof of Theorem 1, if A € V and 
T,S E Tol A, then [0]T = [Q]s implies T = S (we only replace the element a 
by constant 0). Further, let A = Fy(x,y) be a free algebra of V with two free 
generators x, y. Put T = T(ar, y) £ Tol A By the foregoing property, 

T ( a r , y ) = T ( { 0 } x [ 0 ] T ) , 

i . e . (a? ,y)GT({0}x [0]T)« However, Tol A is an algebraic lattice, so there exists 
a finite subset {p i , . . . ,p n } C [0]T such that (x,y) E T ({0} x { p i , . . . ,pn}) = 
T(0,pi) V . . . V T(0,p n ) in Tol A. By Lemmas 1.4 and 1.5 in [3], there exists a 
2n-ary polynomial <p over A with 

X = <p(pi,.. . ,Pn,0, . . . , 0 ) 

y = ^ ( 0 , . . . , 0 , j p i , . . . , p n ) . 

However, pi E Fv(^, y), i-e. Pf — d»(ar, y) (t = 1 , . . . , n) for some binary terms 
d{. Since 

d*(a?,y) E [0]T(r,y) 

we conclude dz(ar, x) = 0 for i = 1 , . . . , n. Further, there exists a (2 -f 2n)-ary 
term t with ^( t>i , . . . , vn,w\,... ,ivn) = ^(a?,y, v i , . . . , vn)wu . . .,wn) whence 

x = *(ar ,y,di(x,y) , . . . ,dn(a?,y) ,0, . . . ,0) 

y = t (a r ,y ,0 , . . . ,0 ,d i (x ,y) , . . . ,d n (a? ,y) ) . 

Put m(ar, y, z) = t(ar, z, di(ar, y ) , . . . , dn(ar, y), di(ar, z ) , . . . , dn(ar, z)). The forego
ing identities clearly imply 

m(x)x)z) = t (x ,z ,0 , . . . ,0 ,d i (ar ,z ) , . . . ,d n (ar ,z ) ) = z 

m(ar,y,y) = tf(a?,y,di(ar,y),..., dn(a?,y),0,. . . ,0) = x 

thus m(;r,y, z) is a Mal'cev term and, therefore, V is permutable. By [5], 
Tol A = Con A for each A E V thus, by the first shown property [0]T = [0]s => 
T = 5, V is also regular. 

The proof of (2) ==> (1) is completely analogous to that of Theorem 1 and 
hence omitted (the constants 0 is considered instead of that element c). D 
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