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Abstract 

A relationship between closure spaces and incidence structures with 
corresponding concept lattices is studied in this paper. 
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Defini t ion 1 Let G be a set and Q be a family of its subsets. Then the pair 
(G, G) is called a closure space if Q is intersection closed and G E Q. If A C G, 
then the intersection (A) of all sets of Q containing A is called a closure of A. 

Obviously, Q forms a complete lattice under the set inclusion, which will 
be denoted by L(G, Q) in what follows. If A C Q, then the infimum / \ A is 
the intersection of all sets of A and the supremum \ / A is the intersection of all 
sets of Q containing the union of sets of A. 

The closures of subsets A, B of G have the following properties: 

A C (A), 

ACB=>(A)C (B), 

(A) = ((A)), 

(A) = V ({9}) 
g€A 

149 
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Definition 2 Let L = (G, <) be a complete lattice. If A C G, then the set 
U(>1) = {x G G | a < x Va € -4} is called the upper cone of A. If P C G, then 
UP(.A) : = U(A) fl P for an arbitrary set A C G. Particularly, if A = {a:}, then 
U*» := Up({x}). 

Remark 1 In what follows, the lattice operations in L are denoted, as usual, 
by symbols f\, V> the greatest or the least elements of L are denoted by lL or 
0L, respectively. We suppose that / \0 = 1L and \ /0 = 0/,. 

Theorem 1 Fe£F = (G, <) be a complete lattice and P C G. IfUp = {Up(#) | 
a: € G}, £ben (P,UP) is a closure space, in which (A) = Up(f\A) for an 
arbitrary subset AC P. 

Proof Let A C G. Obviously, 2 <E Up(-4) <=> 2? € P, a < z for all a 6 -4 <# z G 
P, z G U(a) for all a G A <-> z G Up(a) for all a G A <£> z G f\6,4 ^ P ( a ) -

Hence 
Uf (A) = f | [ / » (1) 

aeA 

Similarly, a; G Up(-4) <& x £ P, a<x for all flGi^xGP, \/ A < x & 
xeUp(\JA). 

Hence 
^ ( 4 ) = [ / p ( \ / i ) (2) 

Because of U(0L) = G, we obtain UP(0L) = G n P = P and P e ZYP. 
Consider Wx C Wp. Then Wi = {Up(x) \ x G A} for a certain set A C G. 
According to (1), (2), C\xeA UP(x) = UP(A) = UP(V A) G Wp. 

Let i C F Then .4 C Up(x) iff a; < a for all a G ,4 iff x < /\ A. We obtain 
that 

ze(A)&ze f ( Up(x)&z£ f | Up(x) <-> * G UP(z) 
ACC/p(z) x<A.4 

for all x < /\ A & z G P, x < z for all x < f\ A & z G P, A -4 < z & z G 
Up(A-4). 

Therefore (A) = Up(f\ A). 

Definition 3 Let L = (G, <) be a complete lattice. A set P C G is called 
infimally dense in L if for each x £ G there exists a subset K C P such that 

Theorem 2 Fe£ L = (G, <) be a complete lattice and let P C.G. Then the map 
(p : G —> W*3 m which Up(x) corresponds to every x £ G is a bijective map of 
the set G onto the set Up if and only if P is an infimally dense set in L. In this 
case, if is even an antiisomorphism of the lattices L and L(P,U ) . 

Proof 1. Let us assume that P is an infimally dense set in L. Obviously, <p is 
a surjective map onto Up. Let Up(x) C Up(y) for certain x,y G G. Since P is 
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infimally dense in L, there exists a set X C P such that x = /\ X. Thus x < z 
for ail z G X and K C U(x), therefore X C Up(:z). 

We obtained X C Up(y) and 2/ < 2 for all 2 G X, from which y < f\X 
and y < x immediately follows. Thus Up(x) = Up(y) implies a; = u and <£ is 
injective. 

2. Let us assume that ip : x *-» Up(x) is a bijective map of the set G onto 
Up, and that there exists an element x G L such that x ^ /\X fox every subset 
X C P. There exists the infimum q = /\ Up(x) in L, and since Up(x) C P, we 
get q ^ x. Because of x < z for all z G Up(x)1 it follows that x < /\Up(x), 
and therefore x < q. 

Hence Up(g) C Up(x). If 2 € Up(a:), then q < z and z € C/P(q), and hence 
Up(z) C Up(9). 

We obtained Up(x) = Up(<1) and y?(x) = <-/?(<?) for x ^ , which is a contra
diction to the injectivity of <p. 

So, to each element x G L there exists a set X C P such that x = /\ K. 
3. Let P be an infimally dense set in L. According to Theorem 1, (P,UP) 

is a closure space and L(PyU
p) is a complete lattice which we can join to that 

space by Definition 1. We will denote the lattice operations in L and in L(P,UP) 
by the symbols /\, V ar-d A'> V . respectively. 

We will prove that the map cp : x «-> Up(x) is an antiisomorphism of the 
complete lattices L and L(P,UP): Consider a set _4 C G. Then 

vH)=n^). 
o G A 

where Up(a) C Up(z) for all a G A 
According to the first part of this proof, we obtain that Up(a) C Up(z) for 

all a € A if and only if z < a for all a G .4 if and only if z < f\A. Thus 

\j'up(a) = П Up(z). 
a€A z<ЛA 

Now we obtain that x 6 Up(f\A) <& x £ P, /\A < x & x e P, z < x 
for all z < f\A & x 6 Up(z) for all z < /\A <S> x € f|-<A.4 Up(z) •& x £ 
\l'aeAUp(a). Hence 

^A^)=^(A^) = V,f/P(«) 
=- VVP(«) ! a e A} = \/'{v(a) | a e A} = \j'<p(A). 

Similarly we can prove that <£>(V -4) = A V̂ Ĉ )- Hence, <£ is an antiisomorphism 
of L and L(P,UP). 

Remark 2 If Pi,P2 are infimally dense sets in a complete lattice L, then 
the complete lattices L(Pi,UPl), L(P2,U

P2) are isomorphic. 
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Remark 3 We can define the lower cone L(A) for A C G in a complete lattice 
L = (G, <) as L(A) = {x £ G \ x < a Va £ A} and also the sets LP(A) = 
L(A) fl P, Cp = {Lp(x) \xeG} for an arbitrary set PCG. The pair (P, CT) 
is a closure space and L(P,C<3>) is a complete lattice. 

In a similar way we can define a supremally dense set Q in L. The complete 
lattices L and L(P,Cy) are isomorphic if and only if P is supremally dense 
in L. If P and Q are infimally and supremally dense in L, respectively, then 
the complete lattices L(P,lF), L(Q,CQ) are antiisomorphic. 

Definition 4 Let G and M be sets and J C G x M. Then the triple 3 = 
(G, M, J) is called an incidence structure. If A C G, B C M are non-empty sets, 
then we denote Af = {m € M | #/m V# € A}, B+ = {g £ G \ glm Vra £ B}. 
And moreover, we also denote 0* := M, 0+ := G, A n := ( A ^ , B^ := ( B V 
for A C G, B C M, g^ := {p}f, m+ := {ra}^ for <? £ G, m £ M. 

Let 3 = (G, M, /) be an incidence structure. Then it is obvious that: 

A1CA2=>At
2C A\ for AUA2 C G, 

Bx C B2 =4> B | C B\ for Bx, .^ C M, 

A C A^, B C B^ for A C G, B C M, 
i ^ = A^, B ^ _ #4 for A C G, B C M, 

( U € j ^ ) f = a € j V , (U*€j ft)* = n<€j JBt for A, C G, B, C M, 
AU = flm€At m^, B * = f]geBl gt for A c G, B C M. 

Theorem 3 Let 3 = (G, M, 7) be an incidence structure. If we put 

Q3 = {A C G | A = A ^ } , JVf3 - {B C M | B = B ^ } 

£/*en £fte pairs (G,Q0), (M,M0) are closure spaces and the complete lattices 
L(G,Q0), L(M,M0) are antiisomorphic. 

Proof First we will prove that (G, QD) is a closure space. Because of A C An 

for an arbitrary set A C G, we get G C G1^ and G = G1^, and thus G £ Q0. 
Consider sets A% £ Q0, i € J . Then 

(n *Г= (n v*)n=ŕ(u * f ) У - (u л'У - п AП - n * 
„<= 7 , ' C T \ І C ř 7 i'C/ i(Z.J ІCІ 

u 

I 
ІЄJ iЄJ x iЄJ 7 ѓЄJ ѓ€J iЄJ 

and hence f]ieJ ^* G ^3* 
Similarly, we can prove that (M,M0) is also a closure space. If we denote 

the lattice operations in the complete lattice L(G,Qo) by /\, \A ^ e n 

U 
/\Ai=f]Ai and \/At = {[) Ai) , 

where Ai £ Q0 for alii £ J. 
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Similarly, for the lattice operations /\'> V' i n L(M,Mi) we obtain 

ieJ iEJ iGJ i€J 

where B{ G M3 for all i G J. 
Consider the map <p : A -> A1", A e Go-
Because of (A-1) = A1", we get A t € JVfD and <D is a map into >t3 . Take 

Be M0. Then B+ € & and <p(B±) = JEM* = B . 
Thus </? is a surjective map onto yV .̂ If Ai* = A2 for Ai, A2 € <53 then 

A i n = A 2
n = Ai = A2 and <p is injective. Take sets Ai e Go, i & J-

Then 

Kл^Kn^Mn^Чn^f 
ÍЄJ ѓЄJ ІЄJ гЄJ 

= (u <Г=v v=vw 
i€J i€J iGJ 

And similarly, 

kt4\ /, f \ttt Kv^)H(u^) =(u*) 
ÍGJ \ i6 I / iGI 

= (u^) Ť = n^ t =AV(^) 
i€J *eJ «GJ 

Remark 4 If A C G, B C M, then (A) = A n and (B) = B^ in (G, ft) and 
(M,Mo), respectively. 

Theorem 4 Let 3 = (G, M, /) be an incidence structure and let 

A3 = {gn | g G G}, £3 = {m+ | m G M}. 

ITien £/ie set i33 is infimally dense and the set Ao is supremally dense in 
L(G,Go). And moreover, glm if and only if g^ C m^. (See literature [1], [2].) 

Theorem 5 Let (G,G), (M,M) be closure spaces and the sets 2G ,2M ,£ , M 
be ordered by the set inclusion. The following conditions are equivalent: 

(1) There exist antitone (i.e. order converting) maps <p\ : 2G -» M, <p2 : 
2M ~> G such that (A) = <p2<pi(A) and (B) = <pi<p2(B) for all A G 2G ,B G 2M. 

(2) The complete lattices L(G,G),L(M,M) are antiisomorphic. 

Proof (1) -^ (2) If A G 2G, then <px(A) = <pi((A)) : A C (A) implies <pi((A)) C 
<px(A). If C C <Di(A), then <p2<pi(A) = (A) C < 2̂(G) and C C (C) = <pi<p2(C) C 
<FOi((A)),thus<^i(A)C^1((A)). 

Hence £:"(A) -» <£>i(A), A G 2G, is a map of G into JVf. £ is surjective: Take 
B G M, thus B = (B). Then <D2(B) G 5 and £(</>2(B)) = <pi<p2(B) = (B) = B. 
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£ is injective: Let £((A)) = {((B)) for A,B € 2G. Then <px(A) = V l(B) and 
<p2<pi(A) = (A) = <p2<pi(B) = (B). £ is antitone: If AX,A2 G 2G, then (Ai) C 
(A2) implies </?i((A2)) C </?i((Ai)), from which <Di(A2) C <Di(Ai) immediately 
follows. Hence £((A2)) C i((Ax)). 

The map £~~l is antitone too. Therefore, £ is an antiisomorphism of the 
ordered sets (G, !=)> CM, C) and also the antiisomorphism of the complete lattices 
L(G,S),L(M,JW). 

(2) =>(1) Let £ be an antiisomorphism of the complete lattices L(G,G), 
L(M, M). £ is also the antiisomorphism of the ordered sets (£?, C), (M, C). 

If we put cpi (A) = £((A)) for A G 2G, then <Di is a map of 2G onto M. 
If y>2(B) = f H W ) f o r B € 2M , then <p2 is a map of 2M onto Cy. 
For Ai,A2 G 2G we obtain: Ai C A2 implies that (Ai) C (A2) and hence 

£((A2)) C £((Ai)). Prom this </>i(A2) C <pi)Ai) and <£i is antitone. Similarly 
for <p2. 

Obviously, <p2<pi(A) = <p2(€((A))). And since of {((A)) G A4, we obtain 
(Z((A))) = e((-4)) and *>2<£«A))) = f^CC*}) / = W for A € 2G and 
<Pi<p2(B) = (B) for B G 2 M . 

Remark 5 If (G, <?3), (M,Mo) are closure spaces belonging to the incidence 
structure 3 = (G,M,I), then the maps <pi :=t, <̂2 : = | satisfy the condition (1) 
from Theorem 5. 

Theorem 6 Let (G,G), (M,M) be closure spaces, and let the complete lat
tices L(G,G), L(M,M) be antiisomorphic i.e. let the maps <pi,<p2 mentioned in 
Theorem 5 exist. 

If we consider the incidence structure 3 = (G, M, I) in which glm if and 
only ifm G <Pi({g}), then L(G,G) = L(G,G,) and L(M,M) = L(M,MD). 

Proof Obviously, m G <Pi({g}) iff ({m}) C <px({g}) iff <p2<pi({g}) C <p2(({m})) 
i$({g})C<p2({m})iftge<p2({rn}). 

By the assumption there exists an antiisomorphism £ of the complete lattice 
L(G,G) onto L(M, M), which is described in the proof of Theorem 5. For 
an arbitrary set A £ 2G we obtain: 

vM)=«<-*»=e( v ({5») = A '€«{*»)=n *-({-•» 
0 € A p € A # € A 

= { m 6 t f | m G </?i({#} Vg G A} = {m € M I ^/m Vg G A} = AT. 

Similarly, for B G 2M we get 

2̂(B) = CHiB)) = r1(\/ \{m})) = fl ^({m}) 

- {9 € G I p G <^2({m}) Vm G B} = {g G G | glm Vm E B} ^ BK 

HBeM, then B = (B) = <̂ i<iD2(B) = B ^ and thus B G JVfD. 
Similarly, if B G M 3 , then B = B^ = <Pi<p2(B) = (5) and thus B e M. 

Therefore M = M0 and, obviously, L(M)tM) = L(M,Mo)-
In a similar way we can prove L(G, G) = L(G, G^)> 
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Remark 6 Let (G, Q) be a closure space and P C Q be an infimally dense 
set in the complete lattice L(G,Q). According to Theorems 1 and 2, (P,UP) is 
a closure space and the map £ : A -> UP(A), where A G Q, is an antiisomorphism 
of the complete lattices L(G,Q), L(P,U ) . 

According to Theorem 5, let us define the maps ip\ : 2G -> Up, <D2 '2p-*Q 
by setting <px(A) = f((A)) = Up((A)) for A € 2G, and 

^(5) = r1((B)) = r1(^p(A^)) = A® 

for B G 2P , where (B) = UP(/\B^ by Theorem 1. 

Consider the incidence structure 3p = (G,F,I), in which for # G G, P G P 
it holds pFB iff B G <pi(p), which is equivalent to B G Up(({g})) and ({g}) C B 
if and only if # € B. 

According to Theorem 6 we get Af = <Di(A) = UP(A) for A G 2G and 
B+ = ^2(0) = ABfor /3E2 p . 

Particularly, B4- = B for B G P. It is also easy to prove that A1^ = (A) for 
A G 2G, and B u = (B) = U*>(A B) for B G 2P . 

Definition 5 Consider incidence structures 3 = (G,M,I), 3i = (Gi,Mi,I i) . 
A map (/? : G U M -> Gi U Mi is called a homomorphism of the incidence 
structure 3 onto the incidence structure 3\ if <D(G) = Gi, <p(M) = Mx and gIm 
implies that (p(g)Ii<p(m). A homomorphism <p is called an I-homomorphism if 
(f(g)Ii(p(m) implies pIm. An I-homomorphism ip is called an isomorphism if 
restrictions </?|G : G -> Gi and (D|M : M —•> Mi of the map ip are injective. 

Theorem 7 Fe£ (G, S) be a closure space and 3 = (G, M, I) be an incidence 
structure. Then the following conditions are equivalent: 

(1) Let P = {Pi C G | i G If} 6e an infimally dense set in the complete 
lattice L(G,Q) and let J{ be an index set for each i G K. 

Then M = {m/ | i € if, j G J*}, and /0r an arbitrary i G If glmf if and 
only if g E Pi for all j G J;. 

(B) L(G,0) = L(G,Q9) 
(3) There exist an infimally dense set P in the complete lattice F(G, (5) a^d 

an I-homomorphism (p of the incidence structure 3 onto the incidence structure 
3p = (G, P, Ii) s^cft £/m£ <p(g) = # /0r all g £ G (see Remark 6). 

Proof (1) -=> (2) Let us consider the incidence structure 3p = (G, P, Ii). Then, 
by Remark 6, gIiP* if and only if g G Pi for g G G, Pi G P. For an arbitrary 
subset A C G it holds A^ = (A), where (A) is a closed set in (G, £), and thus 
£(G, (5) = L(G, iP3). We will write the operators t and 4- on the left hand side 
of a set symbol in the incidence structure 3. Then Qj = {A C G | A =^A}. For 
A C G we get 

A* = {Pr € P | ghPr Vg € A} 
= {Pr € P | 5 G P r V<? € A} = {Pr € P | A C P r} 
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and 

t4 = { m / € M | p i r n / Vg G A} 

= { m / € M | g G P r Vg G A} = { m / G M | A C P r } . 

Kence h G _4 n <(-> hI\Pr for all P r G -A1"<$ h G P r for all P r such that 
A C P r <&> him/ for all P r such that A C P r and for all j G Jr <=> him/ for 
all m / G t4 4=> /i G ^ A 

Therefore, A n = ^ A for all subsets A C G and thus & = & P and L(G, (5) = 
L(G,&). 

(2)=> (3) If we put S0 = {ml \ m G M } = P , then, by Theorem 4, P is 
an infimally dense set in the complete lattice L(G, Q0) and, by the assumption, 
also in L(G,Q). 

If we consider the incidence structure 3p = (G,P, Ii), then, by Remark 6, 
ghm^ if and only if g G m^ for g G G, m G M. 

Now, let us consider the mapping < p : G u M - » G u P i n which g i-> # for 
g £ G and m i-> m 4 for m G M. Then g /m iff # G m^ which is equivalent to 
ghm^ if and only if (p(g)Ii(p(m) and <p is an I-homomorphism of the incidence 
structure J onto 3p. 

(3) => (1) Let (p be an I-homomorphism of the incidence structure 3 onto 
3p = (G,P, Ii), where P is an infimally dense set in L(G,Q) and (p(g) = g for 
g £ G. Then # /m iff gli<p(m) iff f̂ G <D(m). 

We put P = {Pi C G ] i G I f } , m^ =r {n G M | <D(n) = Pi} and, with the 
index set ^,777^ = { m / | i G J*}. Hence glm/ if and only if g G Pj. 

R e m a r k 7 An incidence structure 3 = (G, M, J) is called M-simple if m^ = n^ 
implies m = n for m, n G M. 

Let us consider a closure space (G, 0), an infimally dense set P in the com
plete lattice L(G, Q) and the incidence structure 3p = (G, P, I ) . 

By Remark 6, P+ = B for B <E P, hence 5+ = G4" implies J5 = C and 
the incidence structure 3p is M-simple. Let <p be an I-homomorphism of the in
cidence structure 3 = (G,M,I) onto 3p described in Theorem 7. Then tp is 
an isomorphism if and only if the incidence structure 3 is M-simple. In this case 
we obtain | J{\ = 1 for alH G K in Theorem 7. 
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