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Abstract 

Our aim is to investigate integrability of a polynomial structures the 
characteristic polynomial of which has at most double real roots. The 
general case can be regarded as a "refinement" of the special case 

h(h~I)2(h2 + I) = Q. 

Key words: Projector, manifold, polynomial structure, integra
bility. 

1991 Mathematics Subject Classification: 53C05 

We will formulate integrability conditions for a polynomial structure the 
characteristic polynomial of which has at most double roots. The well-known 
examples of such structures are almost tangent structures, or /-structures (al
most contact structures) which satisfy f3 + f = 0. The case of single roots was 
completely solved in [9], [11]. 

Suppose that all objects under consideration (manifolds, tensor fields etc.) 
are of the class C°°. The Nijehuis bracket (tensor) is denoted by [,]. 

* Supported by grant No. 201/96/0027 of The Grant Agency of Czech Republic 
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1 Almost tangent structures 

Recall some well-known facts. An almost tangent structure is given by a (1,1)~ 
tensor field h of constant rank which is nilpotent, h2 = 0. The integrability 
conditions were found by J. Lehmann-Lejeune, [7]. Note that the case hn = 0 
with n > 3 was not solved in general, it is more complicated from the technical 
point of view 

At any point x of an almost tangent manifold the inclusion im hx C ker hx is 
satisfied. If the "dimension regularity" conditions dim im h = p, dim ker h = q 
with p, q > 0 real constants are satisfied then the image im h (respectively the 
kernel ker h) is a p-dimensional (respectively (p -V (l)-dimensional) distribution, 
and d i m M = m = 2p + q. A frame (x\X\,... ,Xm) is called h-adapted if 
Xi+p+q = h(Xi), i =- l , . . . , p , Xi+p+q, i = l , . . . , p is a basis of im hx and 
Xi+P,..., Xm is a basis of ker hx. The matrix representation of hx £ End(TxM) 
with respect to the ^-adapted frame is of the form 

(1) 

The family of all /i-adapted frames form a G-structure for which G is a Lie 
subgroup of GL(m, R) formed by all square (m, m)-matrices of the form 

-11 0 0 \ }P 
-21 A22 0 }<?• 
-31 A32 AnJ }P 

The almost tangent structure h is called integrable if the corresponding G-
structure is integrable, i.e. if there are local " ft-adapted " coordinates on a nbd 
of each point with respect to which the matrix of hx is (1). Another speaking 
the holonomic frame (^f-,..., ^~~) is h-adapted. For a nilpotent polynomial 
structure, h2 = 0, the following conditions are equivalent, [6]: 

ker h is integrable, and [h, h] = 0; 

h is integrable; 

there exists a symmetric connection V on M such that V/i = 0. 

2 Complex almost product structures 

If (Di,...,Dt) is an almost product structure and J a complex structure1 

satisfying JDi = D{, i = 1,... ,£, ( J ; 2 ? i , . . . ,Dt) is a complex almost prod
uct structure. The structure ( J ; D i , . . . , Dt) is integrable if J can be written 

1A complex structure is an almost complex structure, J2+I = 0, satisfying the integrability 
condition [J, J]=0. 
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locally in the form 

~-*rii " n i 

J = 

v ií " n t -* nt 
" In* "n< 

where dim Di = 2n^. Through the corresponding projectors P$, the integrability 
condition can be refomulated as [Pi,Pj] = [Pi, J] = 0, [9]. 

3 Almost tangent almost product structures 

In [10], the problem of simultaneous integrability of an almost tangent structure 
and a distribution was solved. 

We will need here a generalization: a simultaneous integrability of an almost 
tangent and an almost product structure. Suppose that ( .Di, . . . ,£)*) is an 
almost product structure on M with projectors P i , . . . , P*, and at the same time, 
let M be endowed with an almost tangent structure g such that (g — I)2 = 0. 
Let us assume that g o Pj = Pi o gy i = 1 , . . . , t. Then 

(g~I)DiCDh 

and (g; D\,..., Dt) will be called an almost tangent almost product structure. 
Let us use the notation 

gi = g | Di, dim ker Di = p* -V # , dim im # = p i ? 

dim Di =:m, ni — 2pi + <?*. 

Now it is natural to define: 

Definition 1 We say that (g; D\,..., Dt) is integrable if there are local coor
dinates such that g is represented by 

/ - » 
0 

L P1 

0 0 }p 
Ј 9 1 0 }ç 
0 Ј P 1 }p 

V 0 

\ 

0 }p 
0 }<? 

IPt }P I 

(2) 

where Is denotes a unit matrix of the type (s,s) 
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By standard methods, we can prove the following [11]. 

Proposition 1 An almost tangent almost product structure (g\ Di,..., Dt) is 
integrable if and only if the following conditions are satisfied: 

(i) [Pi,Pj] = 0fbriJ = l,...,t, 

(H) \9,9] = 0, 

(Hi) ker (g — I) is integrable, 

(iv) [Phg] = 0fori = l,...,t. 

4 T h e case h(h - I)2(h2 + I) = 0 

Now let us consider a polynomial structure h satisfying 

h(h-I)2(h2 + I) = 0. (3) 

Suppose that Di = ker^, D2 = ker(/i - I)2, F>3 = ker(h2 4 I) are of constant 
ranks on M, dimDi = p, dim D<2 = qy dimL>3 = 2s, where q = 2k+l,p+q+2s = 
m. Then the tangent space is a Whitney sum TM = Di 0 D2 © D3. The 
correspending projectors are Fi = (h-I)2(h2+I), P2 = I-(h~I)2(h2~-\h-\~I), 
P3 — \h(h — I)2. It is natural to define 

Definition 2 A polynomial structure h satisfying (3) on M is integrable if there 
are local coordinates with respect to which the matrix representation of h is 

/ 0 P 0 \ 
Ik 0 0 

*= I 0' £ • w 

1° - I JoJ 
The following technical lemma is useful in the next proof. 

Lemma 1 Let f be a (l,l)-tensor field satisfying [/,/] = 0. Then for any 
natural a, b > 0 

[r,/fc] = o. 

Theorem 1 A polynomial structure (3) is integrable if and only if the following 
conditions are satisfied: 

(i) [M] = o, 
(ii) kev(h — I) is integrable. 



Polynomial stuctures with double roots 191 

Proof The conditions are necessary as it can be verified. So let them be 
satisfied. To prove that (Di,D2,D3) is integrable we will verify [Pi,Pj] = 0, 
i,j = 1,2,3. Since the projectors are polynomials in ft, the brackets [Pi, Pj] can 
be expressed as linear combinations of terms of the form [fta,ft6] with natural 
exponents a, b. So all couples of projectors vanish. Now we can find local 
coordinates in a nbd of any point 

(xi,...,xv,vi,...,vq,yi, >У2s 

such that 

л = 

where F and G are matrices of the type (p,p) and (2s, 2s) respectively, depend
ing on (x\,... ,x2s). Let us denote their entries by (Fj) or (Gr

k), respectively. 
We will prove that F depends in fact only on vi,...,vq and, G depends on 
2/i,. . . ,y 2 s . Let 1 < i < p, 1 < j < q. By (i) 

o-fc*(Ł-ê, -Һ — л — 
дxi' дvj 

-h , - , I * A 
ӘXІ ' J дvt 

\dxi dvt)' 

On D2, (ft - I)2 = 0 is satisfied. We obtain that ft|I>2 is an automorphism 
a p t o/-~»fc 

since ft(2I - ft) = I on D2. It follows -̂ -f = 0. The equality -^f = 0 can be 
proved for 1 < j < q, 1 < i < p in a similar way: ft is an automorphism on D3 

since ft(-ft) = I is satisfied on L>3, and |[ft,ft]f ^ r , ^ j j = -ftf - ^ • ^ J . 

Now let 1 < i < q, 1 < j < 2s. It can be easily verified that [ft2 -f-1, ft] — 0 
follows as a consequence of our assumption [ft, ft] = 0. We evaluate 

[Л,Л] 
дyj' VІ 

= 2 hҡ~> hҡ-
oyj дvi 

- 2 Л Л — , — 
дyj' дvi 

2Л 
дyj' дvi 

= 0, 

(5) 

[Л2 + LЛ] _д_ ___ 
ð y / дvi Ч? ( / l + / ) 

- Л ___ 

9% 
, ( Л 2 + / ) 

___ 

- ( Л 2 + 7) —,лA 
дyj' ð^i (6) 

On D2 = ker (ft - I)2, the equality ft2 -f I = 2ft is satisfied. So (6) can be 

written as 2[h£, h£] - (h2 + J)[-f-, l*^] - 2M-f- , /»-&] = 0. Combining 

(5) and (6) gives —2ft lдVi' OVІ 
+ (Л2 + /) 9 hJL 

dyji ndvi 

2л(|Vr^)+(Л 2 + I)(fЧ-^-)=0. (7) 
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We apply the automorphism h2 + I on both sides of the equality (7) to obtain 
(h2 + I)2(^7 • §~) = 0 which gives ~SL = 0 since (h2 + I)2 is again an 

automorphism. Similarly, an application of (h — I)2 on (7) gives h(h — I)2(-^fr • 
-—-•) = 0. But h(h — I)2 |D3 is an automorphism since on F>3 = ker (h2 + 

I), h(h - I)2 = h3 - 2h2 + h = -2h2 = 2J. It follows § = 0. By our 
assumptions and the above results, F is an integrable almost tangent structure 
on integral submanifolds of the distribution D<i, and G is a complex structure 
on integral submanifolds of 273. So there exists a coordinate transformation 
Xj = (pj(vl7...,vq), xi = ipi(y1,...,y2s), where p+ I <j <p + q, P + q + l < 
I <p+q+2s = m such that with respect to the corresponding holonomic frame, 
the matrix of h admits the desired form. • 

5 The general case 

More generally, let us consider a polynomial structure (M,f) satisfying the 
polynomial equation with at most double real roots of the characteristic poly
nomial R 

r R s 

RU)=Tiu - hi) n (j - Bjf n (/2+2cfej+dki)=o, 
i=i j=i fc=i w 

bi,Bj,ck,dk G R, c2 - dj < 0 

with pairwise distinct factors. The decomposition of the tangent bundle is 

TM = © D - © 0-Dj -e @D'l where D^ = ker (/ - bj), i = 1,.. . , r , £>,• = 
i = l jr=l £-=1 

kerCf-B,-)2 , j = l , . . . , i ? , 232 = ker (f2 + 2ckf + dkI), k = 1, . . . ,s are 
distributions on M invariant under / , of constant dimensions, [9], n\ = dimD^, 
nrij = dim I).,, 2nj! = dimD%, YK = ™? S m j = ^> X̂  ^^ ~ n-> dimM = 
m = TO + n + 2n. We obtain an almost product structure 

(D'l,...,D'r,D1,...,DR,Dl(,...,D'l) (9) 

associated with / . Denote by P/, Pj, P£ the corresponding projectors. 
Let us define integrability of the structure (8). We can introduce an almost 

tangent structure on each Dj, j = l , . . . , i ? , and an almost complex structure 
on each D'l, k = 1 , . . . , s as follows. Denote fj~f\ Dj, Ij = I\ Dj. The 

~ 2 - 2 

equality (fj — Bjlj) = 0 can be written as ((fj — BjIj + Ij) — Ij) = 0. So 
the formula Sj = fj — (Bj — l)Ij defines an almost tangent structure Sj on Dj, 
and fj can be evaluated by fj = Sj + (Bj - 1)1. Similarly, /£ = / 1D£ satisfies 
/^/2 + 2ckfj{ + dkIk = 0, and an almost complex structure Jjj.' is introduced on 
£>£ by J" = j~=(Jil + ckIk). Obviously, / j ' = y/d^c\J'l - ckIk. 
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Definition 3 A polynomial structure (8) is integrahle if on some nbd of each 
point x G M, there are local coordinates ( x i , . . . ,xm) with respect to which / 
has a representation 

/ ЬiIПl> 
\ 

Ur*ГLr 

Lx 

0 

0 

LR 

V 
where Lj are block matrices of the form 

Lj=\ 0 Bjlv 

Kx 

0 кj 

0 
0 

1PІ 0 Ą J W 

Pj = dimim (/ - Bj)1 pj + qj = dim ker (/ - Bj), 2pj -f- qj = m^, and K^ are 
of the form t  

-CkKk sfďk^c^Ilk' 
-Vďk~=cl?ll -ckI"nh 

Kk 

To give necessary and sufficient integrability conditions let us associate with 
/ a (1, l)-tensors field # introduced by 

i = i fc=i v a * c * 

which satisfies on M the equation 

^ ( # - / ) 2 ( # 2 4 - J ) - 0 . 

The original tensor field / can be evaluated by the formula 

r R s 

/ = 5>P« + £ ( # + B iJ-I)P i + ̂ ^ (10) 
i=l j=l AJ=1 

Let us denote D = © Dh D" = 0 JDJJ. 
i = i fc-fi 

Theorem 2 A polynomial structure (M, / ) satisfying (8) is integrahle if and 
only if the following conditions hold: 
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(%) The Nijenhuis brackets of all couples of projectors vanish, 

(ii) ker ($ — I) is integrable, and [$, 4>] = 0. 

(m){Pi,^} = 0, j = l,...,R, {i^' ,*} = 0, fc = l , . . . , s . 

Remark 1 The condition (i) is equivalent with integrabiiity of the associated 
almost product structure (9); (iii) means integrabiiity of Dj © D" and D © D^. 

Proof It can be verified that the above conditions are necessary. Let us prove 
that they are sufficient. By (i), there are local coordinates 

(Xi,. . . , Xn, Vi,. . . , Vfh, 2 / i , . . . , V2h) 

in a nbd of any point such that (-^~,..., ^—7) form a basis of D[ etc., the 
middle part of the coordinate frame (^-) form a basis of D, and the last part 
(-!--) is a basis of D". The endomorphisms P/, Pj, P^, $ have representations 

/o». 

p/ 

0 

\ 

0 
o 2 „ У 

ф = 

where Q̂ -, P are (m, m)~matrices, and P&, G are (2n, 2n) - matrices the entries 
of which are functions depending on x\,..., y2~i. In the proof of Theorem 1, we 
found that F depends only on the coordinates V\,..., Vfh, while G depends on 
ui,...,y2=. In a similar way, we can verify that Qj are matrix functions of 
variables V\,..., t;™, and P^ are functions in 3/1,..., y2^- -& suffices to use the 
equations 

K,ft](|,',|»')=o, ^ . A . ^ . £)-<>, 

where — £ .D», 
ðг/ e Д ðy' 

€£>", 

[P/> P " l ( ^ S ' 5J.J j - O' tP> Pi '] (^fc ' Qyl o, 

where &? e Di> дvk ЄÐ, 
ðÿ1 Є.D". 

The matrices of projectors P[ indicate that they depend only on a?i,..., Xn. In 
a natural way, a coordinate neighborhood N is foliated into three systems of 
leaves. The leaves of the first foliation are given by x\ = const,..., y2~ = const; 
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the second system of leaves is given by x\ = cons t , . . . , x^ = const, yi = 
cons t , , . . , y2= = const. The third foliaton is defined by xi,...,vm constant. 
We restrict <£ onto each leaf of the second family to obtain an integrable 
almost tangent structure independent of parameters Xi} yj determining the 
leaf. At the same time, the restrictions of projectors Pk is independent of 
these parameters. By Proposition 1 we can find a coordinate transformation 
£n+i = y>i(ui-.. • ,vm), Vn+m = <£m(̂ i> • •. ,vm) such that with respect to the 

new coordinate frame f--f--, • • •, a^r), 

ғ = 

(I 0 0 
0 I 0 
1 0 0 

V 

I 
0 

1 

' . Ï 

0 0 
1 0 
0 0 / 

Similarly, the restriction of $ onto each leaf of the third foliation defines an 
integrable almost complex structure which is independent of the parameters 
Xf, Vk determining a leaf. The restrictions of P" onto the leaves of this last 
foliation are also independ on the variables a^, t;*. So there exists a coordinate 
transformation in+m+i = ^1(2/1,.. . ,%=), Xn+m+2h = *l>2h(Vi'-">V2fr) s u c h 

that 
0 1 0 \ 

- J O 
0 I 

- 1 0 / 

G = 
0 

Now it is obvious that the coordinate transormation 

x\ = £;, 1 < i < n, 

-4+* = V*(v i , . . . , v* ) , 1 < k < m , 

X n + m + j = Vj(Vi) • • • >2/2fl)> 1 < J < 2n 

yields a coordinate frame with respect to which in the representation of <3>, 
exactly blocks of the form 

/ 0 0 
On, 0 0 0 , and 

1 0 0 
0 0 0 , 
1 0 / 

0 I 
-I 0 

occur on the diagonal. It follows that / admits the desired matrix representa
tion. • 

6 Polynomial structures and webs 
A non-holonomic 3-web can be defined by a couple of (l , l)-tensor fields P , 
B such that P is idempotent, P2 — P = 0, B is involutive, B2 — I = 0, and 
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PB + BP = B. Web distributions are given by kerP, ker(J - P), ker(# - I). 
They are integrable (and the web is holonomic) iff ker(# - I) is involutive 
and [P, P] = 0. The condition [P, B] = 0 is satisfied exactly for webs which 
are paratactical (the torsion tensor of which vanishes identically). A 3-web 
is parallelizable (equivalent with three systems of parallel r-planes in R2r) iff 
all three couples of almost product structures formed by web-distributions are 
simultaneously integrable. 

More generally, a non-holonomic (n+ l)-web of dimension r on a nr-dimen-
a 

sional manifold can be described by a family of (1, l)-tensor fields {# , a,/3 = 
a 7 a a 

1, . . . , n} which satisfy £V # = I, # # = 6% # . The mappings with different 
a j3 K j3 

a 
indexis are nilpotents, and {#} is a family of mutually orthogonal projectors 

a 
a 

onto web distributions Da = im # . The remaining distribution is given by 
a 

0 O l a 

Do = im # where # = - Y \ R # is the remaining projector. The kernels 
o o n a , / /? 

of the above projectors form a web of codimenison r. We will discuss these 
examples on some other place. 
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