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Abstract

In the multivariate model with constraints an equivalence between a
geometrically motivated testing procedure and the procedure based on
the statistics RZ and R? is proved.
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1 Introduction

The article is composed by three parts. In the first part a geometric approach
to linear hypothesis testing is demonstrated, in the second the theory of test
statistics R2 and R? is mentioned and in the third part a comparison of both
these testing procedures is given.
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2 Definitions, notations and lemmas

2.1 Notations

Let Y be an n-dimensional random vector with normal probability distribution,
what is denoted as Y ~ Np(X3,X¥). Here X is a known n x k matrix, 8
is an unknown k-dimensional vector parameter and ¥ is a known covariance
matrix; sometimes ¥ can be written as 02V, where V is a known matrix and
02 € (0,00) can be an unknown parameter. Values of vector 3 may be in the
set V = {u: by + B, ru = 0}, resp. in R* (k-dimensional Euclidean space),
here bg,; is a known g-dimensional vector and B is a known ¢ x k matrix.

Matrix C means matrix X'V~1X or X'S71X.

ﬁ means estimator, which respects neither a hypothesis, nor restrictions on
the vector parameter 3.

B means estimator, which respects restrictions on parameters 3,, ..., 3, or
a hypothesis (in a model without constraints).

BH means estimator, which respects restrictions and also a hypothesis.

X2 (0) means the random vector with a chi-square distribution with h degrees
of freedom and with the parameter of noncentrality equal to zero.

2.2 Definitions

Definition 2.1 The symbol P} means the projection matrix onto M(A) =
{An nu:u € R"} in alinear real vector m-dimensional space R™ with respect
to a norm ||.]|w which is defined by the relation ||x|lw = vVX'Wx, x € R™.
Here W is an m x m p.d. (positive definite) matrix.

Definition 2.2 We say, that a triad (Y, X3, X) is a regular univariate linear
model, if Y means an n-dimensional random vector, with an assigned class of
distribution functions F; F={F(.,8); B8 € R*}, with the properties

By = | wdF(.p)=Xs;
ﬁ € Rk, "'(ank.) =k< n,
/ (u—XB)(u - XB)'dF(u,B) = >V
R»
and V is a p.d. matrix.

Definition 2.3 If in a regular linear model the parameter 3 is an element of a
set {u:u € R¥ : b+ Bu = 0}, where r(Byxx) = ¢ < k and b € M(B), then
this model is called model with constraints.
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2.3 Lemmas

Lemma 2.4 (Pearson) Let £ ~ Nyp(u,X), where r(X) = r < n. Then the
random variable (€ — p)' =7 (€ — p) is X2-distributed.

Proof see in [3], p. 84.

Lemma 2.5 Let (Q,,’ g ) 1§ a positive definite matriz; then

A, B\
B, C N
_ (A +A7'B[C-B'A7'B]"!B'A"!, ~A"!B[C - B'A"'B]!
- —[C-B'A™'B|"!B'A~L, [C-B'A-1B]!
_ [A -B'C™!'B], ~-[A -B'C'B|"!BC™!
~ \-C"'B'[A-B'C'B]"!, C! +C'B[A -B'C"'B]"!BC™! }°
Proof by substitution.
Lemma 2.6 Let Y~ Np(u,X). Let X be a p.d. matriz. Then
Y'AY ~ X2 a5y (0) = ATA=A & 6= p'Ap,

where xz( Ax) (6) means the random variable with a chi-square distribution, with

r(AX) degrees of freedom and with the parameter of noncentrality §. If p = 0,
then we obtain central chi-square distribution.

Proof see in [5], p. 171.

Lemma 2.7 Model (Y,X(3,0%V), B € RF, b+BB =0 is equivalent with
model (Y — X8y, XKp7,0%V), v € R¥7"®B) ywhere 3 = B, + Kpv and Bo
is a particular solution of the equation b + BBy = 0. The matriz Kg is of full
rank in columns and fulfils the relation M(Kg) = Ker(B) = {u: Bu = 0}.

Proof is obvious.

Lemma 2.8 Let A* denote the Moore-Penrose generalized inverse of a matriz
A (cf. [5], p. 50). Let M(B') C M(W), where W is p.s.d. (positive semidefi-

nite) matriz, then
(MpWMg/ )" = Wt - WHB'(BW*B')" W™,

Proof It is sufficient to verify the properties of Moore-Penrose generalized
inverse. O

Lemma 2.9 The following equalities are valid

(MAVMA)T = MA(MAVMA)' = (MAVMa) M4 =
= Ma(MAVMa)TMa

Proof This is a consequence of Lemma 2.8. ]
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Lemma 2.10 The following equalities are valid

1. @ yspE T = uoipy

2. ME ' Yys IME =2 IME | = (MAEMa)t

Proof is obvious.

3 Geometric approach to hypothesis testing

Theorem 3.1 BLUE (best linear unbiased estimator) of 3 in model from
Definition 2.8 is .
16 = PI(éer(B)ﬂ tu,

where B = C™1X'S~YY (BLUE of B in model from Definition 2.2);
u=-C !B(BC !B')b.

Proof The function F(3) = (Y —X8)'E (Y — X3) must be minimized under
the condition b + B3 = 0. We use the Lagarange method.
Let ®(8,A) = F(8) + X'(b + BB). Then

?%;ﬁ) =-2X's71Y + 2x'2"1xfa -2B'A=0 =

f=ClBA+X5Y)
If we substitute ,(23 into condition (partial derivation of & by A), we get
A=—[BCT'B|'BC!X'E7'Y +b]
B=[I-C'B(BC™'B)"'BJ3 - C™'B'(BC™'B)'b.

Since C is a p.d. matrix, the 3 which we found, gives the minimum of the
function F(.). Now it is necessary to show the equality

PRe® =I-C'B'(BC'B')™'B,

which is equivalent to PECT(B)PEW(B) = P%er(B) & M(Pger(B)) = Ker(B) &
éc (P%er(B))’C = CPIC(’W(B). It is obvious how to prove these three equalities.

Theorem 3.2 Let the null hypothesis Hy : HB + h = 0, be accepted in the
regular linear model from Definition 2.8. Let

r(Huxk) = h < k; r(g>=q+h<k.
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Then the BLUE of B, which accepted the null hypothesis Hy, is given by the

formula:
s _ Var(é) +2 b
By = PO 5 (h) ,

where

A(P) = (B BCB) -
(3) = tcmme®)

- [H(MBI CMpg: )+]’ [H(Mgp CMg: )+H’]_]‘ HC'B’ (BC‘lBl) -1 1b—
— [H(MB/ CMpg/ )+]'[H(MB: CMp/ )+HI]‘1h .

Proof The postulate to implement a null hypothesis is equivalent to another
constraints in our model. We have to solve model with constraints

b B
petu (D) +(2)u-o
Hence the solution is:

By = {I - C(BLH) [(fl) @) B (%) } B

_ CcU(BHY) [(g) c—l(B';H')] - (E) .

We use the notation

(B)e-won] - B

and Lemma 2.5. Thus
= (BC™'B')"! + (BC™'B')"'BCT'H'[HC'H' -
-~ HC™'B/(BC™'B")"'BC'H|"'HC !'B'(BC™'B')!
2]
[2]' = —[HCT'H' - HC™'B/(BC™'B')"'BC™'H'|"! x
x HC™'B/(BC'B/)™!

—-(BC™'B)"'BC'H/[HC'H' - HC™'B/(BC™'B)"'BC'H|™!

Il

[3] = [HC™'H' -HC™'B'(BC™'B')"'BC™'H/™".

A=(C™'B;C'H) [, %] ;

A= [coB i)+ cw 2] e 2]+ o [3]).

Let

then
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- Further

c'B 1]+ cH[2] =
=C7!B'(BC™'B/)"! + C"'B/(BC™!B')"'BC'H'x
x [HC™'H' - HC™'B'(BC™'B')"!BC™'H'|"'HC'B'(BC'B’)!
- C'H'HC™'H' - HC™'B'(BC™'B)"'BC'H']™*
x HC™'B'(BC™'B')"!

c'B'[2]+C'H'[3]=
= - C™!'B'(BC™'B)"!BC'H'x
x [HC™'H' - HC™'B'(BC™'B')"'BC~'H'|"!
+C 'H'HC™'H' - HC™'B/(BC™'B')'BC'H|!

s () ()

I-2 (B) = (I -[I-C™'B/(BC'B')"!B]JC'H'x

Hence

and

H
x {HC™[I - B’(BC‘IB’)‘IBC"I]H’}‘IH) [I-C™'B(BC'B')"'B].
Now we find Var(é).

Var(ﬁ) [I- C™'B'(BC™'B")" 'B] C [1 B'(BC'B)"'BC '] =
vmm

o
PK"(B)

= [I- C™'B/(BC™'B')"'B|C..

Thus B A
I-A ( H) =1~ Var(3)H'[HVar(3)H'|'HPE,, g,
d it be expressed as P[V‘”'(ﬁ)]*}Pc By substituti btai
and it can p Ker(H) T Ker()- BY substitution we obtain
3., — plver@)*? b
B Ker(H) ﬁ (h) : o

The difference [‘3H - B could be used for verification of the null hypothesis.
IfY ~ N,(X3,%) and Hy is true, then

2 2 ar 5 +
Bu — B~ Nilo, (1 - PV yar(B)(1 - PY Iy
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Since HBH + h = 0, we obtain

Héu - H,é = —-(Hﬁ +h) ~ N[0, HVar(,fi)H’]
and
2 ar + 2
H(I - P[X:;(ﬁ;l War(B)(I - P[IXW(Q] )'H' = HVar(B)H'
If we use Lemma 2.4, we obtain the following Theorem.

Theorem 3.3 Let Y ~ N,(X3,%), B € {u:bgxi +Bgxrixi}, "(Xnxk) =
k<n, r(®)=n, 7(Bgxx) =q< k. If Hy: h+ HB = 0, where r(Hpx) = h
and r(g) =g+ h, then

(HA + h)[HVar(3)H'| " (HB + h) ~ x}
Remark 3.4 If
(HB + hY [HVar(3)H'| " (HB + b) > x2(1 - o)

the (1 — a)-quantile of x2) we reject the null hypothesis Hg.
h

4 Hypothesis testing by using R? and R?

Lemma 4.1 Let Y ~ N(XB3,0%V), where V is p.d. matriz. We test the null
hypothesis h + HB = 0. Let

B} = min{(Y - Xu)'V}(Y - Xu); ue R*}

I

R? min{(Y—Xu)’V”l(Y—Xu); u€ {u:h+Hu:0}}

and M(H') c M(X"). Then
1. R§ ~0?x2_, x)-

2
2. R2 ~ 0'2X,n 'I‘(X)+T’(H)

(with the parameter of noncentrality , in case,
that the null hypothesis is not true; if the null hypotheszs is true, then
d=0).

§= (h+HB)' (HC H') (h4+-Hp)

3. R?—R2 = (HB+h)'[HC-H'| (H3+h) ~ azxi(ﬁ) with the parameter of
noncentrality 6 in case, that the null hypothesis is not true. The statistic
R? — R} is stochastically independent of R3.

Proof see in [4], p. 225.
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Using Lemma 4.1., we obtain

R2—-R?

H
TR2) ~ Fr(H),n-r(x)

[n—r(X)]

(the Fisher-Snedecor random variable with r(H) and n — r(X) degrees of free-
dom and with the parameter of noncentrality §). This statistic can be used
for testing the null hypothesis Hy : h + HB = 0 against the alternative H, :
h+HB #0.

Theorem 4.2 Let,fi be BLUE of the parameter 3 in the model (Y,X3,0%V),
BeV={ueRF:Bu+b=0}. Let M(B') ¢ M(X') = M(C); M(H') C
MX',B') & M(H)Nn M(B) = {0}. If
RZ = min{(Y ~XB)V Y -XB); Be v}
and
R} = min{(Y - XB)'VH(Y - XB); Be {B:h+HB=0} & BeV},
then:
(i) R§ ~ szi——r(X)-{-'r(H)‘

(i) (R} — R3) ~ 0°X?4y(0), here the parameter of noncentrality
§ = ¢'[HVar(3)H'|-¢, where € = HB + h # 0.
(iii) If we know X(= 02?V), then we define
R} = m’m{(Y ~XB)YSHY -XpB); B e v}
R} = min{(Y - XBYS" (Y -XB); Be {B:h+HB=0} & Be V}.
Then
R2 — R} = (HB + b) [HVar(3)H')~ (HB + h) ~ x%e1)(9) -

(iv) R2 and R? — R% are stochastic independent.

Proof (i) Using Lemma 2.7 and the Gauss-Markov theorem, we can use the
equivalent model

(Y - XB,,XKpv,0°V), Hp:h+HKpy+HpS, =0;
thus (cf. Lemma 4.1); we can write:
Ry = (Y — XB, - XKp)' V(Y - XB, - XKp7) =

= (Y = XB)VHY = XB) ~ 0" X (xxm) = T X (%) 4r(m)
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Since M(B') C M(X') = M(C), the equality r(X) = r(X) is valid. Hence we
obtain:

Rg ~ 02X2~T(X)+r(a)-
(ii) We know, that M(H') c M(X', B’). Hence also KgM(H') CKgM(X',B’)
and Ky M(H') = M(KjpH') since Kj3B = 0, M(Kjp X', KigB') = PMKLX).
Thus we obtain
M(EKgH') ¢ M(KpX).

This we use for determining the distribution of R — R2;
R? — R2 = (Y — Xfo — XKp7)'V (Y - XB, — XKp~)—
— (Y = XB, - XKp7)' V™Y - X8, - XKp7)
= (Y = XBy)' V(Y - XBy) — (Y = XB)' V(Y - Xf) ~
2 — 2
~ 0 Xz (Ke) = ”ZXT(;;)-T(B)-

Here the equality 7 () = r(AMp/) +r(B) was used. Since we assume M(H') C
M(X',B') & M(H) N M(B) = {0}, the following relation is valid

( ) r(B) = r(H) + r(B) - r(B) = r(H).

Hence we obtain: B} — Rj ~ o°x2
The (iii) and (iv) follow from the proof of Lemma 4.1. ]

5 Comparison of the geometric approach with
test statistics R and R?

In the section 3 we proved, that the BLUE of tﬁé parameter 8 in the regu-
lar model (Y,XB3,%); B8 € {u € R* : b+ Bu = 0}, where we test the null

hypothesis h + H3 = 0, is given by the estimator B in the form
ﬁ = :PIC(er(B)[3 +u,
where 3 = C™!X'S71Y and u = —C~'B/(BC~'B’)~'b. We also proved
v ([3)]+ 2 b
ﬂH = PK::(H) B-A (h) :
To test the null hypothesis we use the statistic

(HB + h)[HVar(3)H']" (HB + h) ~ x2(0),
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where r(H) = h. Now we try to investigate a relation between this approach
and the utilization of the statistics R3 and R3.

We will use model (Y,X3,%); B8 €V = {DB+d=0} We will test the
null hypothesis H3 + h = 0. Let 7(Xpxk) = k < n, r(Dgxx) = ¢ < k,
r(Huxr) = h <k, r(R) = q+h < k and £ p.d. matrix. Let be

min{(Y — XB)'S"H(Y - XB);d + DS = 0},

it

Rg
R} min{(Y -X8)'E=7HY - XB); (2) + (g) = o}.

If we use Lemmas 2.6 and 2.7, we can write: H3, + HKpy+h =0

R} =[(Y — XBo) - XKpy]'E7'[(Y - XB,) - XKp~]
=[(Y = XB,) - XKpA)'E[(Y — XBp — XKp[(XKp)'E ' XKp] ! x
x (XKp)'S7'(Y = XB,)]
= [(Y = XBo) — PRxp (Y — XBo)]'S ™' [MEx,, ] %
x (Y = XBq) = (Y — XB,) [Mxp ] Z[ME, [(Y - X3,).

Since .
s IMEg, = (MxEMx)T + 571 PE,

(cf. also Lemma 2.10), we obtain:
R2 = (Y - XBo) [(MxEMx)" + BP0, (Y ~ XBy).

As far as the statistic R? is concerned (Boo is any solution of Y — X8y =
K(ﬁ)"y +¢. Thus

R} = (Y — XBy) [Mxxk 2MXK(E)]+(Y - XBoo);

(&)
further
(MXM(D’,H’)EMXM(D'.HI))+ =
= 2~1 - E—IXM(DIYHI)(M(DI,H’)XlEleM(DI,H/))+X’E—1
= 2—1 _ EEIX(M(D/,H’)CM(D/’H:))+X2_1

=¥"l-yX {c—l -C(D",H) [(g) C‘I(D‘,H’)] _1(3) C"} X's!

= (MxXIMx)"+EX7'XC}(D',H') [(g) C*l(D',H')} _1(3) cX'sL,
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If we use Lemma 2.5, we obtain

»IXC (D', H) [(g) C‘I(D’,H')} B (g) cIX'sl =

=27 'XCT!D/(DC!D)'DCX'E"! + 71X (Mp CMp/ ) x
X HI[H(MDICMDI)+H']_1H(MD/CMD/)+XIZ—1.
Hence we can write:
. -1
R} (Y = XBoo) [(MxEMx) " + Z7'P3c1p (Y = XBoo)

R? = (Y - XBgo) [(MxEMx)* + S 'PEcip +
+ I PR (M, oMy )+ ) (Y — XBoo)

It

Il

R} — R§ = (Y = XBo0)' T PX(m,, oMy, )+a (Y = XBoo)

This shows us an internal structure of RZ a R?.

In the following we use the difference 3 - 3 for testing the null hypothesis
and we show that the same result is obtained as when we use the statistics R?

and R3.
For model without constraints the BLUE of 3 is 6 = C'X'S"'Y. Thus

we obtain:
R} — B} = (Y - XB)S™(Y - XB) - (Y - XP)'S" (Y - XB)
= R? + 2(HB + h)’(HC™'H')"'HC'X'S}(Y - X3)+
+ (HB + h)/(HC™'H')"'HC'X'S"'XC 'H(HC™'H')"}(HB + h) — R2.
Since X'E7HY - XB3) = X'27'Y - X'S7'X3 = 0, we can write
R? — R? = (HB + h)'(HC™'H')"}(HJ + h).

Thus R
B=[-C 'H'(HC'H) 'H] - C"'H'(HC'H')'h,

what means, that
Var(3 - B) = C"'H/(HC~'H')"HC" .
This implies:
(B~ B)Var(B - B) (B - B) = [C™'H'(HC™H') ™ (HB + h)]'x
[CT'H/(HC™'H')'HC™'|"[C™'H'(HC™'H') ' (HS + h)]
= (HB + h)(HC'H') " PHC ™) (Hj + n).
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Since h € M(H), the relations
PHCTH) o q
and I
PHCTH) h—n

are valid. If we use these equalities to the last term, we obtain
(B-B)'Var(B-B))" (B - B) = (HB +h)'(HC'H')" (HB + h).

Hence testing using the statistic R? — R2 is equivalent to the geometrical
approach in model without constraints.

Remark 5.1 With respect to Lemma 2.7, the testing by the statistic Ry — R3
is equivalent to the geometric approach also in the model with constraints, as
it can be seen from Theorem 3.3.
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