
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Ján Andres; Jiří Fišer; Libor Jüttner; Ivona Velecká
Population dynamics of Bithynia tentaculata

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 37 (1998), No.
1, 7--34

Persistent URL: http://dml.cz/dmlcz/120376

Terms of use:
© Palacký University Olomouc, Faculty of Science, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/120376
http://project.dml.cz


;pj7 Acta Univ. Palacki. Olomuc, Fac. rer. nat., 
W Mathematica 37 (1998) 7-34 

Population Dynamics of Bithynia 
5JC 

Tentaculata 

J A N A N D R E S 1 , J I Ř Í F l S E R 2 , LIBOR J Ú T T N E R 3 , IVONA V E L E C K Á 4 

1 Department of Mathematical Analysis and Applied Mathematics, 
Faculty of Science, Palacký University, 

Tomkova 40, 779 00 Olomouc, Czech Republic 
e-mail: andres@risc.upol.cz 

2Department of Mathematical Analysis and Applied Mathematics, 
Faculty of Science, Palacký University, 

Tomkova 40, 779 00 Olomouc, Czech Republic 
e-mail: fiser@risc.upol.cz 

3Department of Mathematical Analysis and Applied Mathematics, 
Faculty of Science, Palacký University, 

Tomkova 40, 779 00 Olomouc, Czech Republic 
e-mail: juttnerl@risc.upol.cz 

4Department of Zoology, Faculty of Science, Palacký University, 
tř. Svobody 26, 771 46 Olomouc, Czech Republic 

e-mail: velecka@risc.upol.cz 

(Received January 30, 1998) 

Abstract 
Dynamics of snail populations are analyzed both qualitatively and 

quantitatively. Starting from the concrete measured data in the form 
of tables, the modelling logistic-type equations have been determined at 
first. These are then examined as deterministic and random dynamical 
systems under various constraints. Finally, the results obtained from such 
a mathematical analysis are interpreted in biological terms. 
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1 Introduction 
First of all, let us introduce those facts consisting with previous biological knowl­
edge, which have arisen during the construction of the models (see [6]). 

• The life time of an individual is estimated at one to three years. The 
majority of population is biennial. 

• Individuals of species B.t. are gonochorists. The ratio of males to females 
in the population during year is not precisely known. We suppose that it 
is 1 : 1 . 

• Both mating and egg laying time are dependent on water temperature. In­
dividuals begin to mate sporadically as soon as the water temperature is 
about 10°C, the biggest part of population reproduce when the water tem­
perature increases (about 18-20°C). Embryonal evolution of individuals 
takes from two to four weeks and depends mainly on a water temperature. 
Egg capsules appear from the beginning of May until the end of August, 
mostly in July. Usually there are 10-35 eggs in an egg capsule. 

• Individuals do not reach maturity in the year they are born and only 
reproduce the next year. This fact is essential for following introduced 
models. 

• Species B.t. frequently occur in beta-mezosaprobic waters (waters with a 
mean measure of organic pollution). 

• There is no macrovegetation in the study site. Snails prefer a bottom with 
stones sized 250-500 cm 2 . 

• Individuals feed on detritus (remains of vegetable and animal bodies de­
posited on the bottom as soft silt) and are able to obtain food by water 
filtering and thus are relatively resistant to food shortage. This ability 
enables individuals to live in high concentrations in a small area. 

Exact data for predation pressure, migration and intraspecific competition 
are not known at present. We do not pay attention to the following two factors: 

• Predation pressure. It is true that snails have natural enemies at any given 
locality. The smallest individuals, those which are not yet reproducing in 
a given year, are more vulnerable to exposed to predation pressure. That 
is why the predation is mostly projected into large values of mortality of 
young individuals. 

• Migration. Large movement on the part of individuals were not observed. 

We present measured numbers of individuals in size categories at each sample 
and water temperature T°C. These data describe the situation in the riffle and 
respond to the | m 2 bottom area (see [6]). 
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numbeг of individuals in äІZЄ CІ ass 

1 No. date T I II III IV v VI VII Total 

1 29/6/1992 19 0 1 2 3 9 8 0 23 

! o 23/7/1992 21 270 92 3 1 34 38 2 440 

3 2/9/1992 19 54 116 39 13 11 19 0 252 

í 4 5/10/1992 13 12 72 22 11 17 12 0 146 

5 10/11/1992 4 0 35 18 8 7 6 3 77 

6 16/12/1992 2 1 1 0 2 0 0 0 4 

7 20/1/1993 2.5 4 7 2 1 6 5 0 25 

8 26/2/1993 1 0 1 1 0 1 1 0 4 

9 1/4/1993 3.5 0 2 0 0 1 1 0 4 

10 3/5/1993 13 0 8 10 7 15 5 1 46 

11 7/6/1993 18 250 1 6 8 4 11 0 280 

12 19/7/1993 19 252 253 14 3 10 44 0 576 

13 31/8/1993 17 81 200 81 41 15 14 0 432 

Let us introduce the employed terminology: 

• Dens i ty of the population. Number of individuals on the unit of area. 
In this case it is | r a 2 . 

• Fertility of the population. Ability of population to increase. It is 
occurrence count of new individuals. Relative fertility b is defined as the 
ratio of the number of new individuals ANb over time At to the number 
of all individuals N, consequently b = T ^ J -

• Mortal ity of the population. Mortality of individuals in population. 

Relative mortality is defined in a similar way: d = | ~ - - . 

The ratio of males to females in the population is not known at present. 
Therefore, we are working with average values related to one individual in the 
population. 

The following three models are valid to periodic environments. 

2 ls t model 

We present this model mainly to analyse the random influences affecting the 
population which is possible in this case. As we see in the 2nd model, which is 
rather more complicated, it is nearly impossible to perform such an analysis. We 
introduce numerical simulations of spreading these influences for that reason. 
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2.1 Model construc t ion and its analysis 

We add the following hypotheses to the basic assumptions: 

• We do not distinguish individuals from different size classes. 

• Number of adult individuals will not change during the breeding period. 

The second assumption, although not applicable in the first case, is ac­
ceptable, because the number of adult individuals is essential only during the 
breeding period (when their deaths on high numbers are not observed). Young 
do not mature in the same year (that is why they do not reproduce) and most 
of population borne in the previous year reach adult age during the winter and 
spring before the beginning of the reproduction period. 

For random influence analysis, we separate birth and death of individuals. 
This is possible because young individuals do not reproduce and have no effect 
on the population dynamics at the year, when they were born and since adult 
individuals do not die during the reproduction period. 

Notation: 

• t is the variable indicating time (years), 

• x(t) is the number of all individuals in time t, 

• x'(t) is the change of individuals number in time z, 

• k > 0 is the constant corresponding to the average eggs number of the egg 
capsule, 

• r(t) is the continuous 1-periodic function of environmental "suitability". 
The function k r(t) determines an increase (real size egg capsules) in t imer, 

• x0 > 0 is the constant corresponding to the number of adult individuals, 
which begin to mate, 

• the continuous function l(t), defined over the reference interval [0,1], is 
the function describing a survival over time t (in %). 

The appropriate model looks as follows 

x(t) = l(t) x0(l + k f r(r) dr), t € [0,1]. 
Jo 

One can readily check that the function x0 + kx0 Lr(t) dt solves the initial 
value problem 

x'(t) = x0kr(t), x(0) = £0, t € [0,1]. 

This means, that the change of individuals number is proportional to the func­
tion defining an increase, the number of individuals which begin to mate and to 
the egg capsules size. 
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The solution in time t > 0 takes the form 

ъ{ť) = æ0 

лi -jLtJ /•*—[*] 

l{l){l + k r{t)dt) l{t-[t]){l + к r{t)dt). 
Jo J Jo 

The symbol [t] means an integer part of t. From this we can see that the solution 
x{t) is 1-periodic if and only if 

/(1)(1 + * / r(í)tft) = 
jo 

Moreover, it is stable, but not asymptotically stable. If c > 1. then x{t) —> oo 
as t ^ oo, if c < 1. fJjen #(£) —> 0 as t —> oo. 

2.2 Numerical modelling 

2.2.1 E s t i m a t i o n of funct ion r(l) 

Let i? denote the percentage of eggs hatched (« 0.9). Function 

rt*) 
It 

describes the intensity of egg capsules laid by one adult individual at time t. 
Number 

t.+i 

ijr(t)dt=^Гi 

is the average number of egg capsules laid by one individual during the time 
[ti,ti+i]. 

We compute values r,-, i = 1, . . . , n — 1 in the following way: the number 
of new individuals (in the first size class I, see exordial table) divided by R 
corresponds to the sum of all eggs laid during the time interval [ti,U + 1]. We 
divide this number by the number of adult individuals and by the average egg 
capsule size to obtain r?-. Then we use Histosplines (see Appendix) for the data 
r», i = 1 , . . . , n — 1. The eventual function r{t) is from the C^-class and 

/

t i + i 

r{t) dt — r{, i = 1 , . . . , n — 1. 

The values ti, i = 1 , . . . , n are the sampling instants. The actual values have 
to be a bit higher than the measured data, because some small individuals 
would have died before the sampling took place. These values were obtained by 
extrapolation. 
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The graph of function r(t): 

2.2,2 E s t i m a t i o n of f u n c t i o n l(t) 

We have at our disposal the numbers xti of individuals in samples, which will 
be used to construct the function /(/). Let Si be the ratio of the number of 
individuals which survive to another sample i + 1 to the number of individuals 
in sample i. Values si can be approximated by the ratio of the numbers at 
column "Total" (raws i, i + 1). Thus /(t»-n) = s\S2 .. .st", J(^i) = V 

So, we obtain the values of function l(t) at several points. These points are 
fitted by a cubic spline (see Appendix), which already gives rise to the desired 
function l(t): 

л , , Ţ_ 
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Letting, e.g. xo = 50, k = 20, the mollusc population would evolve in the 
following way (vertical axis: number of individuals, horizontal axis: time in 
years): 

2.3 R a n d o m influences 

Various accidental influences affect the population. For example, changes in 
seasonal water temperature are not same every year, but move in a certain 
interval. Population mortality and fertility l(t), kr(t) may also be influenced. 
Moreover, the initial state of population xo is not defined accurately. In such a 
case, there is not one, but a whole set of possible solutions. 

Assume that the initial value number of individuals xo, the average egg 
number in egg capsules k, the suitability function r(t) at each time t and the 
mortality function l(t) at each time t are all noimally distributed random vari­
ables with a certain mean value and variance. 

Denote 
F(t,zoik9lli...,lnirii...1rn-i) = x(t), 

and 

/ ( s o , M n , r i , . . . , r n - - i ) = F(l5£o,Mi,...,/n,ri,...,rn_i) = #(1). 

To determine the dynamics of our model, it is sufficient to observe value 
x(l), i.e. the initial state of the population for the next year. The mean value 
is f(fj). We take into account both the bias and the variance of this random 
variable (see e.g. [3]). 

Definition 1 Denoting by ® the Kronecker product, we can define 

а<g>аi 

j — times 
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Denoting still (observe that x is a column vector) 

/м = дx 

m d2f(x) d2f(x) d2f(x) 

dx\dx'' dx-zdx'''"' dxndx' 

C denotes the transposition) it will be very useful to recall the following theo­
rems. 

Theorem 1 ([3]) Let f(x) : Rn —> R1 be a function which can be represented 
by an infinite Taylor series on some domain D and JJL, JJ, + e £ D. Then 

00 1 \ f f) V ® /(/. + e) = /(A.) + £ - | j j J 7 J /OOJe*. 
Now, let either (i) or (ii) be satisfied: 

(i) A function /( . ) : Rn -> R1 can be represented by a Taylor series on a 
domain D. Let Sj C [aj, bj]) where —oo < aj < bj < oo, j = 1 , . . . , n 

n 
and S = n 5j C D, where Sj is the support of the probability measure, 

i=i 
given by the distribution function Fj(.) : R1 -* R1 of the j t h component 
of random vector e = // — \x. 

(ii) A function f(.):Rn-± R1 is a polynomial of an arbitrary (finite) degree 
and all statistical moments of the random vector ju = fj, + e exist (in this 
case S can be even Rn). 

As a consequence of conditions (i) or (ii) the random variable f(ji) possesses 
all statistical moments and the series 

OO -. 

2-J "ÏÏ 
3 = 1 J' 

_д_ 
дx' /(/*) 

converges uniformly on S and absolutely for any e £ S (in detail cf. [3]). 
In the sequel, let the symbol E express the mean value under the probability 

measure considered. Let 

E(e) = 0, E(eef) = E, E[e eg) (eef)] = <j>, E[(eef) eg) (eef)] = ^. 

Denote 62 = vec(E), S3 = vec(</>), 64 = vec(VJ)> where vec(A) means the ( T r i ­
dimensional column vector given by the columns of the mxn matrix A. ordered 
one under another. 

If e - Nn(0,E), then E(e) = 0, E(eef) = E. Letting {E}^- = cr.-j, then 

S3 = 0 and {S^ij^j = Vij&kj + <ri}k<rj,i + Vi^o-j^-
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Theorem 2 ([3]) Under the assumptions (i) or fc\ 

oo oo oo 

b -= J > # , V = £ £ « ® «'j)(Sj+r - Sj ® *r), 
j=2 r=lj=l 

where b is the bias and V is the variance of f(p) and 

J - 1 (d V* 
*'=Ţì\ßP* f{x) 

X = (I 

To compute the bias and the variance of #(1). the function r(t) is piece-wise 
approximated by lines. If hi = ^+i - U, i = 1 , . . , , n - 1, where U are the 
sampling instants, then 

П+I-ГІ^ 
r(i)\[U,ti+1) = r, + '^h_ t, t<=[0,hi}. 

After an arrangement, we get 

x(l) =x0ln 

k ( !£i \ 
1 + 2 I rlltl + 2 ^ r»'(A«'-l + l1«') + rn^"- l I 

We know from the measured data, used in a numerical modelling, that h = 
(0.156, 0.09, 0.063, 0.123, 0.115, 0.115, 0.1, 0.093, 0.145), xQ = 50, /„ = 0.07, 
It = 20, r = (0, 0, 0.007, 0.6 2.07, 3.42, 1.5, 0.11, 0.001, 0). Value /„ is the value 
1(1). 

Suppose, that XQ, /n , &, r«- are mutually independent normally distributed 
random variables with the above cited mean values and standard deviations 
aXo = 2, ain = 0.003, ak = 1 and E r = diag(0, 0, 0, 0.002, 0.08, 0.14, 0.06, 
0.004,0, 0), for example. 

Under these assumptions, the mean value of x(l) is p, = 60.3461 and the 
variance of x(l) is V = 22.8405. The bias b is zero because of the form of x(l) 
and the assumptions of independence of random variables. The calculation was 
performed by means of the software Mathematica 2 .2 . 

Another possible method consists in a numerical simulation. This was done 
by means of the software Matlab 5.0. After 10000 realizations, we obtain 
that the mean value is fi = 60.7007 and the variance is V = 22.4525, which 
corresponds well with the values detected analytically. In the following graph, 
we can see experimentally estimated density of the random variable #(1), which 
gives a new initial state, i.e. x(l) = XQ: 
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0.09 

0.08 

0.07 

0.06 

ч0.05 
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Г0.04 
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0.01 

20 30 

mean value JL =60.7027 

i variance o 2 =22.5568 

40 60 90 100 

3 2nd model 

We do not separate mortality and fertility in this model. For that reason, this 
model is more accurate than the previous one. 

3.1 Model construction and its analysis 

Let us take the same assumptions as for the 1st model, but understand surviv­
ability (or mortality) by another way. 

We can also use the same notation, but 

• l(t) this time represents the continuous 1—periodic function describing a 
decrease in time t. 

The appropriate model reads as 

x'(t) = kx0r(t)-l(t)x(t), x{0) = xo, <G[0,1]. (1) 

The change in the number of individuals in time t is defined by the product of 
the function describing an increase, the number of individuals which begin to 
mate and by the egg capsule size, reduced by the number of perished individuals. 

T h e o r e m 3 The initial value problem (1) has a unique solution x(t). Ifl(t)> 

r(t) are C2-functions, then x(t) is continuous on the interval [0,oo) and 
x(t)€C3(\j,j+l]),j€N. 

Proof The solution takes the form 

.(*) XQ (íefori^d*kr(r)dr+l)e-fÓl^dT, t G [0,1]. 
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Denoting 

Гo*Г)đГ(j\ГаWkr{т)dт+\ (2) 

we have for t > 0 that 

x(i) = a?0 c
L Je Jo I / e J o kr(r)dr-flj. 

The symbol [z] means, as usual, the integer part of t. It can be seen from 
here that again x(t) is l~periodic if and only if c = 1, Moreover, x(t) is stable, 
but not asymptotically stable. If c > 1, then x(t) —> oo as t —> oo, if c < 1, ^beri 
a?(̂ ) -> 0 05 ^ —> oo, 

3.2 Numerical modelling 

3.2.1 Estimation of function l(t) 

The function r(t) has the same meaning as in the 1st model, but l(t) is different. 
To estimate Z(r), we need the exact knowledge of population evolution x(t) in 
the course of at least one year. It follows immediately from (1) that 

< • ( * ) 

kxor(t) xf(t) 

x(t) x(t) ' 

In view of x(t), x'(t) and previously estimated function r(t), the desired l(t) can 
be then computed. 

Nevertheless, since we have not at our disposal suitable x(t)) we use the one 
from the first model. In this case the result is the following: 
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If, e.g. XQ = 50, k = 20, then the mollusc population evolves as follow; 
(vertical axis: number of individuals, horizontal axis: time in years) 

1400 

1200 

1000 r 

3.3 Random influences 

Assume that the functions r(t), l(t) are piece-wise linear, i.e. 

r(t)\[ti,ti+1] = ri + r i + 1 ~ r i t , t€[0,hi], 

h+i — h J *(*)l[t,,..+ł]=*.+ ^ Ч -є[o,л.] 

where r3-, /;, i = 1, . . . , n are given values. 
Under the given assumptions, 

where 

Г 1 / 

/ ł(r) dr = - í łi/ii -f- ] P h(Ы-i -r Ы) + InK-

j ľ 1 X l « љ r(r)rfr s = £ 1 j í* ł X + T 'W љ [r. + Гi+LZІІ,] dr, 

pti + T çti pti + T 

/ i(г) cíг = / ř(г) ciг + / i(г) dг 
jO jO jť; 

= I 'ìAi + SЫfy-i + fcí) + /'As'-1 1 + liT + 2Лľ(ř-+i - ř ' ) r 2 
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Thus, we obtain the final form of x(l): 

•(1) XQЄ 

1 + 
л _ i Jo 

where 

c . + / i т + 5 7 V ľ ( / t + 1 - . . > 2 

i - 1 

. r t + i - Гi 
Гi -f- ~ — r 

-MiAi -f^/ j-fA^i +hj) + lihi-i), ci = 0 . 
J=2 

We know that t = (0, 0.156, 0.246, 0.31, 0.43, 0.548, 0.663, 0.762, 0.855, 1), 
xQ = 50, * = 20, r = (0, 0, 0.007, 0.6, 2.07, 3.42, 1.5, 0.11, 0.001, 0), I = (0.05, 
0.2, 0.4, 0.7, 1.8, 4.5, 8.9, 8, 6.7, 0.7). Values £ 0 ,k , r ; are the same as in the 
1st model. Vector t contains the sampling instants, hi = U+i — t t , t =- 1 , . . . , 9, 
and vector / contains the function values of l(t) at time x, i.e. U = l(t{). Let 
#o, h, k, r t be mutually independent normally distributed random variables 
with the above cited mean values and the standard deviations <JXO = 2, cr^ = 1, 
£ r = diag(0, 0, 0, 0.002, 0.08, 0.14, 0.06, 0.004, 0, 0), and E/ = diag(0, 0.001, 
0.016, 0.028, 0.072, 0.18, 0.35, 0.32, 0.27, 0.028), for example. 

The analytical way of computing both the bias and the variance is already 
at this elementary stage (see the form of x(l) above) complicated. 

After 10000 realizations, we obtain numerically that the mean value of x(l) 
is /i = 61.7700 and the variance of x(l) is V = 27.0644. The bias of random 
variable x(l) is defined as 

b=E[fm-m, 
and its value is 2.0244. 

The values of density f(x0) can be sketched as follows: 

U.UO 

meanvalue #=61.4746 

0.07 ľ variance cŕ =27.5061 

0.06 s -

0.05 1 
ÿ 0 0 4 

• -

0.03 -

0.02 1 -

0.01 

n , . J , л • 
20 30 40 50 60 90 100 
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Applying this model, the population may increase permanently. Therefore. 
we make the correction in the 3rd model. 

4 3rd model 
We will consider three modifications in this section. They will differ in their 
interpretation of intraspecific competition, which has been neglected until now. 

4.1 Model construct ion and its analysis 

We add the following hypotheses to the basic assumptions: 

• There is an intraspecific competition among the individuals. 

Let the used symbols have the same meaning as in the 2nd model and let 

• / > 0 be a constant proportional to intraspecific competition, 

• f(v) be a continuous function describing the intensity of competition 
caused by one individual living at time t — v, where t is the current time. 

The appropriate models follow 

x'(t) = kx0 r(t) - l(t)x(t) - fx2(t), x(0) = xo, (3) 

x'(t) = k xQ r(t) - l(t)x(t) - fx(t)x(t - r ) , x(t) = g(t), t € [-r, 0], (4) 

x'(t) = kx0r(t)-x(t)(l(t) + f J f(s)x(t-s)ds), x(t) = g(t)} t £ ( -oo,0] , 

(5) 
where g(t),f(s) are given functions. 

The related theorems about the uniqueness of solutions for the initial state 
value problems hold quite analogously to Theorem 3 . 

Setting f(s) = S(s — r) in integro-differential equation (5), where 8(t) is 
the Dirac rf-function, we obtain model (4) and, in particular for r = 0, model 
(3). Frequently, function f(s) is taken in the form f(s) = ae~~as (so-called 
exponential forgetting of the model). 

Letting 

y(t)= í s-(в)ae-в<»-»>dв, 
J —OO 

we get 
y'(t) = a(x(t) - y(t)), 

by which equation (5) can be rewritten into 

x'(t) - kx0r(t) - x(t)l(t) - fx(t)y(t) 

l/(t) = a(x(t)-У(t)). ( 6 ) 
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The initial conditions are 
*(()) = <?(0) = .so, (7) 

0 ( 0 ) = / g(s)aeasds = y0. (8) 
J—OO 

Now let us study the behaviour of (3). Problem 

x'(t) = kx0r(t) - l(t)x(t) - fx2(t)y x(0) = x0, 

can be transformed to the integral form 

x(t) = x0+ / (kx0r(r) -1(T)X(T) - fx2(T))dT, 
Jo 

and for t = 1, we arrive at 

(9) 3?(l) = a;o+ / (ka?0r(r) - /(r)^(r))clr - / fx2(r)Jr. 
Jo Jo 

By the Mean Value Theorem there exists a constant x such that 

/ $X(T)X(T) dT = x I x(T)dT. 
Jo Jo 

Since fx(t) > 0 for allt E [0,1], we have x > 0. Therefore, equality (9) simplifies 
into 

x(l) = x0 + / (k£0r(r) - (/(r) + ic)x(r))dr, 
Jo 

which corresponds to the value of a solution of problem 

x'(t) = k£0r(i) - (l(t) + x)x(t), x(0) = x0) (10) 

at time t = 1. 
We can express the solution of (10) at time t = 1 explicitly (see 2nd model), 

namely 
;c(l) = x0c, 

where 

c = e- J > T ) + ? ) dT ( ^ e / > > + * > d2fer(r)dr + l ) . 

Because of x > 0, we have that e37 > 1 and 

c = e-*e" /o1 i (T) dT ( / ' e^e/;'<*> ^ fc r ( r )d r + l ) 

< e - « e - / . ' ( ( T ) rfT (ft e»e/oT ' ( z ) d2fcr(r)dr + «*) = c, 

where c is defined in (2). 
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For a perishing population (c < I), we have that c < c and this populaUon 
extincts faster than in the 2nd model. 

For a stable population (c = 1), we have that c < 1 and such a population 
approaches to extinct. 

For a growing population, (c > 1), there are three states possible: 

• Population extincts for c < L 

• Population becomes stable fore— L 

• Population increases for c > 1, but not so quickly. 

Since x is such that 

Jo 
fx(t)x(t) dt — x / x(t)dt, 

./o 

we have that if X\(t) < # 2 ( 0 for all t G [0,1], then the corresponding constants 
ci ,C2 satisfy C\ < O2. This means that each population is bounded. 

It is possible to perform (in a more complicated way) a similar analysis for 
models (4) and (5). 

4.2 Numerical modelling 
Consider equation (4) with delay r = 1, Letting xo ~ 50, Ar = 20, / = 0.0015, 
the mollusc population evolves in the following manner (vertical axis: number 
of individuals, horizontal axis: time in years): 

Ş 300 

Now, we can introduce the diagrams showing the number of individuals in 
the population after eight years with the initial state XQ = 50 in dependence on 
/, k. The lowest value of intraspecific competition is / = 0.0025 and the highest 
one is / = O.OL 
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For equation (3): 

x10*3 

10 

9 

7 

4- 6 

5 

4 

3 

ш 
шШ ; ÏÏÏÏ^ 

_ • 

• 

' 
Ш 

. 
1 

:ÏÏïï 
; • . . , ÏÏÏÏ 

|І. 

ïïť-
І 

• ' ; , • • ' 

iЩІÏÏíïï 

20 
k 

25 

For equation (4): 
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For the model (6)-(8), we set x0 = 50, a = 1 and the initial state is a 
known function g(t), t E [-1,0], where g(t) = 0 for t < - 1 . The pop­
ulation then evolves in the following manner (first picture: number of 
individuals at the beginning of the year, second one: intensity of intraspe-
cific competition at the same time): 
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5 Generalized McKendrick-von Foerster's 
model 

At all former models, the population age structure is neglected. The model con­
structed in this section enables us to obtain the information about the popula­
tion age structure throughout the year. So this model distinguishes individuals 
of different ages, and consequently individuals of different size classes. 

In our modelled population, the dependence between age r and size class S 
can be sketched as follows (the size class I contains the individuals of shell size 
0-2 mm, the size class II contains the individuals of shell size 2-4 mm, etc.): 
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Notation: 

• r is the variable denoting an age of an individual, 

• t is the variable denoting time, 

• X(T, t) is the number of individuals at age r in time t, 

• U(T,t) is the change of the mortality coefficient of an individual at age r 
in time t, 

• V(T, t) is the change of the fertility coefficient of an individual at age r in 
time t, 

• d(T,t, U) is the mortality of an individual at age r in time t, 

• b(T,t, V) is the fertility of an individual at age r in time t, 

• <J)(T) is the initial condition <J)(T) = X(T, 0), 

• r is the maximal age. 

The form of functions U, V is necessary to be determined. We often take 

U(T,t)~ I u(T,n)x(rj,t)dn and V(T, t) — / v(T,n)x(n,t)dn. 
Jo Jo 

The function U(T, rj) characterizes the mortality change of an individual at age 
r influenced by the natural activities of an individual at age rj. The function 
v(T,rj) characterizes fertility change of an individual at age r influenced by 
the natural activities of an individual at age rj. The functions b(T,t,V) > 0, 
d(r,t,U) > 0 are defined for 0 < r < r, t > 0. Let U,V G C([0,r] x R\) 
&,deC([0,r] xR\ x R\). 

5.1 Model construction and its analysis (cf. [4]) 

In time t, the number of individuals at age 0 < r < r is equal to X(T, t). During 
the time since t to t 4- ft, the age of individuals increases to r -j- h. This means 
that the relation 

dx{T>i)= l i m *(T + h,t + h)-ZJT,t) 
v , /i->o+ h 

corresponds to the speed of the change of individuals number in the class. As­
suming that X(T, t) is differentiable, we obtain 

<MM) = ^ f i + 5 f 2 
Obviously, the change of individuals number in the class is caused by mortality 

dx(T,t) = -d(T,t,U)x(T,t). 
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After all, we get the following model which is generalization of the McKen-
drick-von Foerster one: 

^^-^•--d(T,t,U)x(T,t), (11) 

U(r,t)= f u(T,r,)x(r,,t)dr,, (12) 
Jo 

V(r,t)= f v(T,r,)x(r,,t)dr), (13) 
Jo 

with the initial condition 

X(T,0) = <I>(T), <f>(r)>0, 0(r )=O, (14) 

and with the boundary conditions 

x(0,t)= f b(T,t,V)x(T,t)dT, (15) 
Jo 

x(T,t) = Q, for V r > r , t > 0. 

To solve this problem, we require obeying the consistence condition at point 
(0,0): 

4>(0) = f b(T,0,V)4>(T)dT. 
JO 

The following theorem guarantees the existence of a solution to problem 
(11M15). 

Theorem 4 ([1]) Assume that u(T,t) = v(T,t) = 1. Let b,d,(f>,-§$r, •§£ oe 

continuous functions and let b(T,t,V) < oo, r E [0,r], t > 0, V > 0. Tften 
problem (11)-(15) has a unique solution x(T,t), for 0 < r < f, t > 0. 

It is possible to transform this problem into the form of integral equations 
(see e.g. [5]). 

Let x(T,t) be the solution of problem (11)—(15), for 0 < r < r, t > 0. For 
arbitrary r0,to : (T 0 , I 0) £ [0,r] x i?jj., define the following functions 

x(h) = a:(r0 + h,t0 + h), 

d(h) = d(T0 + h}tQ + h, U(TQ + Mo + ft))-

In view of (11), the function af(ft) satisfies the ordinary differential equation 

^hl + d(h)x(h) = 0. (16) 

This equation has a unique solution 

x(h) = l ^ 0 ) 6 ^ " . ^ ^ ) ^ } f o r h<r-T0, 
1 0 for ft > r — r0 
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generating the function #(r, t) at all points of the characteristic, passing through 
(TO,t0). 

Letting (ro,ro) = (r — £, 0), ft = r, we obtain from (17) and (14) that 

x(т,t) = ф(т - t ) e x p { - / d(т -t + т), rj,U(т - t + r],r)))dтЛ, (18) 

0 < t < T < r. This equation describes the dynamics of individuals living at 
initial time i = 0. 

Letting, furthermore, (r0,^o) = (0,/ — r) , ft = r, we obtain from (17) that 

X(T, t) = B(t - r) e x p { - / d(iy, t-T + T), U(r}} t - r + n)) J//}, (19) 

t > T, T E [0,r], where I3(i — T) = ^(O,/ — T). This equation describes the 
dynamics of individuals borne at time t — r. 

The expression 

/(T,<, U) = ~ f f i % = e x p { - j d(r),t-T + r),U(r),t-T + r)))dr)}, (20) 

l > r, represents the ratio of the number of individuals which survive until the 
age r at time t > r to those borne at the time t — r. Finally, we can put 

Zo(r,ŕ, U) = фУ_t) = e x p { - / d(т-t + r), r), U(т-t + r), т])) dr,}, (21) 

0 < t < T < T , which represents the ratio of individuals of age r surviving until 
the time t < r to those of age r — 2 at time t = 0. 

Denote by It! the reproductive value of an individual, indicating the mean 
value of descendants of one individual at time t > r during life time, namely 

R(t ,U,V)= í Ъ(т,t,V)l(т,t,r,)dт, t>Ť. 
jo 

For stable populations, it holds *that R & 1 (see [4], [5]). 
Now, substitute (18), (19) into (15). At first, letting t < r, we obtain for 

B(t) that 

fl(t)= / b(T,t,V)l0(T}t,U)4>(T-t)dT+ f 6(r,f,V)/(r,r,L7)B?(t-r)Jr. (22) 

Denote 

B"(t)= f b(T,t,V)l0(T}t,U)<f)(T-t)dTy 0 < f < r . (23) 

For r > r, (22) simplifies into 

B(t)= f b(T,t9V)l(T,t,U)B(t-T)dT. (24) 
Jo 
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Similarly, after substituting (18), (19) into (12), (13), we obtain the expres­
sions U(T,t), V(T,t). Denoting 

U-(T,t)= J U{T,T])l0(T),t,U)<f>(TJ-t)d7J, 0<t<7, (25) 

V-(r,t)=f v(T,r,)l0(T},t,U)<l>(ri-t)dr), 0<t<7, (26) 

U{T,t) = (J-(T,t)+ f u(T,r),V)l(rj,t,U)B(t-rj)di1, Q<t<7, (27) 
Jo 

U(r,t)= f U(T, r), V)l(r) J, U)B(t - r]) drj, t>T (28) 
jo 

V(T, t) = V- (r, t) + / V(T, r,, V)l(rj, t, U)B(t - rf) dt,, 0<t<r, (29) 
Jo 

we arrive at 

and 

V(т, t)= f v(т, r], VЩt), t, U)B(t - r,) dr], t > Ť. 
Jo 

(30) 

In [1], the equivalence of both systems, (11)—(15) and (20)-(30), has been 
proved. 

In case U(T, t) = V(T, t) = 0, i.e. when we do not look at the intraspecific 
competition, we obtain the following system 

B~(t)= b(T,t)l0(T,t)<j)(T-t)dT, 0<t<T, (31) 

B(t) = B~(t) + / b(T,t)l(T,t)B(t ~T)dT, 0<t<T, (32) 
Jo 

B(t)= b(T,t)l(T,t)B(t-T)dT, t>T. (33) 
Jo 

Note that the functions b,d,l,l0 do not depend on V, resp. U. 

5.2 Numerical modell ing 

5.2.1 Estimation of function 0(r) 

We determine function <J>(T) by means of histopolation. We know from the data 
that the number of individuals in the ith age class is <j>i, and that in the ith 
class the individuals are at age [T{, r 2 +i]. Thus, 

t»rI+1 

/ ф(т)dт~фi. 
JTІ 
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5.2.2 E s t i m a t i o n of funct ion d(r, t) 

Assuming that the function d = d(r, t) is piece-wise constant, we obtain from 
(20) and (21) that 

x(тђt) x(т,t) ,x(т — a,ť — а 
Л x(т-ађt-а) B ( ť - т ) ' B(t - r) 

æ(r,ť) x(тyi) x(т — ађt — а) 

= exp^ — / ddny t > r, 
Jr — a 

x(т — aђt ~ a) ф(t — r) ф(t — т) - - — CІ 

For the values ri, we get 

*(r,ť) _ „-da 
ж(r — a,ť — a) — tз 

in both cases (t > r and £ < r ) . 
From the biological assumptions done in this article, we have 

/ ddn = oo, 
Jo 

because all individuals die before reaching the age r . The function d defined 
above does not fulfil this condition, but values 

/ ' 
Jo 

ddn 

are sufficiently large to be in a reasonable agreement. 
To obtain the function d(r, t) which is sufficiently smooth, we use the quadrat­

ic Bezier surface defined over data d. For sufficiently small parts, the Bezier 
surface is close enough to the real function d(r, t). 

Now we determine the net of the values djj and the required Bezier surface 
can be spaced by these values. The idea to obtain the value dij using the table 
follows. The number of individuals at raw i + 1, column j + 1, divided by the 
number at raw i, column j , corresponds to the value exp(—dija). Value c ^ , 
which define the values ^(r ,^) , have to be infinity (i.e. sufficiently large), and 
the values dij at time t = 0 and time i = 1 are the same, d(r, 0) = <i(r, 1). We 
have to be careful, because some individuals at category (i,j) came over to the 
category (i + 1, j ) or (i + 1, j + 2) and not to the category (i + 1, j + 1), 
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5.2.3 Estimation of function b(r. t) 

The function b(T,t) takes the form b(T,t) = &i(r)r(tf), where 6.1 (r) characterizes 
dependence between the age and the reproduction ability, and r(t) is taken from 
the section (2.2.1). In our case, the function 61 (r) is guessed. For more accurate 
estimation we need another experiment. 

The functions of fertility and mortality generated from experimental data 
look as follows: 

• The function d(T,t): 

The function 6(r,t): 
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The function <j>(r) describing the population spread in time t = 0 looks as 
follows (note that the number of individuals at age [ri, T2] is JT2 <^(r)Jr): 

250 

200 r 

150 

4 0 0 

50 

-50 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

So, the evolution of the population looks as follows: 

2000 ._.•••• 
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Such a function a?(r,t), as shown in the last picture, corresponds to following 
numbers of individuals 

and the function X(T, 1), describing the population spread in time t = 1, looks 
as follows: 

250 

200 

^ 100 Һ 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

6 Concluding discussion 

The constant c has an essential influence on the behaviour of the first two 
models. It represents the rate of environmental influences on the population 
accumulated during one year period. If c < 1, the population extincts, if c > 1, 
it grows permanently and, if c = 1, it is stable. For the population of Bithynia 
tentaculata, which we observed for two seasons, the constant was c > 1. These 
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two models are substantially simplified as neither age structure nor intraspe-
cific competition were considered. The simplicity of these models allows us to 
perform a qualitative analysis under random influences. This analysis can be 
used to make a prognosis of the behaviour of the population affected by random 
influence activities. 

The 3rd model includes an intraspecific competition. Considering the in-
traspecific competition is one of the possible ways of stopping the continuous 
growth of the population. This model is more appropriate from a biological 
point of view. In this model, constant c plays the same role as constant c in the 
previous model. In such a case, c is not explicitly known, but we do know its 
upper estimate which is constant c from the 2nd model. Constant c covers, in 
addition to the environmental influences, the rate of intraspecific competition. 

The McKendrick-von Foerster model, which is rather complicated, differs 
from previous models in the way that we can use it to study the age structure 
of the population during a year. From a biological point of view, the study of 
age structure is essential. Number R (the mean value of descendants of one 
individual during its life time) plays the same role as constant c in the first 
model. 

In order to apply these models in biologically real sense to the prognosis of 
the population, it is necessary to correct them by using more extensive data sets 
which may describe a population as observed over a longer time frame. 

The authors are indebted to the anonymous referee for careful reading of the 
manuscript and to Sandra Sweeney for improving the English of the paper. 

Appendix 

Splines 

Defini t ion 2 (cf. e.g. [2]) A function Sm,<*(#), x G [a, i ] , satisfying on the set 
of knots (Ax) : a = xQ < x\ < . . . < xn < xn+\ = 6, the following properties: 

(i) Sm,d(x) is a polynomial of degree ro, at most, on each interval [arf,a?,+i], 
i = l , . . . , r c , 

(ii) Sm}d(x)eCm-d([a,b]), 

will be called the polynomial spline of degree ro > 0 with defect d > 0, m > d. 

In our situation, only quadratic and cubic splines with defect 1 are employed. 

Histopolation 
We look for a function Q(T) satisfying f*1*1 g(T) dT = &•, where gi are given 
values. The function #(r) is assumed to be a quadratic polynomial 0",(r) at each 
interval [rf, r,+i]. The coefficients of each polynomial can be determined in order 
the desired function g(T) to be from Cl[0, rn+i])-class5 i.e. we approximate 
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the function g by a quadratic spline Sn • This procedure is usually called a 
histopolation (for more details see e.g. [2]). 

Consider the set of knots n < r2 < . . . < rn < r n + i . At the knots r;,, the 
spline value is S{. Defining hi = n + i — n, i = 1, 2, . . . , n, we can put 

o-i(r) = a + bq + cq2, q = • , r G [ r , , r , + 1 ] . 

The following conditions for coefficients a,b,c can be easily obtained: 

<Ti(n) = s,, 

/T
r;+1 <ri(r)dT = # , 

0"»( r*+i) = *<+i , 

from which we come to 

a = &'£, 

C = 3{8i + 8i+i - £ # ) . 

The function #(r) constructed in this way is "only" continuous. Therefore, we 
are looking for values Si to obtain C1— continuity. 

So, we come to 
O"-_i(r,)=^(r2) 

at each knot r,-, i = 2 , 3 , . . . , n . Furthermore, we can choose two parameters 
(mostly si,sn+i, so-called boundary conditions), by which we obtain system of 
n — 1 equations for n — 1 unknowns: 

2s2(b i + h2) s3hi = d2 - sih2, 
hiSi-i 2si(hi„i + hi) Si+xhi-i = di, i = 3 , . . . , n— 1, 

hnsn-i 2s n (b n _i + /in) •=. dn — s n + i / z n „ i , 

where d; = S^-^ 1 - 1 + <7,--IJ-T^-)- Resulting values s* generate the desired func­

tion g(t). 
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