Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Vladimír Slezák
 Bases in incidence structures defined on projective spaces

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 37 (1998), No. 1, 113--121

Persistent URL: http://dml.cz/dmlcz/120378

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1998

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

Bases in Incidence Structures Defined on Projective Spaces

VLadimír SLEZÁK
Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic
e-mail: slezak@prfnw.upol.cz

(Received February 19, 1998)

Abstract

In this paper an incidence structure on the projective space is defined. The closure spaces induced by that structure are investigated, especially the problems of existence and cardinality of bases in them.

Key words: Closure spaces, incidence structures, projective spaces. 1991 Mathematics Subject Classification: 06B05, 08A35

Definition 1 Let P be a set and \mathcal{P} be a family of its subsets. Then the pair (P, \mathcal{P}) is called a closure space if \mathcal{P} is closed under intersection and $P \in \mathcal{P}$. The elements of \mathcal{P} are said to be closed sets.

If $X \subseteq P$, then the intersection $\langle X\rangle$ of all closed sets containing X is called the closure of X.

A closed set A is said to be generated by a subset $X \subseteq P$ if $A=\langle X\rangle$.
If (P, \mathcal{P}) is a closure space and $X, Y \subseteq P$, then it is obvious that $X \subseteq\langle X\rangle$, $X \subseteq Y \Rightarrow\langle X\rangle \subseteq\langle Y\rangle,\langle\langle X\rangle\rangle=\langle X\rangle$.

Definition 2 Let (P, \mathcal{P}) be a closure space. A set $X \subseteq P$ is said to be independent if $x \notin\langle X-\{x\}\rangle$ for all $x \in X$.

Remark 1 All subsets of any independent set are independent. In what follows, we put $X_{a}:=X-\{a\}$ for $a \in X$.

Definition 3 A set $B \subseteq P$ is called a basis of the closure space (P, \mathcal{P}) if B is independent and B generates P, i.e. $\langle B\rangle=P$.

Definition 4 If a basis of cardinality κ exists in (P, \mathcal{P}) and no other basis has greater cardinality, then we say that (P, \mathcal{P}) has dimension $\kappa-1$.

We will write $\operatorname{dim}(P, \mathcal{P})=\kappa-1$.
Let G and M be sets and $I \subseteq G \times M$. Then the triple (G, M, I) is called an incidence structure. If $A \subseteq G, \bar{B} \subseteq M$ are non-empty sets, then we denote

$$
A^{\uparrow}=\{m \in M \mid g \operatorname{Im} \quad \forall g \in A\}, \quad B^{\downarrow}=\{g \in G \mid g \operatorname{Im} \quad \forall m \in B\}
$$

For the empty set we put $\emptyset^{\uparrow}:=M, \emptyset^{\downarrow}:=G$. And moreover, we denote $A^{\uparrow \downarrow}:=$ $\left(A^{\uparrow}\right)^{\downarrow}, B^{\downarrow \uparrow}:=\left(B^{\downarrow}\right)^{\uparrow}, g^{\uparrow}:=\{g\}^{\uparrow}, m^{\downarrow}:=\{m\}^{\downarrow}$ for $A \subseteq G, B \subseteq M$ and $g \in G$, $m \in M$.

Let $\mathcal{J}=(G, M, I)$ be an incidence structure. Then it is easy to show (see [1]) that

$$
\begin{array}{ll}
A \subseteq C \Rightarrow C^{\dagger} \subseteq A^{\uparrow} & \text { for } A, C \subseteq G \\
B \subseteq D \Rightarrow D^{\downarrow} \subseteq B^{\downarrow} & \text { for } B, D \subseteq M \\
A \subseteq A^{\uparrow \downarrow}, B \subseteq B^{\downarrow \uparrow} & \text { for } A \subseteq G, B \subseteq M \\
A^{\uparrow \downarrow \uparrow}=A^{\uparrow}, B^{\downarrow \uparrow \downarrow}=B^{\downarrow} & \text { for } A \subseteq G, B \subseteq M \\
\left(\bigcup_{i \in L} A_{i}\right)^{\dagger}=\bigcap_{i \in L} A_{i}^{\uparrow} & \text { for } A_{i} \subseteq G, \\
\left(\bigcup_{i \in L} B_{i}\right)^{\downarrow}=\bigcap_{i \in L} B_{i}^{\downarrow} & \text { for } B_{i} \subseteq M
\end{array}
$$

Theorem 1 Let $\mathcal{J}=(G, M, I)$ be an incidence structure. If we put

$$
\mathcal{G}_{\mathcal{J}}=\left\{A \subseteq G \mid A=A^{\uparrow \downarrow}\right\}, \quad \mathcal{M}_{\mathcal{J}}=\left\{B \subseteq M \mid B=B^{\downarrow \uparrow}\right\}
$$

then the pairs $\left(G, \mathcal{G}_{\mathcal{J}}\right),\left(M, \mathcal{M}_{\mathcal{J}}\right)$ are closure spaces. (See [2].)
Remark 2 If $A \subseteq G, B \subseteq M$, then $\langle A\rangle=A^{\uparrow \downarrow}$ and $\langle B\rangle=B^{\downarrow \uparrow}$ in $\left(G, \mathcal{G}_{\mathcal{J}}\right)$ and $\left(M, \mathcal{M}_{\mathcal{J}}\right)$, respectively.

Definition 5 Let V be a vector space over a field $K, \operatorname{dim} V=n+1, n \geq 2$. The system consisting of all subspaces of V is called a projective space and will be denoted by \mathcal{P}^{n}.

Projective dimension of the subspaces of \mathcal{P}^{n} is defined with a help of dimension of the subspaces in V by the formula

$$
\operatorname{dim}_{\mathcal{P}} U=\operatorname{dim}_{V} U-1
$$

for any subspace U in V.
Then the projective space \mathcal{P}^{n} has projective dimension n. The subspaces of \mathcal{P}^{n} with projective dimension $0(1,2, n-1)$ are called points (lines, planes, hyperplanes).

The empty set is a subspace of \mathcal{P}^{n} and $\operatorname{dim} \boldsymbol{\mathcal { P }} \emptyset=-1$.
Let us denote $\sum_{i \in L} U_{i}$ the intersection of all subspaces of \mathcal{P}^{n} containing the set $\left\{U_{i} \mid i \in L\right\}$ of subspaces. Obviously, $\sum_{i \in L} U_{i}$ is also a subspace.

In what follows we will consider the notion of dimension of a subspace in the projective sense. However, we put $\operatorname{dim}_{\mathcal{P}} U:=\operatorname{dim} U$, i.e. the index \mathcal{P} will be omitted.

Remark 3 If U and V are subspaces from \mathcal{P}^{n}, then

$$
\operatorname{dim} U+\operatorname{dim} V=\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)
$$

(See [3].)
Remark 4 Let \mathcal{B} be a set of all points of the projective space \mathcal{P}^{n}. Then ($\mathcal{B}, \mathcal{P}^{n}$) is a closure space. The closed set generated by $A \subseteq \mathcal{B}$ is a subspace in \mathcal{P}^{n}, denoted by $[A]$.

Let us consider independent sets and bases in ($\mathcal{B}, \mathcal{P}^{n}$) according to Definition 3 and 4 . Every basis has cardinality $n+1$ and the closure space has dimension n.

In what follows we will not exactly distinguish between the projective space \mathcal{P}^{n} and the closure space ($\mathcal{B}, \mathcal{P}^{n}$). So, we can speak about independent sets in \mathcal{P}^{n}, bases in \mathcal{P}^{n} etc.

Remark 5 Let P be a subspace and U be a hyperplane of the projective space \mathcal{P}^{n} such that $P \nsubseteq U$. Then there exists a point of P which is not contained in U, so $\operatorname{dim}(U+P)=n$. We obtain $n-1+\operatorname{dim} P=n+\operatorname{dim}(U \cap P)$, from which $\operatorname{dim}(U \cap P)=\operatorname{dim} P-1$ follows.
Theorem 2 Let $U_{1}, \ldots, U_{k}, 1 \leq k \leq n+1$, be hyperplanes in the projective space \mathcal{P}^{n}. Then

$$
\operatorname{dim}\left(\bigcap_{i=1}^{k} U_{i}\right) \geq n-k
$$

Proof If $k=1$, then $\operatorname{dim} U_{1}=n-1=n-k$. Let $k=2$. For $U_{1}=U_{2}$ we get $\operatorname{dim} U_{1} \cap U_{2}=n-1>n-2$. If $U_{1} \neq U_{2}$, then $\operatorname{dim} U_{1} \cap U_{2}=n-2=n-k$ by Remark 5.

Let us assume that the presented inequality is valid for a certain k such that $1 \leq k<n+1$. Let $U_{1}, \ldots, U_{k}, U_{k+1}$ be hyperplanes. We put $W=\bigcap_{1 \leq i \leq k} U_{i}$ and $V=\bigcap_{1 \leq j<k+1} U_{j}$, so $V=W \cap U_{k+1}$. If $W \subseteq U_{k+1}$, then $V=W$ and $\operatorname{dim} V=\operatorname{dim} \bar{W} \geq n-k>n-(k+1)$. For $W \nsubseteq U_{k+1}$ we get $\operatorname{dim} V=$ $\operatorname{dim}\left(W \cap U_{k+1}\right)=\operatorname{dim} W-1 \geq n-(k+1)$ by Remark 5.
Theorem 3 Let $U_{1}, \ldots, U_{k}, 1 \leq k \leq n+1$, be hyperplanes in \mathcal{P}^{n} and $n_{k}=$ $\{1, \ldots, k\}$. Then the following conditions are equivalent:

$$
\begin{gather*}
\forall i \in n_{k}: \bigcap_{j \in n_{k}-\{i\}} U_{j} \nsubseteq U_{i} \tag{1}\\
\operatorname{dim} \bigcap_{j \in n_{k}} U_{j}=n-k \tag{2}
\end{gather*}
$$

Proof We denote $A=\left\{U_{1}, \ldots, U_{k}\right\}$ and $V_{A}=\bigcap_{j \in n_{k}} U_{j}$.
(1) \Longrightarrow (2) Obviously, for $k=1$ we get $\operatorname{dim} U_{1} \stackrel{n_{k}}{=} n-1=n-k$. If $k=2$, then $U_{1} \neq U_{2}$ and $\operatorname{dim} V_{A}=n-2=n-k$.

Let us assume that the condition (1) implies (2) for a certain $k, 1 \leq k<n+1$.
Let the set $B=\left\{U_{1}, \ldots, U_{k}, U_{k+1}\right\}$ has the property (1) and consider $U_{l} \in B$. Then for $W=\bigcap_{j \in n_{k+1}-\{l\}} U_{j}$ we obtain $\operatorname{dim} W=n-k$ by the assumption. From $W \nsubseteq U_{l}$ we get $\operatorname{dim} V_{B}=\operatorname{dim} W \cap U_{l}=\operatorname{dim} W-1=n-(k+1)$ according to Remark 5 .
$(2) \Longrightarrow$ (1) Let us take $U_{l} \in A$ and denote $W=\bigcap_{j \in n_{k}-\{l\}} U_{j}$.
We will assume that $W \subseteq U_{l}$. Hence, because of $V_{A} \xlongequal{=} U_{l} \cap W$, we have $V_{A}=W$ and $\operatorname{dim} W=n-\bar{k}$. However, according to Theorem 2, $\operatorname{dim} W \geq$ $n-(k-1)=n-k+1$. That is a contradiction.

Remark 6 Let U be a subspace of dimension k_{1} in the projective space \mathcal{P}^{n} and k_{2} be a natural number such that $k_{1}+k_{2}<n$. Then there exists a subspace V of dimension k_{2} such that $U \cap V=\emptyset$.

Now we define an incidence structure $\mathcal{J}=\left(G_{k}, M_{r}, I\right)$ on the projective space \mathcal{P}^{n} of dimension $n \geq 3$ in the following way:
G_{k} contains all points of a subspace of dimension k in $\mathcal{P}^{n}, 0 \leq k \leq n$, M_{r} contains all subspaces of dimension r in $\mathcal{P}^{n}, 0 \leq r \leq n-1$ and I is the incidence relation from \mathcal{P}^{n} restricted to the set $G_{k} \times M_{r}$.

Remark 7 Consider a subset $A \subseteq G_{k}$. Then A^{\dagger} is a set of subspaces from M_{r}, which contain A.

If $m \in M_{r}$, then m^{\downarrow} is a set of points of the subspace m contained in G_{k}.
We will denote subspaces $m \in M_{r}$ by usual symbols U, V etc. It means we put $m:=U$, where $m^{\downarrow}=U \cap G_{k}$. So, for $B \subseteq M_{r}$ we get $B^{\downarrow}=\left(\bigcap_{U \in B} U\right) \cap G_{k}$.

First we will consider a closure space $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$, where $\mathcal{G}_{\mathcal{J}}=\left\{A \subseteq G_{k} \mid A=\right.$ $\left.A^{\uparrow \downarrow}\right\}$. For a subset $A \subseteq G_{k}$ we obtain $[A] \subseteq G_{k}$ and $\operatorname{dim}[A] \leq k$.
(a) Assume that $\operatorname{dim}[A] \leq r$. Then $A^{\uparrow \sqrt{~}}$ is the intersection of all subspaces containing A from M_{r}. Thus $A^{\uparrow \downarrow}=[A]$ and it follows $\langle A\rangle=[A]$ for the closure $\langle A\rangle$ from $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$.
(b) If $\operatorname{dim}[A]>r$, then $A^{\uparrow}=\emptyset$. This implies $A^{\uparrow \downarrow}=G_{k}$ and $G_{k}=\langle A\rangle \neq[A]$ (for $A \subset G_{k}$).

Theorem $4 A$ set $A \subseteq G_{k}$ is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ if and only if A is independent in \mathcal{P}^{n} and $\operatorname{dim}[A] \leq r+1$.
Proof Let A be independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$. Then $a \notin A_{a}^{\uparrow \downarrow}$ for an arbitrary $a \in A$. Thus $A_{a}^{\uparrow \downarrow} \neq G_{k}$ and $\operatorname{dim}\left[A_{a}\right] \leq r$ according to (b). From (a) we obtain $\left[A_{a}\right]=A_{a}^{\uparrow \downarrow}$ and $a \notin\left[A_{a}\right]$. Hence A is independent in \mathcal{P}^{n} and we get $\operatorname{dim}\left[A_{a}\right]+1=\operatorname{dim}[A] \leq r+1$.

Conversely, let A be independent in \mathcal{P}^{n} and $\operatorname{dim}[A] \leq r+1$. Then $\operatorname{dim}\left[A_{a}\right] \leq$ r for $a \in A$ and $\left[A_{a}\right]=A_{a}^{\uparrow \downarrow}$ according to (a). Therefore, $a \notin\left[A_{a}\right]$ implies $a \notin A_{a}^{\uparrow \downarrow}$ and A is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$.

Theorem 5 In the closure space $\left(G_{k}, \mathcal{G J}_{\mathcal{J}}\right)$ there always exist bases and all of them have the same cardinality.

If $r<k$, then cardinality of bases is $r+2$. If $k \leq r$, then cardinality of bases is $k+1$.

Proof 1. Let $r<k$. First we will prove the existence of a basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$.
Because of $r+1 \leq k \leq n$, there exists a set $A \subseteq G_{k},|A|=r+2$, which is independent in \mathcal{P}^{n}. Then $\operatorname{dim}[A]=r+1$ and A is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ by Theorem 4. We obtain $A^{\uparrow \downarrow}=G_{k}$ according to (b) and so A is a basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$.

Now we show that every basis consists of $r+2$ elements. Let A be a basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$. Then A is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$. Thus A is independent in \mathcal{P}^{n} by Theorem 4 and $\operatorname{dim}[A] \leq r+1$.

Consider $\operatorname{dim}[A] \leq r$. Then $[A]=A^{\uparrow \downarrow}$ according to (a) and since A is the basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ we obtain $A^{\uparrow \downarrow}=[A]=G_{k}$. Hence $\operatorname{dim}[A]=k$ and $k \leq r$, a contradiction.

So $\operatorname{dim}[A]=r+1$ and $|A|=r+2$.
2. Let $k \leq r$. If A is a basis of the subspace G_{k} in \mathcal{P}^{n}, then A is independent in \mathcal{P}^{n} and $[\bar{A}]=G_{k},|A|=k+1$. A is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ (Theorem 4) and $[A]=A^{\uparrow \downarrow}$ according to (a). From this $A^{\uparrow \downarrow}=G_{k}$ and A is a basis of $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$.

Every basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ has cardinality $k+1$: Let A be a basis in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$. Then $A \subseteq G_{k}, A$ is independent in $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ and A is also independent in \mathcal{P}^{n} by Theorem 4 . We know that $\operatorname{dim}[A] \leq k$. Assume that $\operatorname{dim}[A]<k$. Then $\operatorname{dim}[A]<r$ and $A^{\uparrow \downarrow}=[A]$ according to (a). Hence $A^{\uparrow \downarrow} \neq G_{k}$, which implies that A is not a basis in $\left(G_{k}, \mathcal{G}_{J}\right)$, a contradiction.

So $\operatorname{dim}[A]=k$ and $|A|=k+1$.
Now we will deal with the closure space ($M_{r}, \mathcal{M}_{\mathcal{J}}$).
For $B \subseteq M_{r}$ we denote $V_{B}=\bigcap_{U \in B} U$ and $W_{B}=\bigcap_{U \in B} U \cap G_{k}=V_{B} \cap G_{k}$. Then $B^{\downarrow}=W_{B}$ and $B^{\downarrow \uparrow}=\left\{U \in M_{r} \mid W_{B} \subseteq U\right\}$.

If $B=\left\{U_{1}, \ldots, U_{l}\right\} \subseteq M_{r}$, then we put

$$
W_{B}^{i}=\bigcap_{j \in n_{1}-\{i\}} U_{j} \cap G_{k}
$$

for $i \in n_{l}=\{1, \ldots, l\}$.
We get $B_{i}^{\downarrow \uparrow}=\left\{U \in M_{r} \mid W_{B}^{i} \subseteq U\right\}$ for $B_{i}=B-\left\{U_{i}\right\}$.
Theorem 6 The set $B=\left\{U_{1}, \ldots, U_{l}\right\} \subseteq M_{r}$ is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ if and only if $W_{B}^{i} \neq W_{B}$ for all $i \in n_{l}$.

Proof If B is independent, then $U_{i} \notin B_{i}^{\downarrow \uparrow}$ for all $i \in n_{l}$. Assume that $W_{B}^{i}=W_{B}$ for certain i. Since $W_{B} \subseteq U_{i}$, we obtain $W_{B}^{i} \subseteq U_{i}$ and $U_{i} \in B_{i}^{\downarrow \uparrow}$, a contradiction.

Conversely, let $W_{B}^{i} \neq W_{B}$ for all $i \in n_{l}$. We will assume that $U_{i} \in B_{i}^{\downarrow \uparrow}$ for certain i. Then $W_{B}^{i} \subseteq U_{i}$. Since $W_{B}^{i} \subseteq U_{j} \cap G_{k}$ for all $j \in n_{l}, j \neq i$, we get $W_{B}^{i} \subseteq U_{p} \cap G_{k}$ for all $p \in n_{l}$ and $W_{B}^{i} \subseteq W_{B}$. Hence $W_{B}^{i}=W_{B}$, which is a contradiction. So $U_{i} \notin B_{i}^{\downarrow \uparrow}$ and B is independent in ($M_{r}, \mathcal{M}_{\mathcal{J}}$).

Remark 8 An incidence structure $\mathcal{J}_{1}=\left(G, M_{r}, I\right)$, where G is a set of all points of the projective space \mathcal{P}^{n}, is a special case of the structure $\mathcal{J}=$ $\left(G_{k}, M_{r}, I\right)$. Then $k=n$.

If we put $V_{B}^{i}=\bigcap_{j \in n_{l}-\{i\}} U_{j}$ for $B=\left\{U_{1}, \ldots, U_{l}\right\}$, then we get a criterion of independence as the special case of Theorem 6:

The set B is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ if and only if $V_{B}^{i} \neq V_{B}$ for all $i \in n_{l}$. From this Theorem 7 follows immediately.

Theorem 7 If a set B is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$, then it is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}_{1}}\right)$.

Theorem 8 The maximal basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$, i.e. the basis of maximal cardinality, has $r+2$ elements for $r<k$ and $k+1$ elements for $k \leq r$.

Proof 1. Let $r<k$. First we will construct a basis of cardinality $r+2$: There exists a subspace R in $G_{k}, \operatorname{dim} R=r+1$. Hyperplanes in R are subspaces of dimension r and so they belong to M_{r}. By Theorem 3, there exists a set $B=\left\{U_{1}, \ldots, U_{r+2}\right\}$ of hyperplanes in R such that $V_{B}=\bigcap_{i \in n_{r+2}} U_{i}=\emptyset$ and $V_{B}^{i}=\bigcap_{j \in n_{r+2}-\{i\}} U_{j} \neq \emptyset$ for all $i \in n_{r+2}=\{1, \ldots, r+2\}$.

Since $U_{i} \subseteq G_{k}$ for all $i \in n_{r+2}$, we obtain $V_{B}=W_{B}$ and $V_{B}^{i}=W_{B}^{i}$ for all $i \in n_{r+2}$. Hence B is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ by Theorem 6 . Because of $B^{\downarrow \uparrow}=W_{B}^{\dagger}=\emptyset^{\dagger}=M, B$ is a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$.

Now we show that every basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ has at most $r+2$ elements: Consider $U_{1}, U_{2} \in M_{r}, U_{1} \neq U_{2}$. If we put $W_{2}=U_{1} \cap U_{2}$, then $\operatorname{dim} W_{2}<r$. Let us take $U_{3} \in M_{r}$ such that $\left\{U_{1}, U_{2}, U_{3}\right\}$ is an independent set in $\left(M_{r}, \mathcal{M}_{\mathcal{J}_{1}}\right)$. Thus $W_{3}=U_{1} \cap U_{2} \cap U_{3}=W_{2} \cap U_{3}$ and $W_{2} \neq W_{3}$. This implies $\operatorname{dim} W_{3}<$ $\operatorname{dim} W_{2}$ and so $\operatorname{dim} W_{3}<r-1$.

If we continue in the same way, then $\operatorname{dim} W_{i}=r-(i-2) .\left\{U_{1}, \ldots, U_{i}\right\}$ is a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}_{1}}\right)$ if $\operatorname{dim} W_{i}=-1$. Thus $i<r+3$. So, a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}_{1}}\right)$ has maximal cardinality $r+2$.

Let $B=\left\{U_{1}, \ldots, U_{r+3}\right\}$ be a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$. Then B is independent in ($M_{r}, \mathcal{M}_{\mathcal{J}}$) and it is independent also in ($M_{r}, \mathcal{M}_{\mathcal{J}_{1}}$) by Theorem 7. However, that is a contradiction because a basis is the maximal independent set.
2. Let $k \leq r$. First we will construct a basis of cardinality $k+1$. Because of $r \leq n-1$ there exists a subspace R containing G_{k} in $\mathcal{P}^{n}, \operatorname{dim} R=r+1$. Hyperplanes in R belong to M_{r}. Each subspace in R is an intersection of hyperplanes in R. We can take hyperplanes U_{1}, \ldots, U_{m} in R such that they satisfy conditions from Theorem 3 and $G_{k}=\bigcap_{j \in n_{m}} U_{j}$ where $r+1-m=k$. There exist (by Theorem 3 again) hyperplanes $U_{m+1}, \ldots, U_{m+k+1}$ such that for $C=\left\{U_{1}, \ldots, U_{m+k+1}\right\}$ we obtain $V_{C}=\emptyset$ and $V_{C}^{i} \neq \emptyset$ for all $i \in n_{m+k+1}$. Let us put $B=\left\{U_{m+1}, \ldots, U_{m+k+1}\right\}$. Then $W_{B}=V_{B} \cap G_{k}=\bigcap_{j \in n_{m+k+1}} U_{j}=V_{C}=\emptyset$ and $W_{B}^{i}=V_{B}^{i} \cap G_{k}=V_{C}^{i} \neq \emptyset$ for all $i \in n_{m+k+1}$. It means (by Theorem 6) that B is a basis of cardinality $k+1$ in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$.

Finally we show that every basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ has at most $k+1$ elements: Consider $U_{1} \in M_{r}$. Then obviously $\operatorname{dim} U_{1} \cap G_{k} \leq k$. If $\operatorname{dim} U_{1} \cap G_{k}=k$,
then $G_{k} \subseteq U_{1}$. For $B=\left\{U_{1}\right\}$ we get $B_{1}=B-\left\{U_{1}\right\}=\emptyset, B_{1}^{\downarrow}=\emptyset^{\downarrow}=G_{k}$ and $B_{1}^{\downarrow \uparrow}=\left\{U \in M_{r} \mid G_{k} \subseteq U\right\}$. Thus $U_{1} \in B_{1}^{\downarrow \uparrow}$ and B is not independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$.

Let us assume that $\operatorname{dim} U_{1} \cap G_{k}<k, U_{2} \in M_{r}$ and the set $\left\{U_{1}, U_{2}\right\}$ is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$. If we put $W_{2}=\left(G_{k} \cap U_{1}\right) \cap U_{2}$, then $W_{2} \neq G_{k} \cap U_{1}$ and $\operatorname{dim} W_{2}<k-1$. We can continue in the same way. In the end we will obtain $\operatorname{dim} W_{i}<k-(i-1)$ which for $\operatorname{dim} W_{i}=-1$ implies $i<k+2$.

Theorem 9 The minimal basis in the closure space $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ has cardinality $d=\left[\frac{k}{n-r}\right]+1$ where $\left[\frac{k}{n-r}\right]$ denotes the integer part of the number $\frac{k}{n-r}$.

Proof We will construct the minimal basis.

1. Let $r+k<n$. Then (by Remark 6) there exists a subspace $U_{1} \in M_{r}$ such that $U_{1} \cap G_{k}=\emptyset . B=\left\{U_{1}\right\}$ is a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ and $d=1$.
2. Let $r+k \geq n$. Then $r+k=\operatorname{dim}\left(U_{1}+G_{k}\right)+\operatorname{dim}\left(U_{1} \cap G_{k}\right) \geq n$ for any $U_{1} \in M_{r}$. Hence each subspace from M_{r} has a nonempty intersection with G_{k}. Consider U_{1} such that $\operatorname{dim} U_{1} \cap G_{k}$ is minimal. Thus $\operatorname{dim}\left(U_{1}+G_{k}\right)=n$ and $\operatorname{dim}\left(U_{1} \cap G_{k}\right)=r+k-n$. We put $W_{1}=U_{1} \cap G_{k}$.
3. Let $r+(r+k-n)<n$. Then there exists a subspace $U_{2} \in M_{r}$ such that $U_{2} \cap W_{1}=\emptyset$ by Remark 6 again. We put $B=\left\{U_{1}, U_{2}\right\}$. Since $W_{B}=$ $U_{1} \cap U_{2} \cap G_{k}=W_{1} \cap U_{2}=\emptyset, W_{B}^{1}=U_{2} \cap G_{k} \neq \emptyset$ and $W_{B}^{2}=U_{1} \cap G_{k} \neq \emptyset, B$ is a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ according to Theorem 6 . In this case $d=2$.
4. Let $2 r+k-n \geq n$. Then $2 r-n+k=\operatorname{dim}\left(U_{2}+W_{1}\right)+\operatorname{dim}\left(U_{2} \cap W_{1}\right) \geq n$ for any subspace $U_{2} \in \bar{M}_{r}$. Consider $U_{2} \in M_{r}$ such that dimension of $W_{2}=\bar{U}_{2} \cap W_{1}$ is minimal. Thus $\operatorname{dim}\left(U_{2}+W_{1}\right)=n$ and $\operatorname{dim} W_{2}=2 r-2 n+k \geq 0$. This implies that every subspace from M_{r} has a nonempty intersection with W_{1}.
5. Let $3 r-2 n+k<n$. Then there exists a subspace $U_{3} \in M_{r}$ such that $U_{3} \cap W_{2}=\emptyset$. We put $B=\left\{U_{1}, U_{2}, U_{3}\right\}$. Hence $W_{B}=\left(U_{1} \cap U_{2} \cap U_{3}\right) \cap G_{k}=$ $W_{2} \cap U_{3}=\emptyset$. It is easy to see that $\operatorname{dim} W_{1} \leq \operatorname{dim}\left(U_{2} \cap G_{k}\right)$ and $U_{3} \cap\left(U_{2} \cap G_{k}\right) \neq \emptyset$. Thus $W_{B}^{1} \neq \emptyset, W_{B}^{2}=U_{3} \cap W_{1} \neq \emptyset$ and $W_{B}^{3}=U_{2} \cap W_{1} \neq \emptyset . B$ is independent in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ by Theorem 6 and because of $W_{B}=\emptyset$ it is a basis in $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ of cardinality $d=3$.
6. Let $3 r-2 n+k \geq n$. Consider $U_{3} \in M_{r}$ such that dimension of $W_{3}=$ $U_{3} \cap W_{2}$ is minimal.

If we continue in the same way, then we get the following inequalities for cardinality d of the minimal basis:

$$
d r-(d-1) n+k<n \quad \text { and } \quad(d-1) r-(d-2) n+k
$$

It follows that

$$
d>\frac{k}{n-r} \quad \text { and } \quad d \leq 1+\frac{k}{n-r}
$$

We obtained

$$
d=\left[\frac{k}{n-r}\right]+1
$$

Example 1 Let us consider the incidence structure $\mathcal{J}=\left(G_{k}, M_{r}, I\right)$ and let us find the maximal and the minimal basis in the closure space $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$.
(a) Let $n=3, r=k=1$. Then G_{k} is a line and subspaces from M_{r} are also lines. The minimal basis consists of one line U_{1} which is disjoint with G_{k}.

Cardinality of the maximal basis is $k+1=2$. This basis consists of two lines U_{1}, U_{2} which intersect in one point and each of them intersect G_{k}.
(b) Let $n=4, k=3, r=2$. Then the minimal basis has 2 elements and the maximal basis has 4 elements. Let us take a plane U_{1} such that $W_{1}=U_{1} \cap G_{k}$ is a line. Then take a plane U_{2} disjoint with W_{1}. Obviously $\left\{U_{1}, U_{2}\right\}$ is a basis in ($M_{r}, \mathcal{M}_{\mathcal{J}}$).

The maximal basis consists of 4 planes, all of them are contained in G_{k}. They all have the empty intersection but an intersection of every 3 of them is not empty.

It is easy to see that there exists also a basis of cardinality 3 .
Theorem 10 All bases in the closure space $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ have the same cardinality (i.e. the maximal basis is equal to the minimal one) if and only if some of these conditions is satisfied:
(1) $r=n-1$
(2) $k=0$
(3) $k=n, r=0$

Proof We denote $D(d)$ cardinality of the maximal (minimal) basis. First we will show that the conditions are sufficient:
(1) Let $r=n-1$. Then $d=k+1$. For $k \leq n-1$ we get $D=k+1=d$. If $k=n$, then $D=r+2=n+1=k+1=d$.
(2) From $k=0$ follows $d=1=D$ immediately.
(3) Let $k=n$ and $r=0$. Then $d=2$ and $D=r+2=2$.

Conversely, let us assume that $d=D$.
(a) Consider $k \leq r$. Then from the equality

$$
\left[\frac{k}{n-r}\right]+1=k+1
$$

follows

$$
\left[\frac{k}{n-r}\right]=k \leq \frac{k}{n-r}
$$

This yields $k=0$ or $n-r \leq 1$, thus $r \geq n-1$. Because of $r \leq n-1$, we get $r=n-1$.
(b) Let $k>r$. We distinguish two cases:

1. If $k=n$, then the equality $d=D$ means

$$
r+2=\left[\frac{n}{n-r}\right]+1
$$

From this

$$
r+1 \leq \frac{n}{n-r} \quad \text { which is equivalent to } n r+n-r^{2}-r \leq n
$$

This yields $r(n-1-r) \leq 0$. Since $r \leq n-1$, only two possibilities remain: $r=0$ or $r=n-1$.
2. For $k<n$ we obtain

$$
r+1=\left[\frac{k}{n-r}\right]
$$

This is equivalent to

$$
r+1 \leq \frac{k}{n-r}<\frac{n}{n-r}
$$

and from this

$$
n r+n-r^{2}-r<n \text { if and only if } r(n-1-r)<0
$$

which is not possible for any r because $0 \leq r \leq n-1$.
Remark 9 If some of the three conditions from Theorem 10 is satisfied, then all bases in the closure spaces $\left(G_{k}, \mathcal{G}_{\mathcal{J}}\right)$ and $\left(M_{r}, \mathcal{M}_{\mathcal{J}}\right)$ induced by the incidence structure $\mathcal{J}=\left(G_{k}, M_{r}, I\right)$ have the same cardinality.

References

[1] Ganter B., Wille R.: Formale Begriffsanalyse. Mathematische Grundlagen, SpringerVerlag, 1996.
[2] Machala F., Slezák V.: Incidence Structures and Closure Spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 36 (1997), 149-156.
[3] Baer R.: Linear Algebra and Projective Geometry. New York, 1952.
[4] Ohn C.: Notes on Dimensional Closure Spaces. J. Combin. Theory A 55 (1990), 140-142.

