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Abstract 

In this paper we give some relationship between the initial problem 
and the Hascak's boundary value problems for linear differential equation 
of neutral type. 

K e y words : Linear differential equations with delay, initial value 
problem for differential equations with delay, multipoint boundary 
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1 Introduction 
Boundary value problems (BVP-s) for ordinary differential equations have been 
studied in many papers under various types of boundary conditions. However, 
the corresponding theory for differential equations with delays has not yet been 
built up. The main problem is the formulation of BVP for these equations. 
Some very interesting formulations of BVP appear in the last time (see [2]~[5], 
[9]-[12]). The purpose of this paper is to give some relationship between the 
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initial value problem and the Hascak's BVP-s for linear differential equation of 
neutral type ([3], [4]). 

Consider the following n-th order differential equation with delay of neutral 
type 

n m 

£ ( n )( t) + a ( 0 * ( n ) ( ^ n > l (1) 
«=i i = i 

with continuous coefficients a(t), bij(t), i = l , 2 , . . . , n ; j = 1,2, . . . , m and 
delays Ao(t) > 0, Aij(t) > 0 on interval (a, 6). 

Moreover let 

|a(t) |<A<l, IM*)I<% (2) 
for all t in a compact interval I = (a, 6) i = 1 , . . . , n; j = 1 , . . . , m. 

Define the function \ °y 

m 

The initial value problem (IVP) for (1) is defined as follows: Let to G (a, b) 
and let a continuous initial vector function $>(t) = (4>0(t), <f>i(t),..., <f>n(t)) be 
given on the initial set 

n m 

-3...--UU-#u-C 
i=zlj = l 

where 
£<J

o := 0 - &ij(t) : * - Aij(t) <t0,te (t0i b)} U {r0}, 

i = 1,2,. . . ,n ; j = 1,2, . . . , m and 

£t°o := {t - A o ( 0 : t - A0(t) < t0 l t € <*o, 6)} U {*0}. 

We have to find the solution #(£) of the equation (1) defined on interval (t0,b) 
which satisfies the conditions 

xw(t0) = 4>k(t0), fc = 0 , l , . . . , n - l , 

xW(t - Aij(t)) = <£*(* - A y (0) if * - Ay( t ) < <o, (4) 

i = l , . . . , n ; j = l , . . . , m ; k = 0 , 1 , . . . , n - 1, 

s ( n )(to) = M * o ) , 

^ ( n ) ( t - A o ( O ) - 0 n ( t - A o ( O ) i f t - A 0 ( * ) < * o . (5) 

Paper [5] presents following theorem: 

T h e o r e m 1 Let the coefficients a(t), bij(t), % = 1,2, . . . , n; j = 1, 2 , . . . , m ana1 

£be delays Ao(t) > 0, Aij(t) > 0 of (1) be continuous on (to,b) and let the 
initial vector function $(t) be continuous and bounded on Et0- Then the initial 
value problem (1), (4), (5) has exactly one solution on the interval (to,b). 
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We shall now introduce some definitions and notations which will be needed 
on the sequel: 

A vector function 3> is called admissible if it is continuous and bounded on 
its domain of definition. 

Let to G (a, b), let an admissible vector function 

* W = WoW^l(<) i - - -»^nW) 

defined on Eto be given and let r0 G { 0 , 1 . . . , n} . Then 

H(*0,$,r0) := { (^0W, . . . ,< , i ro - lW)^roW+ c 0 J - . - J ^nW+Cn. - ro ) • 

Ci 6 R , t = 0 , l , . . . , n - r 0 } . 

Let x(t) be a solution of (1). Then we shall write x G H(£o,$,ro) iff there 
are constants Co, c\y..., c n_ r o G R such that #(£) is determined by initial vector 
function ((j>0(t), . • • , <rV0~l (*)> <M*) + CO, • . • , <t>n(t) + Cn-ro)-

Following BVP for (1) is formulated in papers [5], [6]: 
Let J C (a, b) be interval, let 

ro, n , . . . , rp G J, r0 < rx < . . . < rp (p < n), 

r0 G { 0 , 1 , . . . , n} , r i , . . . , r p G N, r0 + rx + h rp = n + 1 

and let 

flf1 ^ tf' ^ ' ^ . . , ^ 6 1 ^ 

_*(f) = (<t>o(t),<j>i(t)}.. .,<rVi(^)) be an admissible function defined on F^0 such 
that 

<^~i(r0) = Po\ i = l , . . . , r 0 . 

The problem is to find a solution of (1), which satisfies the conditions 

x^-'Hn) = $k)\ k = l,...,rk; k=l,...,p; x € H(Tb,*,rQ). (6) 

Definition 1 (Has£ak [5]) Equation (1) is strictly disconjugate on the inter
val J, iff each its nontrivial solution which is determined by initial point ro G J 
and constant initial vector function has at most n zero point (including multi
plicity). 

Following theorems are concerning with BVP for (1). Theorem 2 is some 
reformulation of Theorem 7 of [5] and Theorem 3 is a consequence of Theorem 
3 of [6]. 

Theorem 2 Equation (1) is strictly disconjugate on the interval J iff each BVP 
for (1) has exactly one solution. 

Theorem 3 Let function a(t), bij(t) satisfies assumption (2) and 

x(b-a)<l-A. (7) 

Then the differential equation (1) is strictly disconjugate on (a,b). 
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The purpose of this note is to show a relation between the initial value 
problem (1), (4), (5) and BVP (1), (6). 

Now we shall introduce some notation which will be needed in the sequel. 
Let a function f(t) in the interval (a, 6) be given. Consider the points 

a < r 0 < T\ < . . . < Tn < b. 

Denote 

Pi - /( r0, i = 0,l,...,n. 

By difference quotient of the n-th order we shall understand (see [1] p. 17) 

n n 1 

Z>n+Hro,...,rn;̂ o,..M/?n) = [ro,...,rn] = 2 ^ f [ 7 -. 
i=0 j=o \Ti T3) 

If the function / has continuous derivatives to the n-th order (including the 
n-th order) in (a, 6), then there are numbers £&, k = 0 , . . . , n, such that 

r 0 < 6c < r/c+i 

and 

D ^ + ^ r o , . . . , T*; A>,... ,/fc) = ^ f ^ 5 fe = 0 , 1 , . . . , n (8) 

holds. 

T h e o r e m 4 Fe£ 

x ( i _ a ) < l - i 4 , (9) 

r 0 £ (a, 6) ana1 /e£ admissible function $(t) defined on Et0 be given. 
Let the boundary conditions 

r v o , r v i , . . . , r v n ; Pvo,Pvi,- •->Pvn, t! = l , 2 , . . . (fv,j3v) 

be such that 
TV0 < Tvi < . . . < Tvn, V = 1,2, . . ., 

lim rv« = t 0 , « = l , . . . , n (10) 
v—;rOO 

and 

limofc+1(r,o,-..,rl,fe;/?a;o,...,Afe)=^S^> * = 0,l,...,n. (11) 
v-foo Ar! 

Tften £/ze sequence <p(t] fv, Pv) > v = 1,2,... of solutions of the boundary value 
problem (1), (6) and the sequence ^k\t\fV)Pv)f k = 1, . . . , n; v = 1,2,... of 
their derivatives converge uniformly to the solution <p(t; to, <$) of the initial value 
problem (1), (4), (5) resp. to its derivatives (f^(t;to, $ ) , k = 1,.. . , n on {to, b) 
as v —> co. 
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Proo f Without loss of generality, we shall assume, that 

0 < Tvi- to < h< min{6 - t0,1, £=£} , % = 0 , 1 , . . . , n; v = 1,2, . . . , 

where L = max{A, Hn,..., Bnm} [see (10)]. 
From (11) we conclude that Dk+1(Tv0,..., Tvk;6v0,..., A,/c)> fe = 0 , 1 , . . . , n; 

v = 1,2, . . . are bounded and there is a positive number M such that 

| n ! . D f e + 1 ( r , o , . . . , r ^ ; / ? , 0 , . . . , / i ^ ) | < M , fc = 0 , . . . , n ; v = l , 2 , . . . (12) 

By (8) there are numbers 

£vk(Tvo, •. .,Tvk;f3v0,.. .,(3vk) e (Tv0,Tvn), v = 1,2,. . . , (13) 

such that 

flWKo ^ ^ . . . . . f e l ^ - f " ^ , (14) 
k = 0 ,1 , . . .,n; n = 1,2,... 

By (14) we have 

|^ ( /c)(to;rv,^)-~^ fe(to)| < l ^ ^ ^ o ; ^ , ^ ) - ^ ) ^ ^ ; ^ , ^ ) ! 

+ I k . L ^ 1 ^ , . . . , Tvk;pv0,..., f3vk) - <j)k(t0)\, k = 0 , . . . , n; t; = 1,2, . . . 

from where by Mean Value Theorem we have 

\<P{h)(to;fvJv) -<M'o) l < fan-h) max | ^ + 1 ) ( t ; T , , / 5 , ) | 
te(t0,to+^) 

+ |*!D*+1(7v,0,. • •, Tvk;f3v0, . . . , & * ) - ^ ( t 0 ) | , (15) 

fc*= 0 , . . . ,n— 1; t; = 1,2, . . . 
Further, by Theorems 1-3 for each (fv,J3v), v = 1,2, . . . there is unique func

tion Vv £ #(*o,$,*"o), ^v = W>t/o,.. . , ^ n ) sucn that (f(t;t0,tpv) = <p(t;fv,fiv), 
t £ {̂ o, 6), v = 1,2, . . . i.e. there are constants c„*, it = 0 , 1 , . . . , n; v = 1,2, . . . 
such that 

i>vk(t) = <t>k(t)+cvki teEto, k = 0 , l . . . . , n ; v = l , 2 , . . . (16) 

Thus the equality 

1>vk(to) = <l>k(to) + cVk, * = 0 , l , . . . , n ; v = l , 2 , . . . (17) 

holds. By (15), (16), (17) we get 

\ipvk(t) ~ M*)\ = \1>vk{t0) - <MMI < (Tun ~ t0) max \tpik+l)(t; fvJv)\ 

t£{tQ>tQ+h) 

+ \k\Dk+1(Tv0,..., Tvk; /5v0) . . . , & * ) - <M*o)|, * € £?,,, (18) 

k = 0 , . . . , n — 1; v = 1, 2 , . . . 
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To show that v̂fcOO* fc = 0 , 1 , . . . , n — 1; v = 1,2, . . . uniformly converge to 
(f>k(t) on Eto as v —*> oo it suffices to show that there is a real constants C which 
is not dependent on fv, (3V such that 

Pi(fvJv) := max | ^ ( t ; f „ , W - ^ ( i ; * 0 , < f ) ! < C , (19) 
t^\to,tQ+h) 

i = 0 , 1 , . . . ,n ; i; = 1,2, . . . By (14) we have 

\^k)(t\fvJv)-~^k)(t\t0^)\< 

^ l ^ f r f t ^ 

+ |fc!.£>*+1(T-vo, - - .,-rv*;/3v0 , - - -,^Vfc)| + |^ ( f c ) (^fc ; to ,*) | , (20) 

fc = 0 , l , . . . , n — l . Further by (12) there are constants M, Mk such that 

| k ! ^ + H ^ o , . . . , r ^ ; ^ 0 , . . . , / ? ^ ) | < M , 

\<p{k){t)to,*)\<Mk, t€(t0,to + h). 

Thus by (19), (20) we get 

Pk(fvJv) < K + hpk+x(fvJv), fc = 0 , l , . . . , n - 1 (21) 

where K = M + max{Mo, Mi, • • •, Mn„x}. From (21) we get 

Pk(fvJv) < K(l + h+.. • + hn~k'~l) + hn-kpn(fvJv)<nK + hpn(fvJv) (22) 

and 
n - l 
S£JPk(fvJv)<Kn2 + nhpn(fvJv). (23) 

On the other hand <p(t\fvJv), (p(t\tQ,<b) are solutions of (1). By (1) we have 

fo(n)(t;ftf,&)-^ 
n ra 

= - E E ^ W I ^ " 1 ^ - Aij{tY,?vJv) - ?
{n-%t - Ay(.);.0)*)]. 

»"=1 j = l 

By (11), (19) we have 

П - 1 

( l - A ) j м ( f v , Ã ) < m I ^ p Ä ( f v , Ä , ) , t> = l , 2 , . . . (24) 
fc=0 

Thus by (23) we get 

(n/ i ) - 1 ^ ^ ( r ^ Â ) - -j-2. < (l _ A^mL^PkifvJv) 
ft=0 fc=0 
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and 

k-0 

From this and (24) we conclude that 

Pk(fv,Pv) < C , k~ 0, l , . . . , n - 1; v~ 1 ,2, . . . . 

pn(fv,pv)<CmL(l~A)~\ 

By Theorems 1-3 for each (fW| ,/?„,), / = 1,2, . . . there is unique solution of 
BVP </?(£; rW|, /§Vj) and solution of IVP 

<p(t\to^vt) = ^^;^0,^o(^) + C/0, . . . ,^n~l(0 + Cj>n_i,0n(2) + Qn) 

such that <p(t;fVl,(3V{) — (p(t;t0^o(t) + Q 0 , . . .,<£n-i(*) + c/.n-i, <i>n(t) + c/n), 
2 £ (£o, ̂ o + h). We proved that 

lim <p<"k)(t0;fVlJVl) ~ (p{k\t0;to,(t>o(to), • • .,0n-i(*o),<M*o) + cn), 
/—>-oo 

k = l , . . . , n - 1. Further for ( f ^ , / ^ ) , / = 1,2,...; <p{n)(t;fVn'pVl), I = 1,2, . . . 
are equicontinuous and uniformly bounded on (tn,io + ft)- From Arzel-Ascoli 
Theorem functions (p^n\t; fVl, /?„.), / = 1,2, . . . uniformly converge on (to, *o+^)-
By (11), (14) we have 

^n(to) = n! lim Dn+1(rVl0).. . , r^ i n ; A.o, •. • , M = lim <£>(n)(&/.; fVnf3Vl) 

— (p(n\to;tOi<fio(to),.-.,<f>n~l(to),<i)n(to) + Cn) = 4>n(to) + Cn. 

From this we have cn = 0. Thus $vk(t) uniformly converge to <^(t) on Eto for 
k = 0 , l , . . . , n a s v — > o o . From this fact by theorem on continuous dependents 
of solutions on initial conditions we have that (p^(t;fvJv), k = 0 , 1 , . . . , n 
uniformly converge to (p^(t;t0l <!>) on (r0,6). 

The proof of theorem is complete. D 
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