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Abs t rac t 

An algebra A with 0 is locally coherent if for every subalgebra B of A 
and each 6 £ Con A, [0]e C B whenever B contains at least one class of 0. 
We characterize varieties of such algebras by a Mafcev condition and we 
show that these varieties are locally regular and satisfy LCUT. If a variety 
V is, moreever, permutable at 0, also the converse implication holds. 

K e y word s : Coherence, local coherence, weak coherence, regularity, 
local regularity, permutability at 0. 
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The concept of coherent algebra was introduced by D. Geiger [7] as follows: 
an algebra A is coherent if for every subalgebra B of A and each 6 £ Con A we 
have 

[b]e C B for some b e B implies [a]e £ B for each a £ B. 

In othe words, A is coherent if every its subalgebra which ccntains at least 
one congruence class is a union of congruence classes. A variety V is coherent 
if each A £ V has this property. 

It was shown by D. Geiger tha t every coherent variety is both regular and 
permutable and W. Taylor showed in [9] that the converse does not hold. One 
new condition, the so called CUT, was introduced in [1] and it was shown tha t 
C U T is independent on regularity and permutability and, morever, a variety V 
is coherent if and only if V is CUT, regular and permutable . 

Coherent varieties were investigated also by J Duda [6]. The concept of 
coherence was weakened in [2]. Let A be an algebra with a constant 0 (i.e. 0 
is a miliary term function of A alias a unary term function with the constant 

4Я 



44 Ivan CHAJDA 

value equal to 0). A is weakly coherent if for every subalgebra B of A and each 
0 G Con A we have 

[0]o C B implies [a]e € B for each a € B. 

A variety V with a constant 0 is weakly coherent if every A of V has this 
property. 

Analogously as for coherent varieties, it was proven in [2] that every weakly 
coherent variety is permutable and weakly regular (but not vice versa). One 
new condition, the so called 0-CUT was introduced and it was shown that a 
variety V is weakly coherent if and only if V is 0-CUT, weakly regular and 
permutable. Hence, we can recognize a strong conection between coherency 
and regularity and weak coherency and weak regularity. Recently, the concept 
of local regularity was introduced in [3]: 

An algebra A with 0 is locally regular if for every 8,(j) G Con A it holds 

if [a]0 = [a]^ for some a G B then [0]e = f0]</>. 

Varieties of locally regular algebras were characterized by a Mafcev condition 
and some useful examples were presented in [3]. Of course, a variety V with 0 
is regular if and only if V is both weakly regular and locally regular. 

Hence, we can search for some "local" concept of coherence which will serve 
as a counterpart of local regularity in the sense mentioned above. 

Definition 1 An algebra A with 0 is locally coherent if for every subalgebra B 
of A and each 6 £ Con .4 it holds: 

if [b]e C B for some b G B then [0]* C B. 

A variety V with 0 is locally coherent if every A G V has this property. 

One can easily check the following: 

Observation A variety V with 0 is coherent if and only if V is weakly coherent 
and locally coherent. 

Locally coherent varieties can be characterized by a Mafcev condition: 

Theorem 1 For a variety V with 0, the following are equivalent: 

(1) V is locally coherent; 

(2) there exist an n-ary term s (n > 1) and binary terms t\,... ,tn such that 
the following identities hold in V: 

tt(0,y) = y fori = l,...,n, x = s(tx(x,y),... ,tn(x,y)). 

Proof (1) =o (2): Let A = Fv(x,y) be a free algebra of V with two free 
generators x,y and let 6 = 6(x,0) G Con A Take C = [y]e and let B be a 
subalgebra of A generated by the set C. Then [y]$ C B and, by (1) we have 
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[0]e C B. Since x e [0]<9, it gives x G / 3 , i.e. there exist elements c\,... ,cn of B 
and an n-ary term s (n > 1) with 

x- = s ( c i , . . . , c n ) . 

Since Ci e Fv(x, y), there exist binary terms t\,..., tn such that Cj = ti(x, y) 
whence 

x = s(<i(z,y),...,*n(-r,3/)). 

Moreover, ti(x,y) = c; G C = [j/]»9(a,,o) which immediately implies 

U(0,y) = y for i = l , . . . , n . 

(2) => (1): Let A G V, /5 be a subalgebra of .4, 0 G Con ,4 and b e B. 
Suppose [b]e C B. If x G [0]# then (x,0) G 0 and hence 

ti(a:,6)0*i(O,&) = &, 

i.e. ti(x,b) e [b]o C B. By (2) we conclude 

x = 5(*i (x, ft),..., tn(x, b)) e B 

proving (1). Thus V is locally coherent. • 

Example 1 Let V be a variety of type (2,0) where the binary operation is 
denoted by 4- and the miliary one by 0 and let V salisfies the identities 

(x + y) + y = x and 0 -f y = y . 

Then V is locally coherent. Namely, we can set n = 2 and t\(x,y) = x + y, 
t2(x,y) = y and s(2i,22) = z\ + z2. Then, of course, t\(0,y) = y = t2(0,y) and 
s(ti(x,y),t2(x,y)) = (x + y) + y = x. 

Theorem 2 Every locally coherent variety is locally regular. 

Proof By (2) of Theorem 1 we have 

s(x, ...,x) = s(tx (0, x),..., tn(0, x))=0. 

Take 
<ii(y,x) = U(x,y) (i = l,...,n) 

and 
Pi(z1,...,zn,vi,...,vn,x,y) = s(zi,..., zn). 

Then 

Pi (Q\ (x,y),..., qn(x, y),x,..., x, x, y) = s(tx (y,x),..., tn(y, x)) = y, 

p}(x,... ,x,qx(x,y),... ,qn(x,y),x,y) = s(x,...,x) = 0. 

By Theorem 2 in [3], V is locally regular. • 

The following example shows that local regularity is essentialy weaker con
dition than local coherency: 
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Example 2 By Corollary 2.1 in [5], every uniquely complemented lattice is 
locally regular. Consider the four-element lattice as shown in Fig. 1. 

0 
Fig. 1 

Then L is locally regular. On the other hand, consider 6 G ConL given by 
the partition {0, b}, {a, 1} and a sublatice S of L given by S -= {0,a, 1}. Then 
[a]e = {a, 1} C S but b £ S and b G [0]*, i.e. [0]e £ S thus L is not locally 
coherent. 

This motivated our effort to find out a condition which should be add to 
local regularity to obtain a condition equivalent with local coherency. 

Definition 2 An algebra A with 0 has LCUT if for every subalgebra B of A, 
each 6 G Con A an every n-ary polynomial ip over A 

if [y]e C # and (p(y,..., j/) = 0 for some i/ G B then ^([j/]^) C B . 

A variety V with 0 has LCUT if each A G V has this property. 

Of course, by <p(C) we mean the set {(p(c\,... ,cn);Ci G C}. 

Theorem 3 Every locally coherent variety has LCUT. 

Proof Let V be a locally coherent variety, A G V and B be a subalgebra of A. 
Let 6 G Con .4 and <p be an n-ary polynomial over A. Suppose [y]o C B and 
(p(y,... ,y) -= 0 for some y £ B. By local coherence, also [0]# C B. Moreover, 
(p([y]e) must be contained in some congruence class of 0; since (p(y,... ,y) = 0, 
this class is [0]#, thus <p([y]o) Q [0]e C 13 and ^t has LCUT. D 

There is a natural question under what condition the local regularity and 
LCUT imply local coherency. To answer this question, we must recall the fol
lowing concept (see e.g. [8]): 

An algebra A with 0 is permutable at 0 if [0]^.^ — [O]^ holds for every twro 
congruences 6, <\> G Con A. A variety V with 0 is permutable at 0 if every A G V 
has this property. The following result was proven in [8]. 

Lemma 1 A variety V with 0 is permutable at 0 if and only if there exists a 
binary term b(x,y) such that the identities 

b(x,x) = 0 and b(x,0) = x 

hold in V. 
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Let A = (A,F) be an algebra with 0 and R be a reflexive and compatible 
relation on A (recall that R is compatible on A if R is a subalgebra of A x *4). 
Denote by #(It) the congruence of A generated by I?, i.e. 8(R) is the least 
congruence on A with I? C 6(R). Furher, denote by 

[0]R = {xeA; (0 ,x )G I?} . 

Lemma 2 For a variety V with 0, tte following conditions are equivalent: 

(a) V is permutable at 0; 

(b) for each A G V anrf ettenl reflexive and compatible relation R on A, 

[0]R - [0]e(R) • 

P roof (a) => (6): Of course, It C 0(I?) implies [0]^ C [O]^). Suppose 
x G [0]#-i. Then (0,x) G I?"1, i.e. (x,0) 6 I?, and, by (a) and Lemma 1, 

(0,ar) = (b(x,x),6(x,0)) G I? 

whence x G [0]/?. We have [Oj/j-i C [0]«. 
Now suppose y G [0]/?./?. Then (0,H) G It • I?, i.e. there is 2 G A with 

(0,2) G i? and (2,2/) G I?. Applying (a) and Lemma 1 once more, we have 

(0,y) = (b(z,b(z,0)),b(y,b(z,z))) e R 

giving y G [0]R. We have [0]R.R C [0]fl. 
Together, it implies [O]^) C [0]#. 
(6) => (a): Let A eV and 0, ^ G Con A. Clearly (j) • ip and ^ * 0 are reflexive 

and compatible relations and 9((p • V;) = 0(ip - <j>). By (b) we conclude 

[0] <£•!/; = [O](9(0-̂ ) = [O]fl(̂ .0) = [O]̂ >.0 

thus 4̂ is permutable at 0. • 

Now, we can state our result: 

Theorem 4 Let V be a variety permutable at 0. The following are equivalent: 

(J) V is locally coherent; 

(2) V has LCUT and is locally regular. 

Proof (1) => (2) by Theorem 2 and Theorem 3. 
Prove (2) =-> (1): Let A G V, (/> G Con A and C = [6]0 for some 6 G A Let # 

be a subalgebra of A and C C B. Consider the minimal congruence containing 
C x C, i.e. 6(C x C). It si trivial to show that 

9{C x C) = 6({b] x C) 

and #(C x C) has the class C. By local regularity, we have 

[O]0 = [0]^({6}xC). 
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Let x e [O]^. Then (0,x) G 6({b} x C). Since Con.>4 is compactly generated, 
there exist C l , . . . , cn E C with 

( O , x ) G 0 ( 6 , C l ) V . . . V 0 ( 6 , C n ) = 0 ( ( 6 , C l ) , . . . , ( 6 , C n ) ) . 

Since V is permutable at 0, we apply Lemma 2 to obtain 

(0 ,x )Gi?( (6 , C l ) , . . . , (6 , C n ) ) . 

By [4], there exists an n-ary polynomial </? over A with 

0 = v?(6,..., 6), x = (p(ci,..., cn). 

In account of LCUT, we conclude ip(C) C B thus also x — <p(ci,... ,C n) £ -3. 
Hence [0]^ C B, i.e. .>4 is locally coherent. • 
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