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Abstract 

A calibration problem can be described by a regression model with 
constraints on parameters. These constraints are nonlinear and thus the 
linearization procedures has been used. The problem is to find the con
ditions under which the linearization does not affect the unbiasedness of 
the estimation significantly. 

K e y w o r d s : Regression model with constraints, linearization, bias, 
measures of nonlinearity. 

1991 Mathematics Subject Classification: 62J05, 62F99 

Introduction 
One of the calibration problems is to determine the values of the parameters /3\ 
and /?2 from the measured values fi\,..., fj,n and v\,..., l/n, when simultaneously 
the relation vi = f3\ + fol^i, i -= 1 , . . . , n, is assumed. 
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Grant Agency of Czech Republic 
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Under stochastically independent measurements of the values // and v, the 
model of measurement is 

-(?)-(*!)(:)• -(vMIM.)- « 
Here £ ( Y ) IS the mean value of the observation vector (Y ) , Var (Y) is the 
covariance matrix of this vector, o\ and o\ are dispersions in the measurement 
of the values ji and v, respectively, I is the nxn identity matrix. The unknown 
parameters occur in the constraints 

10i + l*P>2 ~ v = 0, (2) 

only (here 1 = (1 , . . . , 1 ) ' G Rn). The constraints (2) are nonlinear; their 
linearization in approximate values )J>0,v0,(3\,0 and /32,n can be written in the 
form 

lA,o + Mol32,o - ^o + (/?2,oL - I ) ( *£ ) + (1, /-o) ( ^ ) = 0. (3) 

The neglected quadratic term is SfxS/32] here <S/z = /Lt — /x0, <^ = ^ - v0, 
Sf3\ =fa- 0\,o and S(32 = 02 - 02fO. 

The problem is to determine boundaries of the region where the changes of 
S/32 and S/J, cannot cause a significant bias in estimators of the parameters /?i 
and ft2. It will be shown that the relation between o\ and o2 is decisive. 

1 Notation and auxiliary statements 

The notation 

Hi = (/?2 ,0I,-I), H 2 = (l , /x0) , ^(o>,<)/?2) = o>o7?2 

will be used in the following. 

L e m m a 1.1 In the model (1) with the linearized constraints (3) the best linear 
unbiased estimators (BLUE) of the parameters ô x, Sv, S/3X and S(32 are given by 
the relations 

Sfi = X - n0 + o f ^ . M ^ o l Y - /?2,o(X - M o ) ] , 
° 1^2,0 ~r ° 2 

2 

SO = Y-v0- , 2 ^ + J ? M l l W [ Y - fc.o(X - „o )] , 

<*M = _(ßг,o 
ôßг) V l W ' V**ó-

+ l IhџCßo) (Д) [ Y-Ä.o(X-Mo)]-

Here 
- 1 M—-<«ÜІ.Ä)"(:;) 
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The variances and cross-covariance matrices of the estimators are 

°lPlo + °2 

<?\ °2 #2,0 

°\$2,0+°l' 

Varióíi) = a\ [I- -ž-P^Mhll0 , 

C0v(ófl,óv) = 2/Э2 , 2 M VMo> 

C0W *.(Й)) = -^<^>(rtk.Ä)" 
Yar(<Si>) = a\ I - , 2

 2
 2 M l i M o , 

\ alP2,0 + C72 ) 

Proof see in [1]. • 

Remark 1.2 The coefficients 2̂ 2 2f 2 and — i a l ^ 2, which occur in the 
<Tll : ,2,0"'~a"2 < 7 l ty2,0 ""<72 

estimators o~/i and <5i> show that the task of the estimation of the parameters 
/3\ and 02 can be formulated as follows. To determine /3\ and 02 1n such a way 
that the sum of squared distances of the points (JYj, If), i — 1 , . . . , n, from the 
resulting position of the line y — /3\ + 02% be minimized; the distances are given 
in the Mahalanobis norm |[ (x) || = J^ + ^-r. It means that the function 

must be minimized. 

(Yi -ßг- ß2X.. 2 
г) 

І=I °\ßl+°l 

Lemma 1.3 Let £; = Xj — X, rji = 1 \ — Y, i = 1 , . . . , n, where X — - Y^l-\ ^ , 

Y = * E . l i Y . . - ^ 
' \2 

and 0\ and /?2 minimize the function $(•,••). TTien /3i = Y — 02 X and 

2^rEr=iíi»/. i = l 

+ ч i=l j \i=l 
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Proof It holds 

дß 

ßi=Ӯ- ß 2 x 

d*{Puh) y - 2{Yj - ft - hXj 
2R2 x „2 

> '/A Y: — Ifi — / lo A i ) 

"=* Ží °ìft+<Ą 

^Mjk\ V - [*i - Pi - foXj - (Y -fa- (32X)}'2 ^ fa - ftfr)2 

=» 0(/?2) = ^ ,*2 , 2 . ,*2 2 • 
t = l ^ l ^ ^ ^2 i = l a l P 2 + ^2 

To finish the proof it is sufficient to solve the equation d(f)(/32)/d(32 = 0. • 

Remark 1.4 If the procedure for the estimators /?i and /52 from Lemma 1.1 
(with some iterations) is used, we obtain the values from Lemma 1.3. Even 
Lemma 1.3 is suitable from the numerical viewpoint, it is not suitable for an 
investigation of statistical properties because of the nonlinearity. Therefore in 
the following we will start from Lemma 1.1. In addition it is to be said that 
Lemma 1.3 cannot be used in the case of a nonlinear calibration curve, however 
Lemma 1.1 is a good basis for any form of a calibration curve. It is sufficient to 
change properly the linearized constraints. 

2 Nonlinearity of the model and linearization 
regions 

Lemma 2.1 The bias of the estimator I ~ J from Lemma 1.1 is 

Proof is obvious. • 

In the following the symbol K^ means the matrix with the properties 
Am,n-K-A = 0, KA is of the type n x [n - r(A)] and r ( K ^ ) (the rank of the 
matrix K^) = n - r(A). Obviously /Cer(A) = {u : Au = 0} = M(KA) (here 
M(-) denotes the column space of the proper matrix). 

Lemma 2.2 Let H = ( H i , H 2 ) ; then 

к„ = 

/ I, 1, -Mo\ 
#2,01, fXQ, 1 

0', -#2,0, 1 

V 0', 1, #2,0 / 
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Proof Obviously HK// = 0. With respect to our assumption r (Hi,H2) = n, 
r(H2) = 2. Since K # is the matrix of type (2n + 2) x (n + 2) and its rank is 
r(K//) = n + 2, the assertion is proved. • 

Lemma 2.3 Model (1) with the constraints (2) is, with the exception of the 
terms of the higer order than two, equivalent to the model 

E[ ţ ) = K 1 к - т i « ( K я . ч ) , (4) 

where 

5)=(Hь H 2 

&,oľ 
- I 

\ 

- 1 

i (n' ^ V í 1 ' 11 
\\/-ó->/*óí»o/ \ M Ó / / 

[(l + /ЗІ,o)I + Pi, ł ,oГ 1 , 

- T ^ ( K H K ) = - ( ^ f ) [(1 + /?2

2

i0)I + P i , M o ] - 1 ( I , l , - / X o ) « ( 0 ' , l , ^ , o K 

Proof The constraint 

Hj ( ^ ) + H 2 ( ^ ) + l « ( * M / 3 i , W = 0 

enables us to determine the parameters Sii,Sv,Sf}\ and Sfi2 in the form 

к л 1 , , 

K 2 J K + 2 T ( K ) ' 
8u 
80i : 

where r is a vector of the quadratic forms of the vector K. Since 

( H 1 , H 2 ) T + W = 0, 

we obtain 

r = U U) 

and simultaneously the vectors S^i,Sv,S/3i,Sl32 in a; can be substituted by the 
vector K//K. In our case 

and thus 
Sfl = (I, 1, -/X 0 K <*#- = (0', 1, /52,0)rv. 

The form of the matrices T and U can be verified directly from the relation 

(H ,H2) ( £ ) = ! . 
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Remark 2.4 Nonlinear models of the form (4) are investigated in [2]. Further 
investigation is restricted to the determination of the linearization region with 
respect to the bias of the estimators /3i and /?2. 

Remark 2.5 Let nxn matrix A be symmetric and positive definite and B be 
an arbitrary n x k matrix. Obviously" 

{x : x 'Ax < c2} H yVi(B) = {By : y 'B'ABy < c 2}. 

If it is necessary to determine the boundaries of the set on the right hand side 
and simultaneously the boundaries of the set {x : x'Ax < c2} can be determined 
in an easier way, then the easier way will be chosen. If some condition is 
satisfied on the set (x : x'Ax < c 2}, then it is obviously satisfied on the set 
{By : y 'B'ABy < c2} as well. This simple fact will be utilized in the following. 

L e m m a 2.6 Let a £ Rn and the quadratic form be given by the relation 

a'xy = (x',„)( i ° a ,Д Ә 

Then the matrix 

X 

У 

0, ì a 
ì a ' , 0 

= c x Є Rn, yЄR1 

has nonzero eigenvalues equal to 

Va 7a/2,-v /a 7a/2 

and the corresponding eigenvectors are 

tì 1 ta/ч/ã^ã 
V2 ,-^л. 

Proof 

det 0, 
ì - ' 
2* 

A I, 0 
\B!, o y " v o ' , 1 

By the solution of the equation 

(-1)"Л n \n — 1 -A2 + a a 

(-ІГA n \ n— 1 

-*2 + x ' = ° 
and by the verification of the equalities 

A l j = A^lj., i = 1,.2, 

the assertion is proved. D 
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T h e o r e m 2.7 / / 

SIM'SH + 8Hi < 2 e i v ^ , l = V , 
V yJVarifa) 

then \E0!)-pi\ < £ i . 

Proof With respect to Lemma 2.1 we have 

i, l V o V 1 ! f1' 
[V^ó1 ' MÓMoj J V/̂ ój 

= ([n - l'/io(n*ó/-o)" Vó1]"1> - [« - iVoíZ-óZ-o)" 1 / - ? ) - ] " 1 ! ' ^^ /^ )" 1 ] 

x Í ^ J W 2 = (l'M^lJ-'l'M^i^^. 

Regarding Lemma 2.6 

(l'Mltol)-
ll'Mlto6n6p2 = ßo X/ x •LVXpo 

{Sџ',Sß2)\ i , , . . - l H l ( 

0, iM^líťM^ir^/í/i 
KťM,.!)"'!^, 0 )\S02 

and the nonzero eigenvalues of this quadratic form are 

2 = J |v/(l'M^l)-il'M,0MMl(l'MMl)-i = ^( l 'M^l)- ! , 
1 , 2 i - | v / ( l ' M w l ) - 1 l ' M , 0 M w l ( l ' M / 1 0 l ) - ' = - i . / ( l ' M M o l ) - L 

The set of those vectors I J for which |&i| < 61, is hyperbolic cylinder 

( V , ^ 2 ) A l ( f l f 1 ' - f 2 f ^ ) ( ^ < E l , (5) 

where Ai = l / ( 2 x / l / M / i o l ) and fi and f2 are eigenvectors corresponding with 
Ai and A2 = — Ai, respectively. 

Thus if 

( o > \ % ) (fy) < 2 £ i V ^ 7 M ^ T , 

then (5) is valid and |&i| < £\. • 

R e m a r k 2.8 Since l 'M M o l = nsiri2(f), where (j) is an angle between the vectors 
1 and fji0, it is desirable to have the vector /x0 as orthogonal to the vector 1 as 
possible, i.e. l ' / i 0 should be as near to zero as possible. 
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Theorem 2.9 If 

ôџ'ôџ + ôß?2 < 2є2yJџ'0Mnџ0 = 
2є2sjаlßl0 + а, 

y/Varifo 

where M n = In,„ — ^ l ' l , then 

\b2\ = \E02) - 02\ < e2. 

Proof Analogously as in Theorem 2.7 

UÓ 1 ll,!í'07o) [ ( Í [ ) í ' 4 < J ' 3 - = ('ióM„íao)-1AióMní/ií/32 

Now Lemma 2.6 is used and the proof is finished in the same way as in Theorem 
2.7. • 

Remark 2.10 Since 

џ'0Mnџ0 = ]Г(/І(M ~ Mo)2* 
i=i 

where /x0 = ^ Y^i=\ Mo,̂  it is desirable to spread the values /Io,i, • • •, /̂ o,n on the 
as large interval as possible. 

Example 2.11 Let the values lit G {1,2,3,4,5,6,7} be measured with the ac
curacy characterized by the standard deviation o\ =0.1 and the corresponding 
values v with the same accuracy, i.e. o2 = o~i = 0.1. The approximate value of 
/?2 is /52,0 = 1. 

The linearization region for /?i (Theorem 2.7) is 

<*M "\ . £ . . ' £ . . , £/.?2 
SQ , :6/JL'6H + 6PZ < 2 . 3 6 6 £ I 
op2 

and for /?2 (Theorem 2.9) 

| f *£ \ : V*M + ^ < 10.583£21 

If ei = \yjvar{ß{) and £2 = \^Var(ß2), then 2.366ei = 10.582£2 = 0.071; 

yjvar(0\) = 0.120, yJVar02) = 0.026. The uncertainty in o> is thus decisive. 
The a priori confidence region for /x is 

{ M : ( / i - X ) V - X ) < (7^(0 ,1 - a ) } ; 

if (7i = 0.1 and 1-a = 0.95, then <7iX7(0;0.95) = 0.1407. Thus the linearization 
is not admissible, since 0.1407 > 0.071. 
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If GX = 0.01, then 0^X7(0; 0.95) = 0.00147 and the requirements on the 

linearization are satisfied very well; 2.366\J Var0i)/4 = 10.583\/Var(/?2)/4 = 
0.0071 > 0.00147. For ax = a2 = 0.048 the equality 

a?X?(0;0.95) = 2.366yVar(/51)/4 = 10.583^/ Var02)/4 

holds. (Cf. further Theorem 2.15 and Example 2.16). 

Remark 2.12 The bias in estimators of parameters is expressed usually in the 
^-multiple of the standard deviation. Since 

\/var{h) = <W,o + °\ <rm,o + o\ 
l ' M w l n-l'fx0(n'0fi0)-lij,'0l 

the linearization region (in our case it is a bail) must have the radius 

R=yj2eylo\ftfi + ol 

in order to be valid 

SH'SIJL + 6$ < 2eyjotfl i0 + a\ => \h| < ey/varifa) 

Analogously for the parameter (32 

Sfi'Sfji + S/32

2 < 2eyJal0lo + <T% =-» \b2\ < e\Jvar02). 

The linearization region for both parameters is the same; it is a certain 
advantage. 

In general the linearization region must cover the confidence region for the 
parameters S^L and 8(32 significantly. In the case that the inequalities \bi\ < 

E\l Var0i), i = 1,2, are required, it must hold 

Sџ 
6ß2 

Sџ — Sџ 
Sß2 - Sß2 

Var 
Sџ 
Sß2 

- 1 Sџ — Sџ 
òß2 - бß2 

< x ? и ( o ; i - a ) 

c { ( б ß 2 ) : 6 џ ' 6 џ + 6ß* -2єv^Ь+^ 
for a sufficiently small a. 

Lemma 2.13 It holds 

Var 
Sџ 
Sß2 

- 1 1 T 4- ^ЉЯA/í P2л°1VŤ n 02,0 -

02,0 џ'0Mn, j?џ'0Mnџ0 
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Proof With respect to Lemma 1.1 

Var(
S?\ = ( "?- ~ «$(lUMl^ -<r2/32,0Mn/Xo(/i0Mn/i0)-1 \ 

\&fa) \ -(/ioMn|i0)
a-0lMoM„/52,off?, (<TlPlfi + <T%)(n0Mn»0)-

1 ) ' 

Now the Rohde formula in the form 

/ A, B \ / ( A - B C ^ B ' ) " 1 , - ( A - B C ^ B ' ^ B C r 1 ^ 
\ B ' , C / V - C - ^ ^ A - B C - ^ ' ) - 1 , ( C - B ' A ^ B ) " 1 ) 

will be used; here 

A-BC^B'-
a4B2 a4B2 

~ ai1 " ~~ri~~Ml^ ~ '2/o2 2_! o-MnMo(MoMn/io)"VoMn. 
°lP2,0 "r" a 2 alP2,0 "+" a 2 

In the next step the equality 

Ml ) M 0 + MnMo(Mu M n^o )~ V . M I V = M n 

must be proved. 
With respect to definition 

M - = i - i ^ o ) ( , ? 1 ) ^ ; o ) " 1 ( ^ ) 

- T - (1 „ \( n + £ l W . 4 ) M n , U o ) - V o l i - i lVo^oM.Mo)- 1 \ ( 1 ' \ 
- 1 r i , ^ - ( / i 0 M n / i 0 ) - 1 / i 0 l I , (MoM^o)-1 A / * o F 

Further 

M i , w + M n / i 0 ( / t 0 M n / * 0 ) - 1 / i 0 M n = 

= I - - 1 1 ' - -- l l ,Ai0(MoMn / io)-1
tUo-ll ' + -l l ' / i0(1UoMn /x0)-1 /z0 n n n n 

+ / X 0 ( M o M n M o ) " V f j - 1 1 ' ~ Mo(Mo M nM 0 ) "Vo + M n / i 0 ( / X 0 M n ^ o ) ~ 1 M u M n 
n 

= Mn~ M n /X 0 (MoMnMo)~ V o M n + M n /Xo(MuMnMo)" V u M n = M n -

Thus we obtain 

A ~ B C B ' ~ a 1 J ~ ~~~2 T~Z2Mn = 9/321 , 9 1 + ~2~~2 T " " " 1 1 ' 

and 

a\^ + a\ n alPio + crl a\^ + a\n 

(A-BC-^')-1 = 
„2o2 . „2 4 a2 . w2,i2 , „2 

0 0 0 <T1/J2,Q + ^2 ^ l ^ . O 1 1 ' °\Pl,Q + °1 

_ °ÍPÍfi + °2l °\°j °\&l,o+°l " *jtó 
~~ ^fal 1 , 1' °\fo.o °\&l,o+°l a\fa.o 1 

1 + ,/» . / ^ V ^ °\°l y/e\(il0+*l ^ 
_ ^ |oJ__L _ ___£__ _ J_T _,_ __>„ 
— 9 9 A 9 9 9 ' 9 ™*-Tf 

G\G2 °\G2 U al a2 
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The further steps of the proof are simple and therefore they are omitted. • 

Lemma 2.14 The eigenvalues of the matrix 

Var 
öџ 
Sß2 

- 1 M+в-Џмn, ê^мnџ0 
02.0 H0Mn, -?n'oMnVo 

are 

and 

_L __. + ____ 
GІ GІ GÁ 

J[^мn^+(-V + - )] + 

(6) 

+ V [^iM»"o -(% + 04f)} +4^/_0Mnf_0 , 
Ai,2 = "• r • 

l | [ ^ M n ^ + (-W-J-)]-

- ^ / [ ^ M ^ - (^ + "-If)}" + 4^M0Mn/,0| 

Le£ \ < *-&—_--^-iI. Then the smallest eigenvalue is greater than ^_-. 

Proof Let 
b 0 = Mn^i0/y/fi'0Mnfi0, 

and Bo be a matrix of the type n x (n — 2) such that A1(bo,Bo) = M(Mn), 
b^Bo = 0, B Q B 0 = In-2,n-2- Then obviously M n = b0bQ + B 0 B Q and the 
matrix (b0 ,B0 ,1/y/n) is orthogonal. 

The vector ( J is an eigenvector of the matrix (6) with the eigenvalue 

equal to -\. 
a\ 

The columns of the matrix I ; j are also eigenvectors of the matrix (6) 

with the common eigenvalue equal to -\ H—^ . 
C\ a2 

The matrix 
^ I + f M n , ^M n Mo\_ .^ l l ' /v^- f (^ + f)BoB0,o' 

^fn'0Mn, ^n'0Mn»0J V 0', 0 

= ( (-V +J______b°' ?f V^oM^bo 
02,0 Г Ţi ^J џ'0Mnџ0Ъ'0, jzџ'0Mnџ0 
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can be expressed as 

Aififí+A2f2fS, 

where Ai and A2 are the last two not yet determined eigenvalues. 
Obviously the vectors £, i = 1,2 must be of the form -7JL-=-s==(

bo>) a n c j ^e 
V l-f y2 V ' 

equality 

(^ + ^ ) b 0 b 0 , ^ v / ^ M ^ A /b 0\ A / b 0 

Şŕx/^óMnДobó, ±tß'0Mnџ0 ) V У У 

must be satisfied. 

The last equality contains two unknowns, i.e. A and y. The quadratic equa
tion for A has two solutions, given in the assertion of the lemma. Here the 
solution is omitted, since it is elementary. 

As far as the Ai is concerned it is valid 

A, = l{l*\^M^+(oJ + ^ ) 

+ 
\ 

^ц'0Мпц0 г? + а\ 

l 2 

, л@2,0 ,*, 

T M ; M „ / J 0 + U + ^ + 
^ 

1 •-- M ßlo 

а 
TH'OMUHO ~ [-2 + —Ť 

= -MÓ M n/^0-

As far as the A2 is concerned, we have for the expression under the square 
root 

1 'vr í 1 +Ř>° 
-2 ДоМпМо - "г + —Г 
а2 \ а \ ° 2 , 

, .$1,0 / , » 
+ 4-^-HoMn/J'0 = 

- U M B ^ - §°-) 2 - 2 f -UM^0 - $*) 1 + -L+4^0Mn„0 a2 G2 ) \a2 a2 ) GX GX o2 

2^0íy*-nh*0 ^ 2 ß'oMnßo + 
'2,0 

1 J1 /*, ^ 1 
cti \ cr| a 2 / a l 

^ / l ,-_ Č2V 
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thus 

A 2 > 2 
1 / 1 ß? 

-^џ0Mnџ0 + ( -g- + - M а% 

1 . ^ к P2,o 
л i —џ0Mnџ0 + — т 

\ \а2 °2 
2а\ 

D 

Theorem 2.15 Let \ < ^nM,"^o. // 

ox « ^e-/% 0 + e ^ l o + ^ l t x U i ^ ! - «)]V (>/-X^+i(0; 1 - a)) (7) 

and a 25 sufficiently small, then 

\h\ < ey/Varifa) & |62 | < eyfvar02). 

P r o o f With respect to Remark 2.12 the radius R of the linearization region 

is R = 2eJa\f320 + 0-|. The largest semiaxis of the confidence ellipsoid for the 

vector f j is smaller than \/2aiwx n + i (0; 1 — a ) . 

if 

>/2<гу/х2

п+1(0Л-<*) « \Jte\[ď[f>lo + °l (8) 

then with respect to Remark 2.12 |bi | < syVar(Pi) and |b2 | < e\/Var(/32). 
However (7) and (8) are equivalent, what can be proved easily. D 

Example 2.16 (continuation of Example 2.11) The values of Ai and A2 for 
data from Example 2.11 are Ai = 2903.567 and A2 = 96.433 > - i - = 50. 

The following two tables enables us to imagine the proper relations between 
a\ and a 2 in order to make the linearization possible. 

Table 2.1 
x!(0;0.95) = 15.5, e = 0.25, 02 f O = 1 

V-2 0.01 0.02 0.03 0.04 0.05 0.1 0.2 1 

Ol < 0.018 0.022 0.025 0.028 0.031 0.042 0.058 0.128 

Table 2.2 
xl(0;0.95) = 15.5, e = 0.25, &>0 = 2 

0 2 0.01 0.02 0.03 0.04 0.05 0.1 0.2 1 

<Tl « 0.031 0.034 0.035 0.037 0.038 0.047 0.062 0.129 
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