Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Vladimír Slezák
 Span in incidence structures of independent sets defined on projective space

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 39 (2000), No. 1, 191--202

Persistent URL: http://dml.cz/dmlcz/120409

Terms of use:

© Palacký University Olomouc, Faculty of Science, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Span in Incidence Structures of Independent Sets Defined on Projective Space *

VLADimír SLEZÂK
Department of Algebra and Geometry, Faculty of Science, Palacký University, Tomkova 40, 77900 Olomouc, Czech Republic e-mail: slezak@prfnw.upol.cz

(Received September 13, 1999)

Abstract

As in [2], to every incidence structure we can construct an incidence structure of independent sets. In this paper an incidence structure defined by means of points and hyperplanes of a projective space is investigated. In the corresponding incidence structure of independent sets there is a span (i.e. the maximal distance of two p-element independent sets of points) determined for some $p>2$.

Key words: Incidence structure, independent set.
1991 Mathematics Subject Classification: 06B05, 08A35

Definition 1 Let G and M be sets and $I \subseteq G \times M$. Then the triple $\mathcal{J}=$ (G, M, I) is called an incidence structure ${ }^{1}$.

Let $A \subseteq G, B \subseteq M$ be non-empty sets. Then we denote

$$
A^{\uparrow}=\{m \in M \mid g I m \quad \forall g \in A\}, \quad B^{\downarrow}=\{g \in G \mid g \operatorname{Im} \quad \forall m \in B\} .
$$

For the empty set we put $\emptyset^{\uparrow}:=M, \emptyset^{\downarrow}:=G$. And moreover, we denote $A^{\uparrow \downarrow}:=\left(A^{\uparrow}\right)^{\downarrow}, B^{\downarrow \uparrow}:=\left(B^{\downarrow}\right)^{\uparrow}, g^{\uparrow}:=\{g\}^{\uparrow}, m^{\downarrow}:=\{m\}^{\downarrow}$ for $A \subseteq G, B \subseteq M$ and $g \in G, m \in M$.

[^0]Definition 2 Let $\mathcal{J}=(G, M, I)$ be an incidence structure. A sequence

$$
\left(g_{0}, m_{0}, g_{1}, m_{1}, \ldots, g_{r-1}, m_{r-1}, g_{r}\right)
$$

where $g_{i} \in G$ for $i \in\{0, \ldots, r\}, m_{j} \in M$ for $j \in\{0, \ldots, r-1\}$ and $g_{j} I m_{j}, g_{j+1} I m_{j}$ for all $j \in\{0, \ldots, r-1\}$, is called a join of elements g_{0}, g_{r}.

A positive integer r is said to be a length of a join of elements g_{0}, g_{r}. We suppose that the join (g, m, g) has a length 0 . If a join of two elements of G exists, then we say that they are joinable. The minimal length of all joins of elements $g, h \in G$ we call a distance of these elements and denote by $v(g, h)$. The maximal distance of any two elements of G is said to be a span of G and denoted by $d(G)$. If $\left|g^{\uparrow}\right|=\left|m^{\dagger}\right|=1$ for all $g \in G, m \in M$, then we put $d(G)=0$.

In what follows we denote $A_{a}:=A-\{a\}, B_{m}:=B-\{m\}$ for $A \subseteq G$, $B \subseteq M$, respectively.

Definition 3 The set $A \subseteq G$ is said to be independent in G if $a \notin A_{a}^{\uparrow \downarrow}$ for all $a \in A$.

Consider a subset $A \subseteq G$. For $a \in A$ let us put $X^{A}(a):=A_{a}^{\uparrow}-a^{\uparrow}$. Then $X^{A}(a)=\emptyset$ if and only if $a \in A_{a}^{\uparrow \downarrow} . A$ is independent in G if and only if $X^{A}(a) \neq \emptyset$ for all $a \in A$.

Prof. Machala has defined ([2], [3]) a norming mapping in incidence structures and incidence structures of independent sets.

Definition 4 Let a non-empty set $A \subseteq G$ be independent in G. If $\mathcal{X}=$ $\left\{X^{A}(a) \mid a \in A\right\}$, then for every choice $Q^{A}=\left\{m_{a} \in X^{A}(a) \mid X^{A}(a) \in \mathcal{X}\right\}$ we define a norming mapping $\alpha: A \rightarrow Q^{A}$ by the formula $\alpha(a)=m_{a}$ for all $a \in A$.

In a similar way we define: A set B is independent in M if $m \notin B_{m}^{\downarrow \uparrow}$ for all $m \in B$. Let us put $Y^{B}(m):=B_{m}^{\downarrow}-m^{\downarrow}$ for each $m \in B$. B is independent in M if and only if $Y^{B}(m) \neq \emptyset$ for all $m \in B$. Let a non-empty set $B \subseteq M$ be independent in M. We put $\mathcal{Y}=\left\{Y^{B}(m) \mid m \in B\right\}$ and $Q^{B}=\left\{g_{m} \in \bar{Y}^{B}(m) \mid\right.$ $\left.Y^{B}(m) \in \mathcal{Y}\right\}$. The mapping $\beta: B \rightarrow Q^{B}: m \mapsto g_{m}$ is a mapping norming the set B.

Theorem 1 Let $\mathcal{J}=(G, M, I)$ be an incidence structure and $A \subseteq G$ be independent. Then each norming mapping $\alpha: A \rightarrow Q^{A}$ is injective and Q^{A} is independent in M.

The dual statement also holds:
Theorem 2 Let $\mathcal{J}=(G, M, I)$ be an incidence structure and $B \subseteq M$ be independent. Then each norming mapping $\beta: B \rightarrow Q^{B}$ is injective and Q^{B} is independent in G.

For the proofs of Theorems 1 and 2 see [3].

Definition 5 Let us consider an incidence structure $\mathcal{J}=(G, M, I)$ and a positive integer $p \geq 2$. Let G^{p} and M^{p} be the sets of all independent sets of G and M of cardinality p, respectively. Then $\mathcal{J}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ is called an incidence structure of independent sets of \mathcal{J} where $A I^{p} B$ if and only if there exists a norming mapping $\alpha: A \rightarrow B$ for $A \in G^{p}, B \in M^{p}$.

Let us consider a projective space \mathcal{P}^{n} of finite dimension $n>2$ over a field K which can be uderstood as a set of all subspaces of a vector space V over K of dimension $n+1$. Projective dimension of subspaces in \mathcal{P}^{n} is defined with a help of dimension of subspaces in V by the formula $\operatorname{dim}_{\mathcal{P}} U=\operatorname{dim}_{V} U-1$ for any subspace U of V. Then the projective space \mathcal{P}^{n} has projective dimension n. The subspaces of projective dimension $0(1,2, n-1)$ are points (lines, planes, hyperplanes). The empty set is a subspace of \mathcal{P}^{n} and $\operatorname{dim}_{\mathcal{P}} \emptyset=-1$. In what follows we will consider the notion of dimension of a subspace in the projective sense. However, we put $\operatorname{dim}_{\mathcal{P}} U:=\operatorname{dim} U$, i.e. the index \mathcal{P} will be omitted. A subspace of \mathcal{P}^{n} generated by a point-set A will be denoted by [A].

As in [4], we remind the following well-known formula:
Proposition 1 If U and V are subspaces of \mathcal{P}^{n}, then

$$
\operatorname{dim} U+\operatorname{dim} V=\operatorname{dim}(U+V)+\operatorname{dim}(U \cap V)
$$

Proposition 2 Let $U_{1}, \ldots, U_{k}, 1 \leq k \leq n+1$, be hyperplanes in \mathcal{P}^{n} and let $n_{k}=\{1, \ldots, k\}$. Then the following conditions are equivalent:

$$
\begin{gather*}
\forall i \in n_{k}:\left(\bigcap_{j \in n_{k}-\{i\}} U_{j}\right) \nsubseteq U_{i}, \tag{1}\\
\operatorname{dim}\left(\bigcap_{j \in n_{k}} U_{j}\right)=n-k . \tag{2}
\end{gather*}
$$

For the proof see [4].
Let us suppose that an incidence structure $\mathcal{J}=(G, M, I)$ on the projective space \mathcal{P}^{n} is defined as follows: G is a set of all points of \mathcal{P}^{n}, M is a set of all hyperplanes of \mathcal{P}^{n} and I is an incidence relation: $x I U$ if and only if the point x lies in the hyperplane U.

For elements of M we will use symbols U, V, W, \ldots Then we suppose that $U^{\downarrow}:=U$ and so on.

Let us consider an incidence structure of independent sets $\mathcal{J}^{p}=\left(G^{p}, M^{p}, I^{p}\right)$ corresponding to \mathcal{J} where $2<p \leq n+1$.

Let $A=\left\{a_{1}, \ldots a_{p}\right\} \in G^{p}, B=\left\{b_{1}, \ldots b_{p}\right\} \in G^{p}$. We denote $U=[A], V=$ [B] and for all $i \in\{1, \ldots, p\}$ we put $A_{i}:=A-\left\{a_{i}\right\}, B_{i}:=B-\left\{b_{i}\right\}, U_{i}:=\left[A_{i}\right]$, $V_{i}:=\left[B_{i}\right]$. Obviously $\operatorname{dim} U=\operatorname{dim} V=p-1, \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=p-2$. In what follows we suppose that $a_{i} \neq b_{i}$ for all i and a line passing through the points a_{i}, b_{i} will be denoted by $c_{i}=a_{i} b_{i}$, i.e. $c_{i}=\left\{a_{i}\right\}+\left\{b_{i}\right\}$.

Theorem 3 The following statements are equivalent for two distinct independent sets $A, B \in G^{p}, 2<p \leq n$:
(1) $v(A, B)=1$.
(2) There exists a subspace W of dimension $n-p$ which intersects all the lines c_{i} and $W \cap U=W \cap V=\emptyset$.

Proof (1) $\Longrightarrow(2)$ From $v(A, B)=1$ the existence of norming mappings α, β follows with the property $\beta \alpha(A)=B$. Let us put $\alpha(A)=R$ and $\alpha\left(a_{i}\right)=Z_{i}$. Then $R=\left\{Z_{1}, \ldots, Z_{p}\right\} \in M^{p}$. We choose such a denotation that $\beta \alpha\left(a_{i}\right)=$ $\beta\left(Z_{i}\right)=b_{i}$. Since R is independent in M it follows from Proposition 2 that $\operatorname{dim} R^{\downarrow}=n-p$ and $\operatorname{dim} R_{i}^{\downarrow}=n-p+1$ for all $i \in\{1, \ldots, p\}$. If we put $W=R^{\downarrow}=\bigcap_{1 \leq i \leq p} Z_{i}$, then $W \subset R_{i}^{\downarrow}$ and W is a hyperplane in R_{i} for each i. By the assumption $\alpha\left(a_{i}\right)=Z_{i}$ where $Z_{i} \in A_{i}^{\uparrow}-a_{i}^{\uparrow}$. Hence $a_{i} \notin Z_{i}$ and $a_{i} \notin W$. We also obtain $a_{i} \in R_{i}^{\downarrow}$. Moreover, $\beta\left(Z_{i}\right)=b_{i}$ where $b_{i} \in R_{i}^{\downarrow}-Z_{i}$. The line c_{i} is contained in R_{i}^{\downarrow} and is not contained in W. Hence it intersects W in one point for each i.

Let $r \in W \cap U$. Then r is not contained in all subspaces U_{i}. Let for instance $r \notin U_{1}$. Then $U=r+U_{1}$. It is clear that $r \in Z_{1}, U_{1} \subset Z_{1}$ which implies $U \subset Z_{1}$. Thus $a_{1} \in Z_{1}$ and that is a contradiction. Therefore $W \cap U=\emptyset$ and similarly $W \cap V=\emptyset$.
$(2) \Longrightarrow$ (1) For each i we put $Z_{i}=U_{i}+W$. Since $W \cap U=\emptyset$ and $\operatorname{dim} W=$ $n-p$ it is clear that Z_{i} is a hyperplane and $a_{i} \notin Z_{i}$. Let us denote $R=$ $\left\{Z_{1}, \ldots, Z_{p}\right\}$. From $U_{i} \subseteq Z_{i}$ we get $Z_{i} \in A_{i}^{\uparrow}$ and $a_{i} \notin Z_{i}$ implies that $Z_{i} \notin a_{i}^{\uparrow}$. Thus $Z_{i} \in A_{i}^{\dagger}-a_{i}^{\uparrow}$, the mappingí $\alpha: a_{i} \mapsto Z_{i}$ is norming and R is independent in M. Since the lines c_{i} intersect W we get in proper denotation that $V_{i} \subset Z_{i}$. Obviously $b_{i} \notin Z_{i}$ and $b_{i} \in R_{i}^{\downarrow}$, that is $b_{i} \in R_{i}^{\downarrow}-Z_{i}$. Hence $\beta: Z_{i} \rightarrow b_{i}$ is a norming mapping and $\beta \alpha(A)=B$.

We put

$$
Q=\sum_{1 \leq i \leq p} c_{i}, \quad Q_{j}=\sum_{i \neq j} c_{i}
$$

Then $U+V=Q$. If we denote $\operatorname{dim}(U+V)=l$ and $\operatorname{dim}(U \cap V)=r$, then $\operatorname{dim} U+\operatorname{dim} V=2(p-1)=l+r$.

Definition 6 One says that the sets A, B are in a basic position if $v(A, B)=1$ and the subspace $U \cap V$ has minimal dimension.

Proposition 3 If the sets A, B are in the basic position, then $p \geq \frac{n+1}{2}$ if and only if $\operatorname{dim} Q=n$.

Proof Let $p \geq \frac{n+1}{2}$. Then $2 p-2 \geq n-1$ and $l+r \geq n-1$. Since r is minimal admissible and hence l is maximal admissible number, we get $l=n$. Assume that $\operatorname{dim} Q=n$. This yields $2(p-1)=n+r$ and $p=\frac{n+1}{2}+\frac{r+1}{2}$. From $r \geq-1$ we obtain $\frac{r+1}{2} \geq 0$ and $p \geq \frac{n+1}{2}$.

Proposition 4 Let the sets A, B be in the basic position. Then $p \leq \frac{n+1}{2}$ if and only if $U \cap V=\emptyset$.

Proof Let $p \leq \frac{n+1}{2}$. Then $2 p-2 \leq n-1$ and $l+r \leq n-1$. For $r=-1$ we have $l \leq n$, which is always fulfilled. From the requirement of minimality of r it follows that $U \cap V=\emptyset$. Assume $U \cap V=\emptyset$, that is $r=-1$. Then $l-1=2 p-2$ and $2 p=l+1$. Since $l \leq n$ we obtain $2 p \leq n+1$ and $p \leq \frac{n+1}{2}$.

Proposition 5 Let the sets A, B be in the basic position and $p=\frac{n+1}{2}$. Then $\operatorname{dim} Q_{j}=n-2$ for each j.

Proof Since $p=\frac{n+1}{2}$ it is clear that n is odd and $n \geq 5$. Let us put $n=2 q+1$. In Q_{j} there exist $\frac{n+1}{2}-1=\frac{n-1}{2}=q$ lines c_{i}. If R is a subspace and m is a line in \mathcal{P}^{n}, then $\operatorname{dim}(R+m) \leq \operatorname{dim} R+2$. It follows that for lines m_{1}, \ldots, m_{l} from \mathcal{P}^{n} we get $\operatorname{dim}\left(\sum_{1<i \leq n} p_{i}\right) \leq 2 l-1$. Thus $\operatorname{dim} Q_{j} \leq 2 q-1$ and from $2 q-1=n-2$ we have $\operatorname{dim} Q_{j} \leq n-2$. If $\operatorname{dim} Q_{j}<n-2$, for some j, then $\operatorname{dim} Q<n$ and that is a contradiction to $\operatorname{dim} Q=n$. Therefore $\operatorname{dim} Q_{j}=n-2$.

Proposition 6 Let the sets A, B be in the basic position and $p>\frac{n+1}{2}$. Then $\operatorname{dim} Q_{j}=n-1$ or $\operatorname{dim} Q_{j}=n-2$ and there always exists such i that $\operatorname{dim} Q_{i}=$ $n-1$.

Proof We know that $\operatorname{dim} U=\operatorname{dim} V=p-1, \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=p-2$, $Q=U+V, Q_{i}=U_{i}+V_{i}$. Moreover $\operatorname{dim} Q=n$ by Proposition 3 and hence $\operatorname{dim}(U \cap V)=2 p-n-2$. Let us show that $\operatorname{dim} Q_{i}=n-2$ iff $U \cap V=U_{i} \cap V_{i}$: Assume $\operatorname{dim} Q_{i}=n-2$. Then $\operatorname{dim} U_{i}+\operatorname{dim} V_{i}=2 p-4=\operatorname{dim} Q_{i}+\operatorname{dim}\left(U_{i} \cap V_{i}\right)=$ $n-2+\operatorname{dim}\left(U_{i} \cap V_{i}\right)$. This yields $\operatorname{dim}\left(U_{i} \cap V_{i}\right)=2 p-n-2=\operatorname{dim}(U \cap V)$. Let $U \cap V=U_{i} \cap V_{i}$. Then $2 p-4=\operatorname{dim} Q_{i}+2 p-n-2$ and $\operatorname{dim} Q_{i}=n-2$. It follows that $\operatorname{dim} Q_{i}=n-1$ iff $\operatorname{dim}\left(U_{i} \cap V_{i}\right)<\operatorname{dim}(U \cap V)$. Since there always exists such i that $U_{i} \cap V_{i} \neq U \cap V$ we obtain that always exists such Q_{i} that $\operatorname{dim} Q_{i}=n-1$.

Remark 1 If $\operatorname{dim} Q_{j}=n-1$ for certain $j \in\{1, \ldots, p\}$, then $p>\frac{n+1}{2}$: The subspace Q_{j} has maximal dimension $2 p-3$. In case of $p \leq \frac{n+1}{2}$ we get $2 p-3 \leq$ $n-2$ and $\operatorname{dim} Q_{j} \leq n-2$. That is a contradiction.

Further, let us put $x_{i}=c_{i} \cap W$ and $X=\sum_{1 \leq i \leq p} x_{i}, X_{j}=\sum_{i \neq j} x_{i}$. Then $X, X_{j} \subseteq W, Q=X+U$ and $Q_{i}=X_{i}+U_{i}$.

Proposition 7 Let the sets A, B be in the basic position. Then $\operatorname{dim} Q_{i}=n-2$ if and only if $\operatorname{dim} X_{i}=n-p-1$ and $\operatorname{dim} Q_{i}=n-1$ if and only if $X_{i}=W$.

Proof It is obvious that $\operatorname{dim} X_{i}=\operatorname{dim} Q_{i}+\operatorname{dim}\left(X_{i} \cap U_{i}\right)-\operatorname{dim} U_{i}$. If $\operatorname{dim} Q_{i}=$ $n-2$, then $\operatorname{dim} X_{i}=n-2-1-p+2=n-p-1$. Similarly, for $\operatorname{dim} Q_{i}=n-1$ we have $\operatorname{dim} X_{i}=n-p$. If $\operatorname{dim} X_{i}=n-p-1$, then $\operatorname{dim} Q_{i}=n-p-1+p-2+1=$ $n-2$ and from $\operatorname{dim} X_{i}=n-p$ we get $\operatorname{dim} Q_{i}=n-1$.

Example 1

1. Let $p=n$. Then $\operatorname{dim} Q=n$ and W is a point. Obviously $X=X_{i}=W$ for each i and thus $\operatorname{dim} Q_{i}=n-1$ for each i.
2. Consider $n=6, p=4$. It means that W is a plane. All points x_{i} cannot lie on a line. If any three points of x_{i} do not lie on a line, then $\operatorname{dim} Q_{i}=n-1=5$ for each i. All the lines c_{i} are pairwise disjoint. Let for instance x_{1}, x_{2}, x_{3} be pairwise distinct points lying on a line h in W. Then $x_{4} \notin h$. We get $\operatorname{dim} Q_{4}=$ $n-2=4$ and $\operatorname{dim} Q_{j}=5$ for all $j \neq 4$. The lines c_{i} are pairwise distinct again. Let $x_{1}=x_{2}$. Then $\operatorname{dim} Q_{3}=\operatorname{dim} Q_{4}=4$ and $\operatorname{dim} Q_{1}=\operatorname{dim} Q_{2}=5$.

Theorem 4 Let c_{1}, \ldots, c_{p} be lines for $2<p \leq n$ and $Q=\mathcal{P}^{n}$. Then the following statements are equivalent:

1. Q_{j} is a hyperplane for each $j \in\{1, \ldots, p\}$.
2. There exists precisely one subspace W of dimension $k=n-p$ which does not contain any of lines c_{i} and intersects all of them.

Proof (1) \Longrightarrow (2) Assume that $\bigcap_{i \neq j} Q_{i} \subseteq Q_{j}$ for certain j. From $c_{j} \subset$ $\bigcap_{i \neq j} Q_{i}$ we have $c_{j} \subseteq Q_{j}$ and $Q \subseteq Q_{j}$. That is a contradiction. The set $\left\{Q_{i} \mid i \in\{1, \ldots, p\}\right\}$ of hyperplanes is independent. If we put $W=\bigcap_{1 \leq i \leq p} Q_{i}$, then $\operatorname{dim} W=n-p=k$ by Proposition 2. Since $c_{j} \notin Q_{j}$ and Q_{j} is a hyperplane in \mathcal{P}^{n} we obtain that $x_{j}=c_{j} \cap Q_{j}$ is a point and $c_{j} \not \subset W$. From $c_{j} \subset \bigcap_{i \neq j} Q_{i}$ it follows that $x_{j} \in \bigcap_{1 \leq i \leq p} Q_{i}$ and $x_{j} \in W$. Thus W intersects all the lines c_{i}.

Let Z be a subspace of dimension k which intersects all the lines c_{i} and does not contain any of them. If we denote $z_{i}=c_{i} \cap Z$, then $Z^{\prime}=\sum_{1 \leq i \leq p} z_{i} \subseteq Z$. Let us put $Z_{j}=\sum_{i \neq j} z_{i}$ for each $j \in\{1, \ldots, p\}$. Then $Z_{j} \subseteq Z^{\prime}$ and $\operatorname{dim} Z_{j} \leq k$. On the lines c_{i} we select points a_{i} distinct from z_{i} and x_{i}. Let us denote $A=\left\{a_{1}, \ldots, a_{p}\right\}, A_{i}=A-\left\{a_{i}\right\}$ and $U=[A], U_{i}=\left[A_{i}\right]$. Then $Q=U+Z$, $Q_{i}=U_{i}+Z_{i}$. The set A is independent: Let $a_{i} \in A_{i}^{\uparrow \downarrow}=U_{i}$. Then $a_{i} \in Q_{i}$. Since $c_{i} \notin Q_{i}$ and Q_{i} is a hyperplane we get $a_{i}=c_{i} \cap Q_{i}=x_{i}$. That is a contradiction. Thus $\operatorname{dim} U=p-1$ and $\operatorname{dim} U_{i}=p-2$. For given i we obtain $\operatorname{dim} U_{i}+\operatorname{dim} Z_{i}=p-2+\operatorname{dim} Z_{i}=\operatorname{dim} Q_{i}+\operatorname{dim}\left(Z_{i} \cap U_{i}\right)=n-1+\operatorname{dim}\left(Z_{i} \cap U_{i}\right)$ and $\operatorname{dim} Z_{i}=n-p+1+\operatorname{dim}\left(Z_{i} \cap U_{i}\right)$. Since $\operatorname{dim} Z_{i} \leq k$ it is obvious that $Z_{i} \cap U_{i}=\emptyset$ and $\operatorname{dim} Z_{i}=k$. Hence $Z_{i}=Z^{\prime}=Z$ and $z_{i} \in Z_{i}$. Then $z_{i} \in Q_{i}$ and $z_{i} \in c_{i}$, that is $z_{i} \in \bigcap_{1 \leq i \leq p} Q_{i}=W$. This yields $Z \subseteq W$ and $\operatorname{since} \operatorname{dim} Z=k$ we get $Z=W$.
(2) \Longrightarrow (1) By the assumption $x_{i}=c_{i} \cap W$ are points. Obviously $B=$ $\sum_{1 \leq i \leq p} x_{i} \subseteq Q$ and $B_{j}=\sum_{i \neq j} x_{i} \subseteq Q_{j}$. If $\operatorname{dim} Q_{i}<n-2$, then $\operatorname{dim} Q<n$ and this is a contradiction to $Q=\mathcal{P}^{n}$. Thus $\operatorname{dim} Q_{i} \geq n-2$. Let $\operatorname{dim} Q_{i}=n-2$ for certain i. If $\operatorname{dim} B_{i}=k$, then $B_{i}=W$ and $x_{i} \in B_{i} \subseteq Q_{i}$, that is $\operatorname{dim}\left(Q_{i} \cap c_{i}\right) \geq 0$. We know that $\operatorname{dim} Q_{i}+\operatorname{dim} c_{i}=n-1=\operatorname{dim}\left(Q_{i}+c_{i}\right)+\operatorname{dim}\left(Q_{i} \cap c_{i}\right)$ which implies $\operatorname{dim}\left(Q_{i}+c_{i}\right)=n-1-\operatorname{dim}\left(Q_{i} \cap c_{i}\right)$ and hence $\operatorname{dim} Q \leq n-1$. That is a contradiction. Thus $\operatorname{dim} B_{i}=k-1$. If we select a point $y_{i} \neq x_{i}$ on the line c_{i}, then $y_{i} \notin W$ and for $W^{\prime}=y_{i}+B_{i}$ we get $\operatorname{dim} W^{\prime}=k$. Thus W^{\prime} intersects all the lines c_{i} and this is a contradiction.

Let $\operatorname{dim} Q_{i}=n$. We select points $a_{i} \in c_{i}$ distinct from x_{i} and we put $A=\left\{a_{1}, \ldots, a_{p}\right\}, A_{i}=A-\left\{a_{i}\right\}$ and $U_{i}=\left[A_{i}\right]$ again. Then $\operatorname{dim} U_{i} \leq p-2$, $\operatorname{dim} B_{i} \leq n-p$ and $Q_{i}=U_{i}+B_{i}$. From $n+\operatorname{dim}\left(U_{i} \cap B_{i}\right)=\operatorname{dim} U_{i}+\operatorname{dim} B_{i} \leq n-2$ we get $\operatorname{dim}\left(U_{i} \cap B_{i}\right) \leq-2$ which is a contradiction. Thus $\operatorname{dim} Q_{i}=n-1$.

Remark 2 Let $p \leq \frac{n+1}{2}$. Then $\operatorname{dim} Q_{j}<n-1$ foar each $j \in\{1, \ldots, p\}$ by Remark 1. If $k=n-p$, then $k \geq p-1$. If we select points $x_{i} \in c_{i}$ for $i \in\{1, \ldots, p\}$, then $\operatorname{dim}\left(\sum_{1 \leq i \leq p} x_{i}\right) \leq p-1 \leq k$. Thus there exist such subspaces of dimension k that they intersect all the lines c_{i}.

In the following propositions $8-13$ we assume that $Q=\mathcal{P}^{n}$ and $\operatorname{dim} Q_{i}=$ $n-1$ for all $i \in\{1, \ldots, p\}$. By Theorem 4 there exists a uniquely determined subspace W of dimension $n-p$ for which $W \subseteq Q_{i}$. Recall that $x_{i}=c_{i} \cap W$ for all i.

Proposition $8 U \cap W=\emptyset \Leftrightarrow a_{i} \notin W$ for each $i \in\{1, \ldots, p\}$.
Proof If $U \cap W=\emptyset$, then obviously $a_{i} \notin W$. Let $a_{i} \notin W$ for each $i \in\{1, \ldots, p\}$ and assume that $x \in U \cap W$. There exists $i \in\{1, \ldots, p\}$ such that $x \notin U_{i}$. Since U_{i} is a hyperplane in U we get $U=U_{i}+\{x\}$. Moreover, $U_{i} \subseteq Q_{i}, W \subseteq Q_{i}$ and $x \in Q_{i}$, that is $U \subseteq Q_{i}$. This implies $a_{i} \in Q_{i}$. Since $a_{i} \notin W$ we have $a_{i} \neq x_{i}$ and $c_{i}=a_{i}+x_{i}$. Now from $x_{i} \in Q_{i}$ it follows that $c_{i} \subset Q_{i}$ and $Q \subseteq Q_{i}$. That is a contradiction to $Q=\mathcal{P}^{n}$.

Proposition $9 V \cap W=\emptyset \Leftrightarrow b_{i} \notin W$ for each $i \in\{1, \ldots, p\}$.
Proposition $10 U_{i}+V=\mathcal{P}^{n} \Leftrightarrow b_{i} \neq x_{i}$.
Proof Let $b_{i} \neq x_{i}$. Then $c_{i}=b_{i}+x_{i}$. Obviously $Q_{i} \subseteq U_{i}+V$. Let $b_{i} \in Q_{i}$. Since $x_{i} \in Q_{i}$ we have $c_{i} \subseteq Q_{i}$ and $Q_{i}+c_{i}=Q \subseteq Q_{i}$ which is a contradiction. Thus $b_{i} \notin Q_{i}$ and $Q_{i}+\left\{b_{i}\right\}=\mathcal{P}^{n}$. However, $Q_{i}+\left\{b_{i}\right\} \subseteq U_{i}+V$ yields $\mathcal{P}^{n}=U_{i}+V$.

Proposition $11 V_{i}+U=\mathcal{P}^{n} \Leftrightarrow a_{i} \neq x_{i}$.
Remark 3 If $b_{i}=x_{i}$, then $U_{i}+V=Q_{i}$ and hence $\operatorname{dim}\left(U_{i}+V\right)=n-1$.
Proposition $12 U \cap V \nsubseteq U_{i} \Leftrightarrow b_{i} \neq x_{i}$.
Proof Since $U+V=Q=\mathcal{P}^{n}$ we get $\operatorname{dim}(U \cap V)=2 p-n-2$. Let $b_{i} \neq x_{i}$ which means $\mathcal{P}^{n}=U_{i}+V$. Assume that $U \cap V \subseteq U_{i}$. Then $U_{i} \cap V=U \cap V$. However, $\operatorname{dim}\left(U_{i} \cap V\right)=2 p-n-3=\operatorname{dim}(U \cap V)$ and this is a contradiction. Let $b_{i}=x_{i}$. From $U_{i} \cap V \subseteq U \cap V$ and Remark 3 we get $\operatorname{dim}\left(U_{i} \cap V\right)=2 p-n-2=\operatorname{dim}(U \cap V)$. It follows that $U_{i} \cap V=U \cap V$ and $U \cap V \subseteq U_{i}$.

Proposition $13 U \cap V \nsubseteq V_{i} \Leftrightarrow a_{i} \neq x_{i}$.

Remark 4 If $U \cap W=\emptyset$, then $a_{i} \neq x_{i}$ for each $i \in\{1, \ldots, p\}$ and thus $U \cap V \nsubseteq V_{i}$ for each $i \in\{1, \ldots, p\}$. Similarly for $V \cap W=\emptyset$. If $U \cap V \nsubseteq V_{i}$ for each $i \in\{1, \ldots, p\}$, then $a_{i} \neq x_{i}$ for each $i \in\{1, \ldots, p\}$ and $U \cap W=\emptyset$ by Proposition 8. Similarly for $U \cap V \nsubseteq U_{i}$.

Corollary 1 Let $Q=\mathcal{P}^{n}, \operatorname{dim} Q_{i}=n-1$ and $(U \cap V) \notin U_{i},(U \cap V) \nsubseteq V_{i}$ for each $i \in\{1, \ldots, p\}$. Then the sets A, B are in the basic position.

In order to determine a span of G^{p} one has to find such sets $A, B \in G^{p}$, $A=\left\{a_{1}, \ldots a_{p}\right\}, B=\left\{b_{1}, \ldots b_{p}\right\}$, that $v(A, B)$ is maximal. For brevity we suppose that $a_{i} \neq b_{j}$ for all $i, j \in\{1, \ldots, p\}$. It follows from the definition of a norming mapping that the renumbering of elements from A, B does not make any difference. If any element of A is equal to any element of B, then obviously $v(A, B)$ is not greater than by the converse assumption.

Theorem 5 In an incidence structure \mathcal{J}^{n+1} there is $d\left(G^{n+1}\right)=0$.
Proof Let $A \in G^{n+1}$. Then $X^{A}\left(a_{i}\right)=Z_{i} \in M$ for $i \in\{1, \ldots, n+1\}$. There exists a unique choice $Q^{A}=\left\{Z_{1}, \ldots, Z_{n+1}\right\}$ from the set \mathcal{X} and thus a unique norming mapping of A. Hence in \mathcal{J}^{n+1} we have $\left|A^{\uparrow}\right|=1$, similarly $\left|B^{\downarrow}\right|=1$ for all $B \in M^{n+1}$. Therefore $d\left(G^{n+1}\right)=0$.

Theorem 6 If $2(p-1)<n$, then $d\left(G^{p}\right)=2$.
Proof 1. Let $U \cap V=\emptyset$. This is equivalent to $\operatorname{dim}(U+V)=\operatorname{dim} Q=2 p-1$. Consider the lines c_{1}, \ldots, c_{p}. According to Remark 2 there exist infinitely many subspaces of dimension $n-p$ intersecting all the lines c_{i} and not containing any of them. Obviously $2 p-1=1+2(p-1)=1+(2+\ldots+2)$. It means that the subspace Q generated by lines c_{1}, \ldots, c_{p} has maximal dimension and thus for $Q_{j}=\sum_{i \neq j} c_{i}$ we get $c_{j} \cap Q_{j}=\emptyset$. If we select points $x_{i} \in c_{i}, x_{i} \neq a_{i}, b_{i}$, $i \in\{1, \ldots, p\}$, then $X=\left\{x_{1}, \ldots, x_{p}\right\}$ is an independent set: Let $x_{j} \in X_{j}^{\uparrow \downarrow}$ where $X_{j}=X-\left\{x_{j}\right\}$. Since $X_{j}^{\uparrow \downarrow} \subseteq Q_{j}$ we get $x_{j} \in c_{j} \cap Q_{j}$ and it is a contradiction. Hence the set X generates a subspace R of dimension $p-1$. To Q there exists a complementary subspace S, i. e. $Q+S=\mathcal{P}^{n}, Q \cap S=\emptyset$. Then $2 p-1+\operatorname{dim} S=n-1$ and $\operatorname{dim} S=n-2 p$. We get $R \cap S=\emptyset$ and $\operatorname{dim}(R+S)=p-1+n-2 p+1=n-p$. Let us put $W=R+S$. Since $U+R=Q$ we have $\operatorname{dim}(U \cap R)=\operatorname{dim} U+\operatorname{dim} R-\operatorname{dim} Q=p-1+p-1-2 p+1=-1$ which yields $U \cap R=\emptyset$. Similarly $V \cap R=\emptyset$. Since $W \cap Q=R$ we also obtain $U \cap W=V \cap W=\emptyset$. Therefore $v(A, B)=1$ by Theorem 3 .
2. Let $U \cap V \neq \emptyset$. Then $\operatorname{dim}(U+V) \leq 2 p-2<n$. It is easy to see that there exists a subspace T of dimension $p-1$ with the property $T \cap U=T \cap V=\emptyset$. We select independent points $a_{1}^{\prime}, \ldots, a_{p}^{\prime}$ in T and denote $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{p}^{\prime}\right\}$. Then from 1. it follows that $v\left(A, A^{\prime}\right)=v\left(A^{\prime}, B\right)=1$ and hence $v(A, B) \leq 2$. It is not difficult to find an example of $v(A, B)=2(U=V)$.

In what follows we assume that $p=n$.

Remark 5 It follows immediately from Theorem 3 that a distance of sets $A, B \in G^{n}$ is equal to 1 if and only if all the lines c_{1}, \ldots, c_{p} pass through a point w which is contained neither in U nor in V.

Definition 7 The sets $A, B \in G^{n}$ are said to be in a general position if the following conditions are valid:

1. $U \neq V$,
2. $b_{j} \notin U_{i}, a_{j} \notin V_{i}$ for all $i, j \in\{1, \ldots, n\}$.

Remark 6 Let $a_{i}, b_{i} \notin U \cap V$ for all $i \in\{1, \ldots, n\}$. Then the sets $A, B \in G^{n}$ are in the general position.

Theorem 7 If $A, B \in G^{n}$ are in the general position, then $v(A, B) \leq n-1$.
Proof 1. Let $n=3$. Then (by assumption) $b_{2}, b_{3} \notin U_{1}, a_{2}, a_{3} \notin V_{1}$ and $U_{1} \neq V_{1}$. If the lines c_{2}, c_{3} have a point $w_{1} \in c_{1}$ in common, then $w_{1} \neq a_{1}, b_{1}$ and $v(A, B)=1$. Let $v(A, B) \neq 1$. The definition of the general position implies that at least one of the lines c_{i} (under a proper denotation) is contained neither in U nor in V. Let c_{1} be that line. Then on c_{1} there exists a point $w_{1} \neq a_{1}, b_{1}$ such that $V_{1} \not \subset R$ where $R=w_{1}+U_{1}$ and for a point of intersection $g=V_{1} \cap R$ we get $g \neq b_{2}, b_{3}, a_{2}, a_{3}$. In the plane R we select a line q passing through g which is not contained in V and does not contain w_{1}; we denote by $a_{2}^{\prime}, a_{3}^{\prime}$ its points of intersection with the lines $w_{1} a_{2}, w_{1} a_{3}$. The lines $a_{2}^{\prime} b_{2}, a_{3}^{\prime} b_{3}$ are distinct, contained in a plane $S=q+V_{1}$ and thus they have a point w_{2} in common. Then there exist norming mappings $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ such that

$$
\left\{a_{1}, a_{2}, a_{3}\right\} \xrightarrow{\beta_{1} \alpha_{1}}\left\{a_{1}^{\prime}=b_{1}, a_{2}^{\prime}, a_{3}^{\prime}\right\} \xrightarrow{\beta_{2} \alpha_{2}}\left\{b_{1}, b_{2}, b_{3}\right\} .
$$

Thus $v(A, B)=2$.
2. Let $n \geq 4$ and suppose that in every projective space \mathcal{P}^{n-1} of dimension $n-1$ there is $v\left(A^{\prime}, B^{\prime}\right) \leq n-2$ for independent sets A^{\prime}, B^{\prime} of \mathcal{P}^{n-1} in the general position. We show that $v(A, B) \leq n-1$ for independent sets A, B of \mathcal{P}^{n} in the general position.

Let $A=\left\{a_{1}, \ldots, a_{n}\right\}, B=\left\{b_{1}, \ldots, b_{n}\right\}$ be independent sets of \mathcal{P}^{n} in the general position. Then for instance $a_{i} \notin V_{1}$ for all $i \in\{1, \ldots, n\}$, and hence $U_{1} \neq V_{1}$. On c_{1} we can select a point w_{1} such that:
a) $w_{1} \neq a_{1}, b_{1}$,
b) $R=w_{1}+U_{1}$ is a hyperplane in \mathcal{P}^{n},
c) $V_{1} \notin R$ and then for $P=V_{1} \cap R$ we get $\operatorname{dim} P=n-3$,
d) $b_{j} \notin P$ for all $j \in\{2, \ldots, n\}$,
e) P does not intersect any of lines $w_{1} a_{i}$.

Let us select a subspace Q of R containing P and not containing $w_{1}, \operatorname{dim} Q=$ $n-2$. Then Q is a hyperplane in R and thus it intersects all lines $w_{1} a_{i}$ at points $a_{i}^{\prime}, i \in\{2, \ldots, n\}$. Obviously $a_{i}^{\prime} \notin V_{1}, b_{i} \notin Q$ for $i \in\{2, \ldots, n\}$. If we put $S=Q+V_{1}$, then S is a hyperplane in \mathcal{P}^{n}, and hence it is a projective space of dimension $n-1$. The sets $A^{\prime}=\left\{a_{2}^{\prime}, \ldots, a_{n}^{\prime}\right\}, B^{\prime}=\left\{b_{2}, \ldots, b_{n}\right\}$ are independent in S and they are in the general position.

By assumption $v\left(A^{\prime}, B^{\prime}\right) \leq n-2$, hence there exist norming mappings $\alpha_{2}^{\prime}, \ldots, \alpha_{n-1}^{\prime}$ and $\beta_{2}^{\prime}, \ldots, \beta_{n-1}^{\prime}$ such that $B^{\prime}=\beta_{n-1}^{\prime} \alpha_{n-1}^{\prime} \ldots \beta_{2}^{\prime} \alpha_{2}^{\prime}\left(A^{\prime}\right)$. If we put

$$
X_{i}^{j}=\left[w_{j},{ }^{j-1} a_{2}, \ldots,{ }^{j-1} a_{i-1},{ }^{j-1} a_{i+1}, \ldots,{ }^{j-1} a_{n}\right]
$$

for $j \in\{2, \ldots, n-1\}, i \in\{2, \ldots, n\}$ where w_{j} are properly selected points, then $\left({ }^{1} a_{2}, \ldots,{ }^{1} a_{n}\right) \xrightarrow{\alpha_{2}^{\prime}}\left(X_{2}^{2}, \ldots, X_{n}^{2}\right) \xrightarrow{\beta_{2}^{\prime}}\left({ }^{2} a_{2}, \ldots,{ }^{2} a_{n}\right) \xrightarrow{\alpha_{3}^{\prime}}\left(X_{2}^{3}, \ldots, X_{n}^{3}\right) \rightarrow \ldots \xrightarrow{\beta_{n-1}^{\prime}}$ $\left(b_{2}, \ldots, b_{n}\right)$.

The sets $A_{j}=\left\{b_{1},{ }^{j} a_{2}, \ldots,{ }^{j} a_{n}\right\}, j \in\{1, \ldots, n-1\}$, are independent in \mathcal{P}^{n}. Let us put

$$
\begin{gathered}
Y_{i}^{1}=\left[w_{1}, a_{1}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right], \\
Y_{i}^{j}=\left[w_{j},{ }^{j-1} a_{1}, \ldots,{ }^{j-1} a_{i-1},{ }^{j-1} a_{i+1}, \ldots,{ }^{j-1} a_{n}\right]
\end{gathered}
$$

where $b_{1}:={ }^{j-1} a_{1}$ for $i \in\{1, \ldots, n\}, j \in\{2, \ldots, n-1\}$.
Then $\left(a_{1}, \ldots, a_{n}\right) \xrightarrow{\alpha_{1}}\left(Y_{1}^{1}, \ldots, Y_{n}^{1}\right) \xrightarrow{\beta_{1}}\left(b_{1},{ }^{1} a_{2}, \ldots,{ }^{1} a_{n}\right) \xrightarrow{\alpha_{2}}\left(Y_{1}^{2}, \ldots, Y_{n}^{2}\right) \xrightarrow{\beta_{2}}$ $\left(b_{1},{ }^{2} a_{2}, \ldots,{ }^{2} a_{n}\right) \rightarrow \ldots \xrightarrow{\beta_{n}-1}\left(b_{1}, \ldots, b_{n}\right)$. This yields $v(A, B) \leq n-1$ in \mathcal{P}^{n}.

Proposition 14 If $A, B \in G^{n}$, then there exists a set $A^{\prime} \in G^{n}$ such that $v\left(A, A^{\prime}\right)=1$ and A^{\prime}, B are in the general position.

Proof Let us select an arbitrary point $w_{1} \notin U, V$. In the hyperplane V we select a subspace R of dimension $n-2$ such that it does not contain any of points b_{i} and any of intersections $a_{i} w_{1} \cap V, i \in\{1, \ldots, n\}$. Then consider an arbitrary hyperplane U^{\prime} contaning R and not containing w_{1}. We put $a_{i}^{\prime}=a_{i} w_{1} \cap U^{\prime}, i \in$ $\{1, \ldots, n\}$. It is obvious that $a_{i}^{\prime}, b_{i} \notin U^{\prime} \cap V$ for all $i \in\{1, \ldots, n\}, v\left(A, A^{\prime}\right)=1$ and the sets $A^{\prime}=\left\{a_{1}^{\prime}, \ldots, a_{n}^{\prime}\right\}, B$ are in the general position by Remark 6.

Theorem 8 If $p=n$, then $d\left(G^{p}\right) \leq n$.
Proof If A, B are in the general position, then $d\left(G^{p}\right) \leq n-1$ by Theorem 7. If they are not in the general position, then we select a set A^{\prime} according to Proposition 14. Hence $v\left(A, A^{\prime}\right)=1, v\left(A^{\prime}, B\right) \leq n-1$ anh this yields $v(A, B) \leq n$.

Theorem 9 Let $n=3$ and $U=V$. Then $v(A, B)=2$ if and only if the triangles A, B are perspective (i.e. lines c_{1}, c_{2}, c_{3} have one point in common).

Proof 1. Let the triangles A, B be perspective. Then there exists a point $r \in U, r=c_{1} \cap c_{2} \cap c_{3}$. At least one of lines $c_{i}, i \in\{1,2,3\}$, must fulfil a condition $r \neq a_{i}, b_{i}$. Let c_{1} be such a line. Select an arbitrary point $w_{1} \notin U$ and a point a_{1}^{\prime} on the line $a_{1} w_{1}$ such that $a_{1}^{\prime} \neq a_{1}, w_{1}$. Lines $a_{1}^{\prime} w_{1}$ and $b_{1} r$ have a_{1} in common and hence the lines $a_{1}^{\prime} b_{1}, w_{1} r$ have a point denoted by w_{2} in common. It is obvious that there exist intersections $a_{2}^{\prime}=a_{2} w_{1} \cap b_{2} w_{2}$ and
$a_{3}^{\prime}=a_{3} w_{1} \cap b_{3} w_{2}$. For $A^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\}$ we get $v\left(A, A^{\prime}\right)=1=v\left(A^{\prime}, B\right)$ by Remark 5. Thus $v(A, B)=2$.
2. Let $v(A, B)=2$. Then there exist points $w_{1}, w_{2} \notin U, w_{1} \neq w_{2}$, and an independent set $A^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\} \in G^{3}$ with a property

$$
\left\{a_{1}, a_{2}, a_{3}\right\} \rightarrow\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\} \rightarrow\left\{b_{1}, b_{2}, b_{3}\right\}
$$

For the points a_{i}^{\prime} we obtain $a_{i}^{\prime} \in a_{i} w_{1}, a_{i}^{\prime} \in b_{i} w_{2}$ for all $i \in\{1,2,3\}$. That implies $a_{i}^{\prime}=a_{i} w_{1} \cap b_{i} w_{2}, i \in\{1,2,3\}$. If the lines $a_{i} w_{1}$ and $b_{i} w_{2}$ have a point in common, then also the lines $a_{i} b_{i}$ and $w_{1} w_{2}$ for $i \in\{1,2,3\}$ have a point in common. Denote $r=w_{1} w_{2} \cap U$ and we get $r \in c_{i}$ for all $i \in\{1,2,3\}$. Thus the triangles A, B are perspective.

Proposition 15 Let $n=3$ and $U=V$. If the triangles A, B are not perspective, then $v(A, B)=3$.
Proof From $U=V$ we get $v(A, B)>1$ by Remark 5. Moreover, $v(A, B) \neq 2$ by Theorem 9 and $v(A, B) \leq 3$ by Theorem 8 .

Corollary 2 If $p=n=3$, then $d\left(G^{3}\right)=3$.
An open problem is to determine a span for n and p fulfilling an equality $\frac{n+1}{2} \leq p<n$. The solution of that requires an analysis of rather complicated incidence relations in \mathcal{P}^{n}. As an illustration we present a particular case for $n=4, p=3$.
Proposition 16 Let $n=4, p=3$. If the intersection of planes U, V is a point q and $q \notin a_{i} a_{j}, q \notin b_{i} b_{j}$ for all distinct $i, j \in\{1,2,3\}$, then the sets A, B are in the basic position.
Proof If $U \cap V=\{q\}$, then $U+V=Q=\mathcal{P}^{n}$. Suppose for instance $\operatorname{dim} Q_{3}=2$. Then the lines $a_{1} a_{2}, b_{1} b_{2}$ have a point x in common. Since $x \in U \cap V$ we get $x=q$ and $q \in a_{1} a_{2}$ which is a contradiction. Thus all Q_{i} are hyperplanes in \mathcal{P}^{n}. According to Theorem 4 there exists a unique line intersecting all c_{i}. Moreover, $U \cap V \nsubseteq V_{i}, U_{i}$ for all $i \in\{1,2,3\}$ and from Remark 4 we get $U \cap W=V \cap W=\emptyset$. It follows from Theorem 3 that the sets A, B are in the basic position.

Theorem 10 If $n=4$, then $d\left(G^{3}\right)=2$.
Proof 1. Let $U \neq V$. We select points $r \in U, s \in V$ such that $r, s \notin U \cap V$ and $r \notin a_{i} a_{j}, s \notin b_{i} b_{j}$ for all distinct i, j. Now let us select a line t intersecting the line $r s$ such that $t \cap U=t \cap V=\emptyset$ and consider a plane $T=r s+t$. Then $T \cap U=\{r\}, T \cap V=\{s\}$. In T we select an independent set $A^{\prime}=\left\{a_{1}^{\prime}, a_{2}^{\prime}, a_{3}^{\prime}\right\}$ such that $r \notin a_{i}^{\prime} a_{j}^{\prime}$ and $s \notin a_{i}^{\prime} a_{j}^{\prime}$. The sets A, A^{\prime} and A^{\prime}, B are in the basic position by Proposition 16. Thus $v\left(A, A^{\prime}\right)=v\left(A^{\prime}, B\right)=1$ and $v(A, B) \leq 2$.
2. Let $U=V$. Then each line W intersecting all lines c_{i} is contained in the plane U. It follows from Theorem 3 that $v(A, B)>1$. In U we select a point $r \notin a_{i} a_{j}, r \notin b_{i} b_{j}$. Now let us consider a plane T containing r such that $T \cap U=\emptyset$ and proceed analogously to 1 . We have obtained that $v(A, B) \leq 2$ and thus $v(A, B)=2$.

References

[1] Ganter, B., Wille, R.: Formale Begriffsanalyse. Mathematische Grundlagen, SpringerVerlag, 1996.
[2] Machala, F.: Incidence structures of independent sets. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 38 (1999), 113-118.
[3] Machala, F., Slezák, V.: Independent sets in incidence structures. Mathematica Slovaca (to appear).
[4] Slezák, V.: Bases in incidence structures defined on projective spaces. Acta Univ. Palacki. Olomuc., Fac. rer. nat. 37 (1998), 113-121.

[^0]: *Supported by the grant of the Palacký University No. 31203009
 ${ }^{1}$ It is called kontext more frequently (Wille, [1]). The name incidence structure is used with regards to consecutive geometric applications.

