
Acta Universitatis Palackianae Olomucensis. Facultas Rerum
Naturalium. Mathematica

Pavla Kunderová
Linear models with nuisance parameters and deformation measurement

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 39 (2000), No.
1, 95--105

Persistent URL: http://dml.cz/dmlcz/120419

Terms of use:
© Palacký University Olomouc, Faculty of Science, 2000

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must contain
these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/120419
http://project.dml.cz


ÍDr/ Acta Univ. Palacki. Olomuc, Fac. rer. nat., 
^ Mathematica 39 (2000) 95-105 

Linear Models with Nuisance 
Parameters and Deformation 

Measurement 

PAVLA KUNDEROVA 

Department of Mathematical Analysis and Applications of Mathematics, 
Faculty of Science, Palacký University, 

Tomkova 40, 779 00 Olomouc, Czech Republic 
e-mail: kunderov@risc.upol.cz 

(Received January 27, 2000) 

A b s t r a c t 

The aim of the paper is an investigation of a possibility to study the 
deformation measurement in the framework of the linear model with nui­
sance parameters. It is proved that when the deformations are investi­
gated only then it is possible to neglect the nuisance parameters. 
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1 Introduction, notations 

The task to verify the stability of many engineer's construction works (dams, 
bridges) or to study the course of its deformation in time can be solved by 
suitably ordered measurements replicated at suitably chosen moments-epochs. 
These replicated measurements are modelled by multiepoch models. (Cf. [1, 
Chapter 9]). 

Two fundamental types of multiepoch models may occur ([1, p. 366]). 
a) Models with stable and variable parameters: 
repeated measurements studying existence of deformation of some object and its 
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96 Pavla KUNDEROVÁ 

course are realized in separate networks especially constructed for this purpose. 
It consists of a group of supporting points whose position is assumed to be stable 
(this assumption is verified during the measurement) and a group of points 
whose movements related to the position of the stable points are investigated 
(the coordinates of the group of the stable points are a priori unknown). After 
finishing each epoch both the coordinates of the supporting points and the 
coordinates of investigated points are to be determined. The former serve to 
verify the hypothesis on the stableness of the group of supporting points. 

b) Models with variable parameters only: 
the network for studying the dynamism of a locality is joint to the stable points 
of a geodetic network (these represent the stable supporting points of the pro-
ceding type of the network, in contradiction to it, their coordinates are a priory 
known). The coordinates of the group of the points studied from the viewpoint 
of the dynamism are being determined. 

The task of the following is to investigate the model of the first type. The 
main problem is whether the nuisance parameters (i.e. coordinates of the stable 
points) can or cannot be neglected. 

The following notation will be used throughout the paper: 

Rn the space of all n-dimensional real vectors; 
up the real column p-dimensional vector, 
A m > n the real m x n matrix; 
A1', 3%(A) the transpose, the range, the null space and the rank 
<yV(A), r(A) of the matrix A\ 
vec(A) the column vector ({A}'A,..., {A}'n)

f created by 
the columns of the matrix A\ 

A ® B the Kronecker (tensor) product of the matrices A,B\ 
A~ a generalized inverse of a matrix A 

(satisfying AA~A = A)\ 
A + the Moore-Penrose generalized inverse of a matrix A 

(satisfying AA+A = A, A+AA+ = A + , 
(AA+)' = AA+, (A+A)' = A+A)\ 

PA the ortogonal projector onto 8$(A)\ 

MA = I — PA the ortogonal projector onto 8ftL(A) = JV(A)\ 
Ik the k x k identity matrix; 
1* = ( 1 , . . . , 1 ) ' € . R * . 

If 8ft (A) C 8ft (S), Sp.s.d., then the symbol PS
A denotes the projector pro­

jecting vectors in 8ft\S) onto 8ft(A) along 8ft (S A1-). A general representation 
of all such projectors PA is given by 

A(AS~A)-AS~ + B(I - S S ~ ) , 

where B is arbitrary, cf. [4, (2.14)]. MS
A = J - PS

A . 
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2 Partial linear regression model 

Consider following partial model that can be realized in the j - t h epoch of mea­
surement 

Yj = (X1,X2)(^)+ej, j = l,...,m, (1) 

where n x k matrix X i and n x / matrix X2 are the design matrices, f3x G Rk is a 
vector of stable parameters (coordinates of the group of stable points), that are 
assumed to be nuisance, f32j £ Rl is a vector of variable parameters (coordinates 
of the group of unstable points observed in the j - th epoch of measurement) that 
are supposed to be useful. 

It is assumed that the regularity conditions: 
r(XuX2) = (fc+0 < n, r(X±) = fc, r(X2) = /, var(Yj) = E* = £ L i ^Vu 

E# p.d. V$ G $ C RP, _ C Rp contains an open sphere, are fulfilled. 

The model 

ү(m) _ 
(үЛ 

Y2 

\YmJ 

fXuX2, 0, ••• 0 \ 
Xu 0, X2, ••• 0 

\Xu 0, 0, ••• X2j 

( f r 

\ß 

+ є 
(m) 

(2) 

ťaTIV (m)] _ ү.(m) E v ; = 

/Stз, 0, 0, 
0, Eø, 0, 

2m / 

0 

\ 0, 0, 0, • • • £ « / 

is said to be m-epoch linear regression model with a fixed number of stable 
(nuisance) parameters and with variable (useful) parameters, (cf. [1, p. 368]). 

Here Y^mI is a nm-dimensional observation vector after the m-th epoch 
of measurement, Yj is a n-dimensional observation vector of the j-th epoch, 
j = l , . . . , m . 

Model (2) is the simplest multiepoch linear regression model in which the 
design matrices, the dimensions of the observation vectors and the variance 
matrices var(Yj) are the same in all epochs. 

In what follows we deal with so called "small" partial linear regression model 

Yj = X2ß2j + є 
л (3) 

varY j = X •å, j = l , . . . , m , 

where the nuisance parameters are neglected. 

N o t a t i o n 1 
1. For the sake of simplicity we write Eo instead of £ # 0 . 
2. A parametric function f'P2j is said to be unbiasedly estimable under the 

model (1) if there exists an estimator g'Yj, g e Rn such that E[g'Yj] = / ;/32j? 
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V/3l5V/32j, i.e. if there exists an unbiased linear estimator (LUE) of the function 

ff*w 
The statistic g'Yj is said to be the efficient linear estimator of the function 

f'02j at the point i90 € $ ($o-locally best) if it is a LUE of the function /'/32j 
and 

varx0(jg'Yj) < varEo(tiYj), Vh'Yj LUE of f'02j, 
(g'Yj is the LBLUE [locally best unbiased estimator] of the function fft2j). 

3. Let, according to [4], Sa and $ denote the sets of all linear functions of 
/32j which are unbiasedly estimable within the linear model (2) with nuisance 
parameters and within the linear model (3) without nuisance parameters, re­
spectively. The index a will indicate, that the estimator is considered within 
the complete model, i.e. within the model with nuisance parameters. 

Let & denote the set of all linear functions of (3l which are unbiasedly 
estimable within the model (2). 

Obviously (cf. [4, (2.1), (2.2)]) 

* = {f'02j : / € mX'2)h 

<?a = {f'P2j:f€@(X'2MXl)}, 

& ={f'Pi:f€X(X'1Mx2)}. 

Assertion 1 Consider the partial linear regression model (1) under the con­
dition that the regularity assumptions are fulfilled. The T,o-LBLUEs of the pa­
rameter functions f0i and f f32j are given as 

fK~z0Yi)a = f[X[(Mx2^oMx2)
+X1}-1X'1(Mx2SoMX2)

+Yj, (4) 

iff'Pi**, 

f%i0(Yj)a = / 'K(MX lS0Mx1)+I2r1X;(MX lSoMx1)+ l ' j l (5) 

iff'02j£Sa, 

varx0[fK^0Yi)a] = / ' [ X U M x . S o M x J + X x ] " 1 / , if f ^ € &, (6) 

v-^\ffaik<Yi)*\ = f'[X'2(MXlSoMxl)
+X2}-1f, iff/32j e §a, (7) 

where 

(MXi^MXi)
+ = Eo""1 - V^X^X'^Xi^X&o1, i = 1,2. 

Proof Cf. [1, Theorem 9.1.2.] 

Remark 1 Within the model (3) under the assumption that the regularity 
conditions are fulfilled, the Eo-LBLUE of the parameter functions f'02j are 

f%*o(Yi) = fiX'^X.r'X'^Yj, if fp2j £ S, (8) 

var[f%^0(Yj)] = / ' ( X ^ S o " 1 ^ ) - 1 / , if f'02j € g. (9) 



Linear models with nuisance parameters and deformation measurement 99 

Notation 2 Let, according to [4], £§ denote the subset of £a consisting of all 
those functions of f'fi2j f°r which the En-LBLUE within the model (1) posseses 
the same variance as the DQ-LBLUE within the model (3), i.e. 

A = {f'P2j € Sa : varu[f%^0(Yj)] = var^f^^Y^}}. 

Assertion 2 The class S'Q is given by 

<?o = {f'P2j : / e ^[X^lX2Mx,^Xi]} 

= {f'Py : f - X'2q, q G ^ [ E " 1 X2Mx^Xl)}. 

Proof Cf. [4, Theorem 3.1, relation (3.3)]. 

3 Multiepoch linear regression model 

Let us come back to the multiepoch model (2) of the measurement after the 
ra-th epoch 

y(m) — 

(*}\ (xux2, o, 
Y2 

\YmJ 

Xu 0, X2,... 0 

VXi, 0, 0, ... X2J 

0 \ ( Pí \ 
/321 

+ є 
(m) (Ю) 

VlW 
r(m) var(Y(m>) = ЪŢ1 = I (m) 

Model (10) can be written in the equivalent form 

"(m) — lv(m) v ( m ) \ ( Ply - V A 1 > A 2 ) \ a(m) 
(m) 

where 

xľ 
(m) 

(X1\ 
Xi 

\xj 
xu 

x^"1) = 

) + є 

(x2, o, ... o \ 

0, X a , . . . 0 

V 0, 0, ...x2J 

= Ir X<y 

ßim) = 

(02!\ 
/ 3 2 2 

V/W 
We also deal with the "small" model 

Y(m) = x2
m)02

m)
 + e(m) = {Im Q x 2 ) ^ m ) + e<m\ (П) 

(ro) uar(F( m ' ) = Sy 

where the nuisance parameters /^ are neglected. 

i E # , 
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Theorem 1 Within the model (10) of the measurement after the m-th epoch in 
which the regularity conditions r(XJ[m , X.2 ) = k + m/, r(X\) = k, r(X2) = I, 
r[var(Y (m))] = mn, r[var(Y{)] = n, i = l , . . . ,m . are fulfilled, the 
EQ -LBLUES of the parameters flx and /32, ft2i, i — 1,..., m are 

/3(ra)«m,(y(m))a = [ m X i ( M x 2 S 0 M x 2 ) + X 1 ] - 1 X i ( M X 2 S o M x 2 ) + ( V y i ) , 
i = i 

^ ^ (12) 

mr£(m,[J9;m)
(m)(F(m))a] = [m_Yi(Mx2S0MX 2)+X1]-1 , (13) 

/S,Cr ( r a ))a = {[J™ ® (x/
2s0-1x2)-1^s0-1] 

- [ lm l 'm ® (X ' 2 S 0 - 1 X 2 ) - 1 ^S 0 - 1 X 1 [mXi (Mx a SoMx 2 )+X 1 ] - 1 

x . Y i ( M X 2 S 0 M X 2 ) + ] } Y W , (14) 

«arE«„,[iS, )(y("*))„] = [Jm ® (X^S0-1X2)-1] 

+ [ l m l m <g> ( X ^ S Q 1X2)-1X'2S0-1X1[mXi(Mx2SoMX 2)+J--1]-1 

x X i S ^ ^ ^ S o " 1 ^ ) - 1 ] , (15) 

/S>(r ( m>)a = (x'2s0-1x2)-1^s0-1 

y i - X 1 [ m X i ( M x 2 S o M x 2 ) + X 1 ] - 1 X i ( M x 2 S 0 M x a ) + [ ^ y i ] 
ѓ = l 

, (16) 

І = 1, ,m, 

t;arE«m )[M7|«m,(y ( r a ))a] = (X.-V-*. .)- 1 + (X^S 0 - 1 X 2 )- 1 X^S 0 - 1 X 1 2i,E, 

x [ m X i ( M X 2 S o M x 2 ) + X 1 ] - 1 X i S o - 1 X 2 ( X ^ S 0 - 1 X 2 ) - 1 , (17) 

i = 1,... ,m, 

OT4^<'(yW)»^5r>(yW)»] = (^2s0-
1x2)-1x'2So-1x1 

x [mXi(M J f 2 SoMx 2 )+X 1 ]- 1 XiS 0 - 1 X 2 (X ' 2 So- 1 X 2 )- 1 , (18) 

Vr,s = 1,... ,m, r ^ s. 
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Proof According to the Theorem 1.1.1 in [1] using the following Rohde's 
formula for inverse of partitioned p.d. matrix (cf. [2, Lemma 13, p. 68]) 

( A, B 
\B',C 

A'1 + A-XB{C - B'A'1B)-1B'A-1, -A~XB{C - B'A^B)'1 

-{C-B'A^B^B'A-1, {C-B'A^B)-1 

{A - BC-1 B ' ) - 1 , -{A-BC^B'^BC1 

- C _ 1 B ' ( i 4 - BC^B')-1, C - 1 + C^B^A - BC'1 B1)-1 BC~l 

we get 

n - 1 

I m ® xÍ, ) ( J m ® "o"^1™ ® " l . Jm ® X 2) 

x(í:®xO ( I^ s°"1 ) y ( r a ) 

A; - A ( l m ® X i S 0 - 1 X 2 B ) 
-( l m ® BX 2 Eo x ~i)A; ( I m ® B) + ( l m l m ® BX 2Eo X " i - A " i ~ o X "2B) 

x(í:®x'O (fm0-°"1)y(ra)' 
where A = [mXi(M X 2 E 0 Mx 2 )+X 1 ] - 1 , B = ( X . S ^ X ; , ) - 1 . 

Thus 
p i . 4 m ) ~ 

= { [mXÍ(M X 2 S 0 M X 2 )+X 1 ] - 1 ( l m ®XÍEo 1 ) - [mXi(Mx 2 SoM X 2 )+X 1 ] - 1 

x [lm ® X i E o - ^ . ^ S o ^ , ) - 1 ] ^ ® X'2S^)}Y^ 

= { [mXi(Mx 2 S 0 Mx 2 )+X 1 ] - 1 ( r m ® Xi (Mx 2 S 0 Mx 2 )+ )} Y ( m ) 

m 

= {[mXi(Mx 2 E 0 Mx 2 )+X 1 ] - 1 Xi(Mx 2 SoMx 2 )+} (~~ Y.Y 
І-\ 

mr[/3<m)

(m)] = [ m X i ( M X 2 S o M X 2 ) + X 1 ] - 1 [ r m ® X i ( M x 2 S 0 M x 2 ) + ] ( I m ® S o ) 
•l,z-0 

x [lm ® ( M X 2 S 0 M x 2 ) + X 1 ] [ m X i ( M x 2 S 0 M x 2 ) + X 1 ] - 1 

= [ m X i ( M x 2 S 0 M x 2 ) + X 1 ] - 1 . 

We have proved assertions (12), (13). The rest of the proof is obvious, the 
assertions (16), (17), (18) follow immediately from (14) and (15). • 
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Remark 2 The £Q -LBLUES of the vector parameter /32m within the multi­
variate model (11) (without nuisance parameters) are 

j(™) 
2,E ( m ) (У<m>) = [Jт о ® (X 2 E 0 - 1 X a Г 1 X 2 E 0 - 1 ]Y< m >, (19) 

WarE(„)[/3<m>)(Y<ra>)] = JTO ® ( X ^ o " 1 * , ) - 1 . (20) 
0 Z , Z J Q 

Thus the EQ -LBLUEs of the parameter /32^ i = 1,... ,m, within the model 
(11) are the same as in the partial model (3) without nuisance parameters (cf. 
Remark 1). 

Notation 3 
1. Let <?im) and <?(m) denote the set of all linear functions of /3{

2

m), which 
are unbiasedly estimable under the model (10) and (11), respectively. The index 
a will indicate that the estimator is considered in the complete model. 

Obviously 

g(m) ={fpW;fe®{Im®X'2)}, 

4 m ) = {/'/32

ro) : / € mim ® X'2)Mlm®Xl}}. 

2. Let, as above, r?o (m) denote the subset of S'a consisting of all those 
functions of f'/32 for which the £n-LBLUE within the model (10) posseses 
the same variance as the E0-LBLUE within the model (11): 

4 m ) = {f'02m) € < m ) : mrE(m,[TM5m)(Y<TO>)] 
0 A^O 

= mrE(m,[/'^Jm)(Y<m>)0]}: 

Theorem 2 27ie c/a55 <f Q ' is given by 

g(m) = {ff3(m) . f = ( / 0 x , ) g > g € ^ [ ( / 8 S - l X 2 ) M l m M , E - 1 X i } 

= { M m ) : / € ^ [ ( J ® X 2 S o - 1 Jf 2 )M l m 0 X , E - 1 X i } . 

Proof The equality of variances 

«arE<m )[ / '^m )(Y<-))] = «arE(m)[/'5<gm)(Y(m>)a]}, / ' /32 £ <? <m>, 

is fulfiled if and only if (cf. (15), (20)) 

f'[lml'm ® ( X 2 S Q 1 X 2 ) - 1 X 2 S 0 - 1 X 1 [mXi (Mx 2 S 0 Mx 2 ) + X 1 ] - 1 

x X' 1S 0 - 1X 2 (X 2S 0 - 1X 2 ) - 1 ] / = 0, / G # [ ( I m ® X i ) A f i m W l ] . (21) 
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As it is possible to write 

[ m X U M x . S o M x ^ + X i ] - 1 = A^A'^, 

A " 5 p.d., thus (21) holds if and only if 

g'(im ® x 2 ) [ i r a ® (X,.2J:-1X2)-
1X'2^O1X1} = 0, 

where q e ^ ( M i m 8 X j ) , and it is equivalent to 

qLSP, [(Jra ® X2)[(Jm ® X2)(J r a ® So X)(Im ® X, ) ] " 1 

x (Jra ® X'2)(Jra ® So -)(lm ® Xi)] 

^ [ ^ K x f (L»®Xi)] & q e ^ M i ^ J , 
it means that 

q J . ^ ( J r a ®X 2 )n{^ [ ( J m ®E 0 ) ( / m ®X 2 ) x ]+^ ( l r a ®Xi)} kqe &{Mim9Xl), 

where following assertion (cf. [4, Lemma 2.1]) 

Sp.s.d. matrix, M(A,B) C &(S) => @(PS
A~B) = ^ ( A ) n [ ^ ( S A x ) + ^ ( B ) ] , 

has been taken into account. Thus 

q £ SH\lm ® X2) + {^x[(Jm ® E0)(Jm ® X 2 ) x ] n ^ x ( l m ® Xi)} 

& « € . # ( M l m ® x . ) . (22) 

Using [4, (2.16)]: 

S p.s.d., <%(A) c St(S) => 8?^(SAL) = @(S-A,I- S~S), 

(22) can be rewritten in the form 

q £ ^ x ( J r a ® X2) + {^[(Jra ® E Q 1 ) ^ ® X2)] n ^ x ( l m ® Xi)} 

& q € J ? x ( l m ® X i ) . 

For all q € ^ X ( J m ® X2) we have / = (Im ® X 2 )M/ m 0 x 2 u = 0, i.e. 

q G @[(Im ® Y.-l)(Im ® X2)] n ^ X ( l r a ® Xi) , 

thus 
q = (J ra ® So -X2)t & q = ( l m ® X i ) x t ; . 

As 
o = (iro ® xi)« = (im ® xi)(Jra ® s0:1x2)t 

=> t L ^ [ ( J m ® X2)(J r a ® E0-1)(l ra ® Xi)], 

we have 

/ = (Jra ® X'2)(Jra ® E o " 1 ) ^ ® X 2 ) M l m 0 X , s - i X l w . » € J r " , 

which suffices for completing the proof. D 
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4 The case of the model for a deformation measurement 

In the multiepoch models for deformation measurements it is important to es­
timate the difference of the useful parameters between adjacent epochs. There 
is a question whether we can omit the nuisance parameters by computing this 
difference. We shall see from the following that this question can be answered 
in affirmative. 

Let us consider (for the sake of simplicity) the model (10) for m = 3, i.e. the 
model 

(xъx2, 0, 0 ' 
ү^ = xu o, X2, 0 

\Xu 0, 0, X2 

fßЛ 
/32i 
l з 2 2 

vlw 

+ є <
3> = ( x < 3 \ x < 3 ) ) ßl 

ßì3) + є 
(3) 

(23) 
Let P = (0, J, — I, 0) be a / x (k-f 3/)-dimensional matrix. Thus the difference 

of the useful parameters 

lз2i - /з2 2 = Pß, ß 

fßЛ 
ß2X 

lз22 

VlW 
As 

•#[(0,1,-1,0)'] C#[(X<3 ),X<3 ))'], 

the Theorem 5.3.1. in [2] yields that the difference of the S0-LBLUEs 

P0 = 021 - p22 

is the Eo-LBLUE of the difference of the parameters P/3 = /321 — /32 2. 
Using assertion (16) for i = 1,2, we get one very interesting result. 

Corollary 1 Within the three-epoch model (23) the estimator of the difference 
of the useful parameters between adjacent epochs does not depend on the matrix 
Xx: 

(ß2X - ß22)a = /ЗІ^ (з, lГ ( 3 ))a - Æ m 
( У ( 3 ) ) 

= {X,

2^
1X2)-lX'2T.^{Y1 - Y2). 

It means that the estimator of the difference of the useful parameters between 
adjacent epochs /92i_/̂ 22 IS ^ n e same within the "small" and within the "large" 
model, the difference is estimable irrespective of the nuisance parameters. 

The obtained result suggests the idea to investigate the following transfor­
mation of the three-epoch model (23): 

Z = TY (3) where T 
I, -I, 0\ 

0, 1,-IJ' 
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í.e. 

Y i - Y 2 \ (fX2, O \ (p2l-p22 

' \Y2-Y3J - U 0, X2J \p22-023 ••{%.'£)}• <24> 
We can easily see that the estimator of the parameter /32 1 ~/?22 m t n e model 

(24) and the estimator of the parametric function P/3 in the model (23), where 
P = (0 ,1 , -1,0)' are the same. Both models are identical in this sense. 

The same idea can be obviously used for the m-epoch model as well. 

The procedure set out in Corollary uses the matrix En that is often diagonal. 
In the model (24) it is necessary to use the covariance matrix that does not have 
this property. Nevertheless the two procedures mentioned [the procedure using 
Corollary and the second one using (24)] provide us two independent possibilities 
how to determine the deformation shifts. This is a good check of the correctness 
of numerical evaluations. 

The question which of these two procedures is numerical less complicated 
has not been answered yet. 

In this paper only the problem of determination of the estimators of the 
differences of coordinates of the unstable points between adjacent epochs has 
been solved. The aim is not only to learn about differences but to investigate 
the process of the deformation in whole with the task to establish the picture of 
the deformations in the course of time (not only to establish the trajectory of 
one unstable point). It means to design the joint confidence ellipsoids (ellipses) 
for the position of the point in particular successive epochs or to design the 
relative confidence ellipses between points within the framework of the same 
epoch etc. Tha t is now possible within the framework of the "small" model. 

The paper solving the above mentioned questions is being prepared. 
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