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Abstract 

The class of multivalued weigthed mappings has been introduced by 
G. Darbo, and rediscovered independently by R. Jerrard. It is well known 
that the Lefschetz fixed point theorem holds true for such mappings from 
a compact polyhedron into itself (see [10], [13]). In our paper we extend 
this result to so-called compact absorbing contraction weighted maps of 
arbitrary metric ANR's. 

Key words: Fixed point, weighted mappings, Darbo homology, Lef
schetz number. 
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1 Introduction 

First we recall some well known notions and introduce necessary notations (for 
details see [6] or [5]). We shall use letters ip, </>,..., to denote multivalued map
pings. The single valued maps will be denoted by / , a, iv , . . . In what follows by 
a space we understand a Hausdorff topological space. Let X, Y be two spaces. 
We shall say that ip : X —•» Y is a multivalued map, if for each x G X nonempty, 
finite subset ip(x) C Y is given. A map ip : X —•> Y is called upper semicontin-
uous (u.s.c), if for each open set U C Y a set: I/J~1(U) — {x £ X;ip(X) C Y} 
is open in X. Given space X, Y and Z, maps ip : X -> Y and (p : Y —•> Z, we 
define the composition tp o ip by ip o I/J(X) := UyeiMx) ^(^) ^or e a c ^ x ^ ^' ^ 
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<p,ip are multivalued maps (u.s.c), then (potp is also a multivalued map (u.s.c). 
We say that x E X is a fixed point of ty : X —> K, if x E ip(x). By a topological 
pair we shall understand a pair (X, Ko)> where X is a space and Ko is a subset 
of X. A pair of the form (X, 0) will be identified with the space X. We shall 
write i) : (X, A) -> (y, B), if V> : K -> Y and ^(A) C B. 

2 Weighted mappings 

Following [10], [11] we recall the notion of a weighted mapping and its properties. 

Definition 2.1 A weighted mapping from X to Y with coefficients in a com
mutative ring with unity ft (or simply a w-map) is a pair ip = (a^,w^) satisfying 
the following conditions: 

• cr-/, : X —> y is a multivalued upper semicontinuous mapping; 

• w^ : X x Y -> Q is a, function with the following properties: 

- w^(x,y) = 0 for any y f£ <J^(X) 

— if U is an open subset of Y and x E X is such that cr^(x) DbdU = 0, 
then there exists an open neighbourhood V of the point x such that: 

]T wj,(x, y) = Yl w^z'y) 
yeu yeu 

for every z E V, where bdU denotes the boundary of U in Y. 

Note 2.1 For our comfort a multivalued weighted mapping from X to Y, i.e. 
x\> = (CJ^,W^), we shall denote, in short, by ip : X —> Y. So, by ^(#) we shall 
mean o^(x) for every x E K and, consequently, ij)~l(U) for every subset of y 
stands for the counter image OTX(U) of U under O^/,, e tc The mapping a-/, from 
the above definition will be called a support of ip. By a weight of ip we shall 
understand a function w^, i.e. w-y, : X x y -> Q. 

Note 2.2 Each continuous map / : X —> y can be considered as a weighted 
one by assigning the coefficient 1 to each f(x). We shall use also the same 
notation for this map. Now, we shall give some example of a w-map. 

Example 2.1 Let ip : X —> Y be an u.s.c. map such that for all x E X ip(x) 
consist of 1 or exactly n points (with n fixed). A weight w^ : X x Y —> Z (Z 
denotes a ring of integers) we define by the formula: 

0 ii y £ i\)(x)\ 

w^(x,y) = { n if {y} = ip(x); 

1 otherwise. 

It is easy to see that a pair tp = (a^ = -0. w^) is a ^/J-map. For more examples 
see [13]. 
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No t e 2.3 There exists a multivalued u.s.c. mapping ip which has only trivial 
weight! (i.e. for every x G X and y E Y w^(x,y) = 0). It is enough to define 
this map as follows: 

f {1} i f 0 < x < | ; 

il>(x)=l {0,1} i f s - = § ; 

[ {0} if \ < x < 1. 

Let us underline, once more, that for the above mapping one cannot define 
a nontrivial weight (see Definition 2.1). Moreover, this uj-map has no fixed 
point. The above example shows us that mappings with trivial weight are not 
too interesting for the fixed point theory. Nonetheless, we shall make use of the 
above uj-maps (we need the zero element in an fJ-module, see Proposition 2.3). 
Below we shall list important and well known properties of uj-maps ([10], [11]). 

P ropos i t i on 2.1 If x\)\ ip : X -> Y are w-maps, then 4> U <p = (cr^Uip,w^u<p) 
is also one, where cr^Uip : X —> Y and w^Uip : X x Y —> O are defined by the 
formulas: cr^Uip(x) = a^(x) U a^(x) and w^jUip(x1y) = w^(x,y) + w(p(x,y) for 
every x G X and y EY. 

Propos i t i on 2.2 Ifi/j : X —> Y is aw-map and a G fi. thena-^ = (cra.^^wa.^) 
is also one, where aa.^ : X —> Y and wa.^ : X x Y —> ft are defined as follows: 
o~a-ip(x) = CT^(X) and wa.^(x,y) = a • w^(x,y) for every x G X and y £Y. 

No te 2.4 By W(X,Y) we shall understand the class of all uj-maps. Let us 
define ~ an equivalence relation on W(X,Y) as follows: I/J ~ ip <&> w^ = w^. 
The class of equivalence classes we shall denote by <X, Y> := W(K , Y)j ~ . 

Now we are able to formulate the following: 

Proposit ion 2.3 The quotient set <K , Y> admits the structure of the Q-module. 

Definition 2.2 Given w-maps xp : X —> Y and tpt; Y —> Z. By their com
position we understand a uj-map ip o ip : X —> Z whose support a^o^ is the 
composition of O*^ and O^, but a weight uj^o^ ' X x Z —> Q is defined by the 
formula: 

w^o^x.z) = ^w+fay) -uv(u,z) 
yer 

for every x E X and z G Z. 

Now as a simple consequence of Definition 2.2 we obtain: 

Propos i t ion 2.4 The multivalued weighted mappings over £1 and Hausdorff 
spaces form a category: CQ. 

Observe that the category Top of Hausdorff topological spaces and continu
ous (single valued) mappings is a subcategory of CQ. 
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3 The Darbo homology 

In this section we briefly describe the Darbo homology theory on Cn that re
stricted to the subcategory of finite polyhedra and continuous maps coincides 
with the singular homology with coefficients in ft (see [2], [10], [13]). Here this 
homology will be defined with very little change from the original construction. 
We adopt approach from [11]. We shall use the Darbo homology theory in the 
next section in order to express the Lefshetz number of weighted mappings. So, 
let us proceed to the construction. 

By A m we shall denote the ra-dimensional simplex. One can prove that 
A m = conv({e 0 , . . . , em}), where 

e0 = ( 0 , . . . , 0 ) , ei = ( 0 , l , 0 , . . . , 0 ) , . . . , ek = ( 0 , . . . , 0 , ^ , 0 , . . . ,0), 

k-th 

for k = 1 , . . . ,?72, are points of an Euclidean m-dimensional space M171. Let us 
denote by X any Hausdorff topological space. From Section 2 we obtain for 
each n > 0 the f^-module < A n , K > . Moreover, we put: 

C n ( K ) : = < A n , K > . 

Hence we obtain the graded fl-module: 

C(X) = {C n (K)} n> 0 . 

Now we shall define a homomorphism 5n : Cn(X) —> C n _i(K ) , where n > 1. 
By dn we shall understand a linear map from A n _ i to A n which is uniquely 
determined by its values on the vertices: 

40*;) = { ej when j < i 

e J + i when j > i. 

Of course it is a uj-map. So, the boundary map 6 : Cn(X) -> Cn_i(K) is 
given by 

n 

Sndsv^iUi-iy-sodiu 

for all equivalence classes [s] G Cn(X). 
Fact that the above homomorphism is well defined follows easily from Sec

tion 2. One can show that Sn o r5n+i = 0 (comp. [14]), where n > 1. 
Next we put: 

Zn(X) = Ker5n, Bn(X) = Imr5n+i and Un (X) = Zn (X)/Bn(X). 

So, we get the graded module of X over fi: 

n*(x)^{nn(x)}n>0. 



On the Lefschetz fixed point theorem . . . 205 

It will be called the Darbo homology module of X with coefficients in ft. One 
can easily see that a w-map ip : X —» Y induces functorially a homomorphism 
^* : H*(X) —> H*(Y). It is well known how to define: 

U*(X,A) and fa : H+(X%A) -> H*(Y,B) 

for a topological pair (K, A) and a w-map %\) : (X, A) —•> (Y, 5 ) . 
It turn out that in CQ one can define also the notion of the homotopy be 

the interval [0,1]. Given two ^-maps ip and <p from X to Y, we say that ip is 
H;-homotopic to <p (V! ~w <p) if there exists a w-map H from X x L to Y such 
that: 

WH((-B»0),3/) = u>ri>(x,y) and u»H((x, l) ,y) = w<p(x,y). 

Let us underline that we do not demand in order to: 

CTM(X,Q) = cr^(x) and CTM(X, 1) = o>(#). 

It is easy to see that w-homotopy is an equivalence relation in CQ which 
extends the usual homotopy relation on the category of tpological (Hausdorff) 
spaces and continuous (single valued) maps. So we obtain the covariant functor: 

K : CQ -> MQ 

from the category Hausdorff topological spaces and multivalued weighted map
pings over Q, to the category of graded ^-modules which satisfies the Eilenberg-
Steenrod axioms for a homology theory with compact carriers and coefficients 
in a commutative ring with unity fi (see [2], [10]). 

4 The Lefschetz number 

In this section all the vector spaces are taken over Q and all maps between such 
spaces are linear. First we shall recall the notion of the ordinary trace. Let 
/ : E —•> E be an endomorphism of a finite dimensional vector space E and let 
e i , . . . , en be a basis for E. Then for every e; we can write 

n 

f(ei) = ]Ca-,iei-
j = i 

Hence we have the matrix A = [cn,j]^j=i of /• The trace of A is given by 
the formula: 

n 

trAi = y ^ a ^ • 
i = l 

By the trace of an endomorphism of a finite dimensional vector space / : 
E ~> 25, writ en t r ( / ) , we shall understand the trace of the matrix of / with 
respect to some basis for E. The above definition is correct, i.e. it does not 
depend on the choice of the basis for E. Now we shall collect the important and 
well known properties of the defined trace t r ( / ) (see [6] or [8]). 



206 Robert SKIBA 

Property 4.1 Assume that in the category of finite dimensional vector spaces 
the followong diagram commutes: 

E' - A E" 

r[ / [r 
E' - A E" . 

Then tr(f') = t r ( / / x ) . Or equivalently, tr(vu) = tT(uv). 

Property 4.2 Given a commutative diagram of finite dimensional vector spaces 
with exact rows: 

0 —> E' —» J5 —> F" —> 0 

1/' |/ |/" 
o —-> JS ; — > E — > JS" — > o . 

Then we have t r ( / ) = t r ( / ' ) + t r ( / " ) . 

Let E = {En}n>o be a graded vector of finite type, i.e. dimEn < oo for all 
n and En = 0 for almost n. If / = {/n}n>o is an endomorphism of degree zero 
(i.e. fn:En~^En) of the space F", then the Lefschetz number is defined by: 

A(/) = £(-l)BfT(/»)-
n 

It is well known that one can generalize the Lefschetz number. First we have 
to generalize the notion of the trace. Let / : E -> E be an endomorphism of 
arbitary vector space E. By / ( n ) : E —> E we denote the n-th iterate of / . Let 
us note that the kernels 

K e r / c K e r / ( 2 ) C . . . c K e r / ( n ) C ... 

form an increasing sequence of subspaces of E. Next, let us define the set M(f) 
by the formula: 

M(f) = {xeE; f(n)(x) = 0 for some n}. 

It is clear that: 
N(/)= UKer/W. 

n > l 

Let us note also that / maps JV(/) into itself and hence, consequently, we 
get the induced endomorphism f : E -+ Er where E = E/M(f) is the factor 
space. It is easy to see that / : E —> E is a monomorphism. Now we are able 
to formulate the Leray trace. 

Definition 4.1 Let / ^ E -> E be an endomorphism of a vector space E. 
Assume also that dimE < oo. By the Leray trace Tr( / ) of / we understand 
the ordinary trace of / , i.e. we let Tr( / ) = tr(/). 
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No te 4.1 For such the trace Property 4.1 and 4.2 hold true. Moreover, one 
can show the following: 

Property 4.3 Let f : E —> E be an endomorphism. If dimF < oo then 
T r ( / ) = t r ( / ) . 

We are now ready to define the generalized Lefschetz number. Let / = 
{/n}n>o be an endomorphism of degree zero of a graded vector space E = 
{En}n>o. We say that / is the Leray endomorphism provided that the graded 
vector space E = {En}n>0 is of finite type. If / is the Leray endomorphism , 
then we can define the generalized Lefschetz number A(/) of / by putting: 

A(/) = ^ ( - l ) " T r ( / n ) . 
n 

Now from Property 4.3 we have the following: 

Property 4.4 Let f : E —•> E be an endomorphism of degree zero. If E is a 
graded vector space of finite type then 

A(/) = A(/). 

The next two properties immediately follows from Property 4.1 and 4.2, 
respectively (see Note 4.1). 

Property 4.5 Assume that in the category of graded vector spaces the following 
diagram commutes: 

E' - A E" 

r[ / [r 
E' -!--> E". 

Then if any of the the maps f or f is the Leray endomorphism, then so is the 
other and in that case 

A(/') = A(/"). 

Property 4.6 Let 

v T?f \ T? K T?ff _ x T?f L 
• • • > E n •> t , n •> £jn •> tLn_x > • • • 

l/n | / n | / n | / n - l 
\ T?f v If? ^ T?ff ^ T?f ^ 

• • • — > En — > En — > tjn — > hn_l — > • • • 

be a commutative diagram of vector spaces in which the rows are exact. If of 
the following endomorphism 

/ — {/n}n>0, / — {/n}n>0? / ~ {/n}n>0 

are the Leray endomorphism then so is the third, and, moreover, in that case 
we have: 

A(/") + A(/ ' ) = A( / ) . 
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Finaly this section we recall the notion of a weakly nilpotent endomorphism. 

Definition 4.2 A linear map / : E —» E of a vector space E into itself is called 
weakly nilpotent if for every x G X there exists a natural number n = nx such 
that: fnx(x) =0 

From the above definition we deduce that / : E —» E is weakly nilpotent if 
and only if M(f) = E. Let us note also the following: 

Property 4.7 If f : E —» E is weakly nilpotent then Tr( / ) is well defined and 
! - • ( / ) = 0 . 

We say that an endomorphism / = {/n}n>o : E —» E is weakly nilpotent if 
and only if / n : E^ —» En is weakly nilpotent for every n, where E = {En}n>o 
is a graded vector space. From Property 4.7 we get: 

Property 4.8 Any weakly nilpotent endomorphism f : E —» E of a graded 
vector space is a Leray endomorphism and A(/) = 0. 

5 Main results 

In the rest of this paper all spaces are assumed to be metric. We assume also 
that Q is the field of rational numbers Q. This section is organized as follows. 
To begin with, we shall prove the Lefschetz Fixed Point Theorem for compact 
w-maps on ANR's. The second part is devoted to extension of the above result 
to compact absorbing contraction weighted maps (CAC^-maps) from any ANR 
into itself. 

Before we give the proof of the first fact, let us recall a few notions and 
their properties. Let xp : X —» X be a w-map. If the induced homomorphism 
ip* : %*(X) —» %^(X) is a Leray endomorphism, then ip is called a Lefschetz 
^-map and for such ip we can define the Lefschetz number A(^) of ip by putting: 

A(» = A(iM-

Clearly, if ip and (p are w-homotopic then A(^) = A((D). Let us remark that 
if <p has a trivial weight then <p is a Lefschetz w-map and A ((D) = 0. We shall 
say that a w-map c/? : X —» X has a fixed point provided there exists xo G X 
such that xo G <P(XQ). Applying the Darbo homology functor and Property 4.5 
we get: 

Property 5.1 Assume that in the category CQ the following diagram commutes 

X' -2-* X" 

+[ s i* 
X' - A X". 

Then, if one of the w-maps ip or <p is a Lefschetz w-map, then so is the other 
and in that case A(ip) = A(<D). 
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We shall say that a iv-map ip : X —> Y is a compact ?D-map if the closure 
ip(X) of ip(X) in y is a compact set. We shall need also some elementary facts 
concerning absolute neighbourhood retracts (ANB-spaces, see [1], [6]). 

Definition 5.1 Let X and Y be metric spaces. By an embedding of a space 
X into y we shall mean any homeomorphism h : X —> Y from X into Y such 
that h(X) is a closed subset of Y. 

The following notions are especially important in our considerations. 

Definition 5.2 A continuous mapping r : X —> Y is called an r-map provided 
there exists a continuous map s : Y —> X such that r o s = idy. 

Definition 5.3 We say that a subset A of X is a retract of X if there exists a 
retraction r : X —> AL, i.e. a continuous map satisfying the following condition: 
r(x) = x for every x G A. 

It is easy to see that if A. is a retract of X then A is a closed subset of X. 

Definition 5.4 A subset Y of X is called a neighbourhood retract of X if there 
exists an open subset U C X such that Y C U and Y is a retract of U. 

Definition 5.5 A space X is said to be an absolute neighbourhood retract 
provided for any space Y and for any embedding h : X —> Y the set h(X) is a 
neighbourhood retract of Y. 

We shall use the notation: X G ANR. One can show the useful facts: 

Propos it ion 5.1 X G ANR if and only if it is an r-image of some open subset 
U of some normed space E. 

Propos it ion 5.2 If X G ANR and U is an open subset of X, then: U G ANR. 

In particular, we shall say that X is an Euclidean neighbourhood retract 
(X G ENR) if and only if X is an r-image of some open subset U of Rn . Now, 
we may state the first main theorem of this section. 

Theorem 1 (The Lefschetz F ixed Point Theorem) Let X G ANR and 
let <p : X —> X be a compact w-map (<p G KW(X)) then: 

1. <p is a Lefschetz w-map; 
2. A(<p) ^ 0 implies that <p has a fixed point. 

Proof It will be given in several steps. 
Step 1. We consider the following special case: 
1. U is an open subset of Rn 

2. ip is a compact w-m&p from U into itself. 
From condition 2 we have that the closure <p(U) of <p(U) in U is a compact 

set. It is well known that there exists a compact polyhedron X such that p(U) C 
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X C U. Consider the following diagram in which all the arrows represent either 
the obvious inclusions or the contractions of the w-map (D:1 

X -Ac; 

From Section 2 it follows that the above diagram commutes in the category 
Cq. Since the graded vector space H(X) = {Hn(X)}n>Q °-? a compact poly
hedron X is of finite type2 , then (p is a lefschetz w-map. Consequently, from 
Property 5.1 we infer that (p is a Lefschetz ^v-map and, moreover, A(<D) = A(p). 
Let us assume now that A(<D) ^ 0. (Hence, of course, A((p) ^ 0). Then, in view 
of [10] and [13], we get that (p has a fixed point and hence <p has also a fixed 
point. 

N o t e It is obvious that if in Step 1 we replace Rn by any n-dimensional normed 
space En, then the same result remain true. 

Step 2. We replace the assumptions 1 and 2 by the weaker one, namely: (p 
is a compact ^v-map from X into itself, where X G ENR. 

Since X is an FNP-space, then it is an r-image of some open subset U of 
Rn , i.e. there are the continuous maps r : U -> X and s : X —> U such that 
r o s = idx. Let us consider the following commutative diagram (recall that in 
the category CQ): 

K^->U 
I ipor | 

<p\ y/ J s o ^ o r 

Since sotpor is a compact iv-map, then from Step 1 we obtain that so ipor : 
U —> U is a Lefschetz w-map. Consequently, from Property 5.1 we have that (p is 
a Lefschetz w-map and A((p) = A(so<Dor). So if A((p) ^ 0, then A(so<Dor) ^ 0. 
Now, in view of Step 1, we get that there exists xo such that xo G s o <D o r(xo). 
Hence r(xo) is a fixed point of <p. 

Step 3. In this step X G -4NP and <D : X —> X is still a compact ^v-map. 
We shall need the weight version of the Schauder Approximation Theorem (see 
[11]): 

L e m m a 5.1 Let U be an open subset of a normed space E and let tp : X -> U 
be a compact w-map from any metric space into U. Then for every £ > 0 
there exists a finite dimensional subspace En^ of E and a compact w-map 
ipe : X —> U such that: 

xLet V : X —> y be a map such tha t tp(A) C B, where A C X and B C y . By the 
contraction of ip to the pair (A, B) we unders tand a map tp' : A —>• B with the same values as 
ip. A contraction of tp to the pair (A^Y) is simply the restriction I^\A of V* to A. Hence, by 
the contraction of w-map (p we mean a w-map (p' = (cr^/, w 
contractions of a^ and w^, respectively. 

2See introduction of Section 3. 
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(5.1.1) the w-maps ip£, t/> are w-homotopic, 
(5.1.2) i>£(X)cEn^, 
(5.L3) dH(^p(x),(p£(x)) < e for every x e X.3 

In Step 3 we shall distinguish two cases: 

Special case (X = U, where U is an open subset of a normed space E.) 
Since <p : U -> U is a compact ^/>map, in view of Lema 1 for every n we 

get a finite dimensional subspace F?mn C E and a compact ^v-map <Dn : U -» U 
such that: 

a ) (D ~ w <Dn, 

b) ^ ) C ^ , 
c) dH(<p(x),ipn(x)) < £ for every x eU. 

We let Un = U H Fmr\ Now, for every n, we consider the following com
mutative diagram in which all the arrows represent either the inclusions or the 
contractions of the compact w-map <Dn: 

un7Uu 
<Pn\ 2 \Vn 

I V?n 

on[ S 

un^u. 
Reasoning as in Step 2 we deduce that tpn and ¥n are Lefschetz w-maps and 

A((pn) = A(lpn). Moreover, we get that (p is a Lefschetz w-map and A((p) = 
A(<Dn), because <D ^ ^ <Dn. Let assume now that A(<D) ^ 0. Then A(£>n) ^ 0 for 
every n. Now by applying Step 1, for every n, we get that <pn has a fixed point 
and hence (pn has also a fixed point. So, we have a sequence {xn} such that: 

(*) Xn e ipn(xn), 
(**) dH((p(xn),(pn(Xn)) < £• 

From (*) and (**) we infer that there exists the sequence {yn} such that: 

(i) yn e ip(xn), 
(ii) d(xn,yn) = \\xn - yn\\ < dH(¥>n(xn),<p(xn)) < ~-

Since (D is a compact w-map, then we may assume without loss of generality 
that: 

(Hi) limn yn = XQ e U. 

Consequently, from (ii) we deduce that: 

(* * *) l i m n x n = XQ. 

Hence, in view of (i), (m), (* * *) and the upper semicontinuity of ip, it is 
not difficult to see that XQ e <P(XQ). 

3Recall tha t if (X, d) is a metric space, e > 0 and B C X, nonempty, bounded and closed, 
then the Hausdorff distance between A and B is defined by: 

d/-f (A , B) := max{sup dist(a, B), sup dist(b, A)}, 
a£A bEB 

where dist is the distance of the point from the set. 



212 Robert SKIBA 

General case (X E ANR and <D e KW(X)) 
Since X E ANR, then there exist the continuous maps r : U —> X and 

s : X —y U such that r o s = idx, where U is some open subset of some normed 
space E. Let us consider the following commutative diagram: 

X -Uu 

ip\ y/ \s o p o r 

X -Uu. 
Now, reasoning as in the second step, we obtain the desired conclusion. This 

completes proof. • 

Remark In the above proof we have adopted to the case of iv-maps the method 
due to A. Granas for single valued maps (see [8]). 

Now, we are going to generalize the above result. First we recall the nec
essary notions and facts. Let (X, A) be pair of spaces and let ri be the Darbo 
homology functor with compact carriers and coefficients in the field of ratio
nal numbers Q. For a pair (X, A) let us consider the graded vector space 
H*(X9A) = {rln(X,A)}n>Q. A w-map p> : (X,A) -> (X,A) is called a Lef-
schetz uj-map provided <D* = {pn : Hn(X, A) —> 7in(X, A)} is a Leray endo-
morphism. For such p we can define the Lefschetz number A(p) of p by putting 
A(<D) = A(<D*). In the following definition we define a class of iv-maps, which 
is definitely larger than a class of compact tv-maps, moreover, for which the 
Lefschetz Fixed Point Theorem remain true (see [5] or [6]). 

Definition 5.6 A uv-map p : X —> X is said to be a compact absorbing con
traction if there exists an open subset U of X such that <D(U) ^s a compact 
subset of U and X C U ^ o V^W)-

We shall use notation p £ C A C ^ K ) . 

Note 5.1 If p e CAC^(X) and U satisfies the above conditions and K is a 
compact subset of K, then there exists n E N such that pn(K) C U. 

Given a Hj-map p : (X, A) -> (X, A). Let us denote by px • X —> X and 
PA ' A —>• A the evident contractions of p. From Property 4.6 we obtain: 

Propos it ion 5.3 Let p : (K, A) —> (X, A) be a w-map. If any two of P,PA 
and px are Lefschetz w-map, then so is the third and, moreover, 

A(<D )=A (<D X ) -A(<D A ) . 

From Note 5.1 and the fact of applying the Darbo Homology functor H with 
compact carriers and coefficients in Q we obtain: 

Proposit ion 5.4 If p : (K, A) ~> (X, A) is a w-map and a subset A of X 
satisfies conditions of Definition 5.6, then p* is weakly nilpotent. 



On the Lefschetz fixed point theorem . . . 213 

After these preliminaries we are able to formulate and prove the following 
(see [5]): 

Theorem 2 (The Lefschetz Fixed Point Theorem) Let X E ANR and 
<p E CACW(K). Then: 

1. (p is a Lefschetz w-map; 
2. A(<D) 7-= 0 implies that (p has a fixed point. 

Proof Let U be an open subset of X satisfying all properties of Definition 
5.6 and let Tp : U —> U be the contraction <p\u of ip to U. Let us consider also 
Tp : (X, U) -> (X, U), where (p(x) = (D(x) for every x E K. Then in view of 
Proposition 5.4 and Property 4.8 we obtain that ip is a Lefschetz w-map and 
A((p) — 0. Since Tp is a compact w-map and U E ANR (by Proposition 5.2), then 
from Theorem 1 we get that Tp is a Lefschetz w-map. Hence, from Proposition 
5.3 we deduce that ip is a Lefschetz w-map and A((p) = A(^). Let us assume 
now that A((p) ^ 0. Since A(~ip) / 0, then by applying once again Theorem 1 we 
have that Tp has a fixed point and hence we get that (p has a fixed point. • 

Let us observe that if ip : X —» Y is a w-map and X is connected then 
J2yeY wy{x->v) does not depend on x E X (see [10]). So, for X connected it 
makes sense to speak of the index of the w-map <D, I(ip) = ^2yeY

 wv(x> v)-> which 
is well defined. 

Corollary Let X be an acyclic ANR (i.e. HQ(X) W Q andUn(X) = 0 for every 
n > 1) or, in particular, a convex subset of a normed space and let ip : X ~> X 
be a w-map with I(tp) =£ 0. Then: 

1. if (f E 1KW(X), then tp has a fixed point; 
2. if (p E CAC l i ;(K) . llien (D has a fixed point. 
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